HISTOLOGICAL CHANGES IN DENTAL PULP OF DIABETES MELLITUS (TYPE II)

*1Dr. Pradeep Shetty, 1Dr. Sanjyot Mulay, 2Dr. Manju Singh, 3Dr. Mamata Reddy, 4Dr. Monika Chawla and 4Dr. Mubssira Shaikh

1Department of Conservative Dentistry and Endodontics, Dr. D. Y. Patil Vidyapeeth (DPU), Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune- 18
2Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Vidyapeeth (DPU), Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune-18
3Department of Oral and Maxillofacial Pathology, Dr. D. Y. Patil Vidyapeeth (DPU), Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune – 18
4Department of Conservative Dentistry and Endodontics, Dr. D. Y. Patil Vidyapeeth (DPU), Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune- 18

ABSTRACT

Purpose: Type 2 diabetes mellitus is the commonest form of diabetes. The common complications associated with DM are retinopathy, nephropathy, neuropathy, microvascular disease, infection and impaired wound healing. The relationship between oral health and diabetes has been extensively studied, particularly with respect to periodontal disease, but effect of diabetes mellitus on dental pulp is less documented in the literature. This study aims to explore the relationship between the dental pulp and diabetes mellitus by histological analysis, which in turn will widen the horizon of diagnosis and treatment planning of such conditions.

Materials and Methods: A pilot study was conducted on 20 patients. 10 teeth were extracted from study group and the control group, employing intra-alveolar technique. Teeth were sectioned at apical third and subjected for histological procedure. The teeth were decalcified, processed and sections were stained.

Results: Study group showed thickened basement membrane blood vessels (60%) and pulp stones (40%).

Conclusion: Human dental pulp of type 2 diabetic patient revealed impairment of vasculature, which in turn interferes with tissue nutrition, pulpal repair, and creates a microaerophilic state for anaerobic development.

INTRODUCTION

Diabetes mellitus (DM) is a group of complex multisystem metabolic disorders due to a deficiency in insulin secretion caused by pancreatic β-cell dysfunction and/or insulin resistance in liver and muscle (Segura-Egea et al., 2012). The prevalence of diabetes is rapidly rising all over the globe at an alarming rate. Type 2 diabetes mellitus is the commonest form of diabetes & its prevalence is 2.4% in rural population & 11.6% in urban population (Mohan et al., 2007). The primary driver of the epidemic of diabetes is the rapid epidemiological transition associated with changes in dietary patterns & decreased physical activity as evident from the higher prevalence of diabetes in the urban populations. The most disturbing trend is the shift in age of onset of diabetes to a younger age in recent years. Type 1 diabetes results from cellular-mediated autoimmune destruction of pancreatic ß cells, which usually leads to total loss of insulin secretion; in contrast, type 2 diabetes is caused by resistance to insulin combined with a failure to produce enough additional insulin to compensate for the resistance (Segura-Egea et al., 2012). Diabetes mellitus is particularly important for patients who develop infections. The diabetic is not only more vulnerable to bacterial infections, and once invaded, there is a greater probability of developing more serious infections with a disturbance in insulin uptake. This vulnerability is caused by a generalized circulatory disorder, attributed to a lack of insulin, which controls glucose metabolism, with a resultant inadequate blood supply to regions of injury. Moreover, the increased blood glucose at the injury site may enhance bacterial multiplication with ultimate cell death and apoptosis and...
clearance of leukocytes with arrest of polymorphonuclear leucocyte recruitment. Type 2 diabetes is commonly linked to obesity, which contributes to insulin resistance through elevation of circulating levels of free fatty acids derived from the adipocytes; these free fatty acids inhibit glucose uptake, glycogen synthesis and glycolysis (Tunes et al., 2010). The common complications associated with DM are retinopathy, nephropathy, neuropathy, microvascular disease, infection and impaired wound healing. The relationship between oral health and diabetes has been extensively studied, particularly with respect to periodontal disease, but effect of diabetes mellitus on dental pulp is less documented in the literature. Only two human histologic pulp studies have been reported according to computer analysis. Russel reported that the changes observed in the periodontal tissue were the same as in the pulps, angiopathies, and a thickened basement membrane. These changes were located in both large and small pulp vessels (Russel, 1967). Contrary to this, Bissada and Sharawy found no vascular changes in the dental pulps of diabetics (Bissada, 1970). Endodontists and even general practitioners come across various diabetic patients with pulp and periapical problems and also this systemic disease has the direct influence on the healing of the same. This study aims to explore the relationship between the dental pulp and diabetes mellitus by histological analysis, which in turn will widen the horizon of diagnosis and treatment planning of such conditions.

MATERIALS AND METHODS

A pilot study was conducted on the patients attending the Out Patient Department of Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune with a complaint of tooth mobility and partially edentulous mouth. Patients between 45-65 years with a history of controlled diabetes mellitus, whose teeth were indicated for extraction due to periodontal reasons, were included in the study. While, patients with h/o Type 1 diabetes and teeth indicated for root canal treatment were excluded. For control group, patients between similar age group with no h/o diabetes mellitus were selected. A sample size of 20 was considered using convenient sampling technique. Ethical clearance was taken from the institutional review board. Patients meeting following inclusion and exclusion criteria were considered. Informed consent was obtained from all the subjects willing to participate in the study. All these patients participating in the study underwent recent random serum glucose estimation by the same pathologist. 10 teeth were extracted from study group and the control group. All the teeth were extracted under local anesthesia using 2% lignocaine hydrochloride with 1:200,000 adrenaline, employing intra-alveolar technique. Standard postoperative instructions were given. Teeth were sectioned at apical third and subjected for histological procedure (Fig 1). The teeth were decalcified, processed and sections were stained with hematoxylin and eosin.

RESULTS

Angiopathic changes like thickened basement membrane were evident in both large and small blood vessels of six teeth in study group along with pulp fibrosis (Fig 2 and 3), while control group showed no thickened basement membrane in blood vessels. Pulp stones were evident in four teeth of study group (Fig. 4 and 5).
microbicidal activity. Vascular changes with thickened basement membrane impair the leukotactic response and decrease the leucocyte accumulation of atheromatous deposit in the vessels lumen and inflamed gingiva (Fouad, 2003). Both generalized microvasculature also showed same changes in normal and disease conditions produced by the diabetes may increase the development of periradicular lesions (Nayak et al., 2013). Vascular Changes in the pulp of DM patients may also induce changes in immune cell function produce an inflammatory response his predisposes to chronic inflammation, progressive tissue breakdown, and diminished tissue repair capacity (Delamaire et al., 1997). Detailed human pulp studies, at present, do not exist in diabetes mellitus, but still we can understand from these observations that the impaired vasculature also interferes with tissue nutrition, pulp repair, and creates a microaerophilic state for anaerobic development.

REFERENCES
