

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 10, pp.21637-21640, October, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

KINETICS OF VAPOR PHASE AMMOXIDATION OF O-XYLENE ON V-SB-BI-ZR/ γ -AL₂O₃ OXIDE CATALYST I. ABOUT THE COMPETING WAYS OF FORMATION OF THE MAIN PRODUCTS

Bagirzade, G. A., Tagiyev, D. B. and *Manafov, M. R.

Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences, Azerbaijan, Baku

ARTICLE INFO

ABSTRACT

Article History: Received 18th July, 2015 Received in revised form 05th August, 2015 Accepted 05th September, 2015 Published online 31st October, 2015

Key words:

Catalytic ammoxidation, Kinetics, o-Xylene, Phthalimide, Phthalonitrile.

Kinetic regularities of vapor ammoxidation of xylene on the V-Sb-Bi-Cr / γ -Al₂O₃-oxide catalyst in the temperature range 648-708K are studied. It is shown that the formation of the phthalimide occurs both directly from o-xylene and in parallel through tolunitrile phthalonitrile. It is determined that the carbon dioxide formed by oxidation of o-xylene and decarboxylation of phthalimide, and benzonitrile from o-tolunitrile, and phthalimide.

Copyright © 2015 Elizabeth Farisai Hove. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Bagirzade, G. A., Tagiyev, D. B. and Manafov, M.R. 2015. "Kinetics of vapor phase Ammoxidation of o-xylene on v-sb-bi-zr/ γ -al₂o₃ oxide catalyst i. about the competing ways of formation of the main products", *International Journal of Current Research*, 7, (10), 21637-21640.

INTRODUCTION

It is known that heterogeneous catalytic oxidative ammonolysis of aromatic compounds having methyl groups in ortho situation, leads to obtaining as the main product both a dinitrile and imide (Bagirzade et al., 2015; Bagirzade et al., 2014; Bagirzade et al., 2014; Bagirzade and Tagiyev, 2014), the simultaneous presence in the reaction products results in the formation hard-to separable crystal mixture and all areas of consumption make high demands on the purity of the desired products. It is important to note that for the ammoxidation of oxylene (CCCR 1728240, 1990) on the base V-Sb-Bi /y -Al₂O₃oxide catalyst phthalimide obtained directly from the substrate and by the hydrolysis of phthalonitrile. Previously we (Rizayev et al., 1985; Rizayev et al., 1986) studied kinetic regularities of vapor phase catalytic ammoxidation of xylene-on V-Sb-Bi-Zr / y-Al₂O₃-oxide catalyst at higher concentrations of ammonia and water in the absence of the initial reaction mixture in order to obtain phthalonitrile. However, in the presence of water was observed formation of the phthalimide (Fig. 1.) through monodinitrile at the initial molar ratios of o-xylene: air: NH₃: H₂O, equal to 1: 30: 50: 100-120 . As you can see, obtaining successively phthalimide only through phthalonitrile requires the use of high concentrations of ammonia and water, which

creates additional difficulties and shortcomings, negatively affecting the economic performance of the process. Rather at high concentrations of ammonia and water is necessary to increase the volume of the reaction zone and therefore the amount of the catalyst to maintain optimum contact time, as well as in connection with regeneration and ammonia using a large amount of water increases overhead capital and energy costs. As for the ammoxidation of xylene on V-Sb-Bi-Zr / γ -Al₂O₃-oxide catalyst, at low ammonia concentrations yield of phthalimide low due to the additional CO₂ formation in a large amount (route 8, Fig.1) (Bagirzade and Tagiyev, 2012).

The aim of this work was to study the kinetic regularities of the ammoxidation of xylene on V-Sb-Bi-Cr / γ -Al₂O₃-oxide catalyst at low concentrations of ammonia in the presence of water in the initial reaction mixture to obtain the phthalimide.

METHODS AND APPARATUS

Kinetic measurements conversion of o-xylene and chromatographic separation of components catalysate and the quantitative calculation of their contents was performed according to previously established procedures (Rizayev *et al.*, 1985). However, unlike these kinetic reactor made of steel 12X18H10T and analyzes were carried out on Chrome-5 chromatograph with a flame ionization detector. As a stationary phase, which filled the column length of 1.2 m was used as a

^{*}Corresponding author: Manafov, M. R.

Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences, Azerbaijan, Baku.

mixture (Rizayev *et al.*, 1985), and only polisorb-1 (0.25-0.5 mm). Carbon dioxide was determined on an LKhM-8MD chromatograph with triethylene glycol butyrate supported on INZ- 600 (calcined diatomaceous earth) as the stationary phase. Separation of O_2 and N_2 was carried out on the same chromatoraph using a parallel column packed with NaX.

Experimental

In the products of the reaction of ammoxidation of o-xylene (I) on the V-Sb-Bi-Cr / γ -Al2O3-oxide catalyst o-tolunitrile (II), pthalimide (III), pthalonitrile (IV), benzonitrile (V), carbon dioxide, unreact- ed I, oxygen and the diluent gas nitrogen were determined by gas chromatography. The reaction gases were successively passed through a 1.4-dioxane-filled trap for absorption of nitriles, and III and a sulfuric acid-filled trap for absorption of ammonia. The concentration of ammonia at the reactor outlet was determined, by titration of unreacted sulfuric acid from the second trap.

Figure 1. Reaction of ammoxidation of o-xylene on the V-Sb-Bi-Cr/γ-Al₂O₃-oxide catalyst

RESULTS AND DISCUSSION

To clarify the nature of the kinetic dependence of ammoxidation reaction of o-xylene on the V-Sb-Bi-Cr / y-Al₂O₃-oxide catalyst studied the effect of the partial pressures of oxygen PO2, ammonia PNH3, P1 substrate and water PH₂O, and the contact time τ in the process speed in the temperature range 648-708 K. In this report discussed the results of the impact of PO₂, PNH₃ PH2O on process indicators and it is shown that competing ways of formation of the main products depends on the ratio of the partial pressures of components (PO₂ / PNH₃ and PH₂O / PNH₃). Influence of oxygen concentration on the process performance of the ammoxidation of o-xylene was investigated at τ 0.20 s and initial partial pressures of 1.47 kPa, 17.65 kPa, 36.76 kPa. At temperatures of 668 (Table 1) and 708 K (Table 2) in the investigated range of variation PO_2 conversion ratio α and the total conversion rate of o-xylene W is independent of oxygen partial pressure.

 Table 1. Effect of oxygen partial pressure on the reaction kinetics of oxidative ammonolysis of o-xylene

kPa		α, %	α, % W,		S _i , kPa				
$P_{O_2}^0$	Po2		mmol/g·h	II	III	IV	CO_2		
2.21	0.21	59.61	2.80	59.22	28.53	10.00	2.25		
4.41	1.94	60.15	2.83	32.15	56.90	7.20	3.75		
5.88	3.25	60.50	2.84	23.89	65.64	6.27	4.20		
9.26	6.43	61.20	2.87	13.10	77.65	4.61	4.64		
11.76	8.78	61.70	2.90	8.85	81.76	3.79	5.60		
17.65	14.60	61.50	2.89	5.20	85.83	2.94	6.03		
22.06	18.97	61.40	2.88	3.55	87.65	2.45	6.35		

However, the selectivity of product formation (S_i) strongly depends on PO₂ and temperature. Similar patterns were observed at temperatures of 648 and 688 K.

Study of the effect PNH₃ at τ 0.20 s, 1.47 kPa, 9.26 kPa, 36.76 kPa, temperature 688 K (Table 3) on α has demonstrated that the conversion of o-xylene is independent of the ammonia concentration in the range of 3.86-21.44. At the same time there is the dependence of the S_i on PNH₃ and temperature as in the case of the influence of PO₂. Similar patterns were observed at temperatures of 648, 668 and 708K.

 Table 2. Effect of oxygen partial pressure on the reaction kinetics of oxidative ammonolysis of o-xylene

kPa		α, %	W,	S _i , kPa					
$P^0_{O_2}$	Po2		mmol/g∙h	II	III	IV	V	CO_2	
4.41	0.81	85.7	4.03	34.74	22.58	36.23	1.38	5.07	
7.35	3.46	86.2	4.05	23.46	38.53	31.10	1.31	5.60	
9.26	5.19	86.4	4.06	18.15	48.99	25.40	1.08	6.38	
11.76	7.57	86.7	4.07	13.76	57.04	21.62	0.98	6.60	
17.65	13.28	86.5	4.06	8.20	65.37	18.30	0.74	7.39	
22.06	17.59	86.9	4.08	6.13	69.24	16.10	0.73	7.80	

Increasing the concentration of O_2 in the initial reaction mixture increases the selectivity of phthalimide and decrease selectivity phthalonitriles (Table 1 and Table 2), and increasing the partial pressure of NH₃ is valid vice versa (Table 3). As you can see the relative increase in the concentration of ammonia and the reduction of oxygen in the gas contact it favors the formation of phthalonitrile, which is consistent with the previously conducted studies (Kolodina and Suvorov, 1962; CCCR 691447, 1979).

 Table 3. Effect of the partial pressure of ammonia at the reaction kinetics for the ammoxidation of o-xylene

kPa		α, %	W, mmol/g·h	S _i , kPa			
$P^{0}_{\rm NH_3}$	$P_{\rm NH_3}$			II	III	IV	CO_2
4.41	3.42	71.70	3.37	3.70	86.22	2.30	7.78
8.82	7.77	72.17	3.39	10.10	75.77	6.80	7.33
13.24	12.13	72.66	3.41	14.85	68.00	10.27	6.88
17.65	16.46	74.70	3.51	17.75	62.93	13.72	5.60
22.06	20.86	74.21	3.49	21.65	57.29	15.25	5.81

This indicates an important role of oxidative steps in the proses of forming the imide heterocycle, since phthalimide unlike phthalonitrile contains in functional groups not only a nitrogen atom but also an oxygen atom. Therefore, for the ammoxidation of xylene, changing the ratio of O_2 and NH₃ on the used catalyst, it can be adjusted advantageously selectivity not only nitrogen - but also oxygen-containing derivatives of o-phthalic acid. Indeed, the modification of basic V-Sb-Bi / γ -Al₂O₃ oxide catalyst an additive of Cr₂O₃ increases the number of strongly acidic centers on the surface of the contact, which consequently causes the formation of the phthalimide directly from o-xylene (Bagirzade and Tagiev, 2014). In case of modification of ZrO₂ additive, the concentration of weakly acidic centers that favor phthalonitrile (Bagirzade and Tagiev, 2013) increases in the surface. As seen from the Tables 1-3,

the distribution of products is observed to be dependent on the concentration ratio as the O2 and NH3, and H2O and NH3. Taking into consideration the similar kinetic laws of ammoxidation of xylene, and 4-bromo- and 4-phenyl-o-xylene (Bagirzade and Tagiev, 2014), we can say that if adsorbed fragment of the corresponding substrate as a common activated complex interacts with ZrNH₃, then a mononitrile is formed, which in turn, converted to dinitrile and in the case of interaction with ZrO_2 , - imide, or CO_2 and H_2O on routes 7 and 8 (Fig.1) (Bagirzade, 2014). This suggests that the rate of competing reactions of equations (routes 1, 7 and 8, fig.1) to obtain-tolunitrile, phthalimide and CO₂ must be present partial pressures of O₂ and NH₃, which are consistent with those of the ammoxidation of o-xylene to V- Sb-Bi-Zr / y-Al2O3-oxide catalyst at low ammonia concentrations (8,10). As for the two pathways of CO₂, it should be noted that one of these ways does not depend on the concentration of NH₃ (route 9, Fig.1) whereas the other-dependent (route 8, Fig.1). This is consistent with the results of previously conducted our work (Kolodina and Suvorov, 1962). It is important to add that the formation of CO₂ from 8 accompanied with obtaining phthalimide directly from o-xylene on route 7.

Study of the effect of water concentration in the feed was carried out at τ 0.20 s, 1.47 kPa, 9.26 kPa, 17.65 kPa and 668 K (Table 4). As seen in Table 4, which studied the range of variation PH₂O conversion and the total conversion rate of o-xylene are not dependent on the partial pressure of water. Moreover, PH₂O increase does not affect the selectivity formation of o-tolunitrile, benzonitrile and CO₂, but phthalimide selectivity is observed to grow as a result of reduction in the formation of phthalonitrile. Similar patterns were observed at temperatures of 688 and 708 K.

 Table 4. The effect of partial pressure of water in the reaction kinetics of oxidative ammonoliz o-xylene

	1/D	n					S. FI)_
	KF	a	0/	** 7		Si, KF d		
	$\mathbf{P}^{0}_{\mathbf{H}}$	P _{H-O}	α, %	W,	II	III	IV	CO_2
	- H ₂ O	2		mmol/g∙h				
	7.35	11.03	61.00	2.87	13.20	72.67	9.41	4.72
	22.06	25.67	60.80	2.86	13.30	75.56	6.40	4.74
	36.76	40.37	61.20	2.87	13.10	77.65	4.61	4.64
	51.47	55.07	61.40	2.88	12.97	78.77	3.57	4.69
_	66.18	69.77	61.30	2.88	12.92	79.38	3.00	4.70

Given the above, it is fair to say that carrying out the process for the ammoxidation of xylene in low concentrations of ammonia in the presence of water causes the formation of the corresponding imide, as it increases the proportion of reaction on routes 7 and 3 (Fig.1) and dinitrile disappears. However, by increasing ammonia feed to the initial total yield of the mixture of oxygen-containing compounds is reduced amid spontaneous increase of the amount of mono- and dinitriles on routes 1 and 2. Thus, the formation of staple associated with the competition of ammonia with oxygen and water for space on the surface of the V-Sb-Bi-Cr / γ -Al₂O₃-oxide catalyst at vapor phase ammoxidation of o-xylene.

The results of the effect of the partial pressure of the substrate and the impact of the contact time to the pace of the process, as well as the kinetic equations route scheme will be presented in the next report.

Conclusion

- 1) Kinetic regularities of ammoxidation on V-Sb-Bi- Cr / γ -Al₂O₃ oxide catalyst in the temperature interval 648-708K have been studied.
- Presence of competitive adsorption of ammonia with oxygen and water as an example of ammoxidation of xylene-oxide catalyst V-Sb-Bi-Cr / γ-Al₂O₃ indicates that competing processes that form basic products occur on the surface of this contact
- 3) It is demonstrated that this phthalimide could be obtained both directly from the substrate, and hydrolysis of phthalonitrile.

REFERENCES

- A.S. CCCR 1728240, "Method of phthalimide," B.I., No.15, 1992. (in Russian).
- A.S. CCCR 691447, "Method of phthalimide," B.I., No.38, 1979. (in Russian)
- Bagirzade G. A., D. B. Tagiyev, M. R. Manafov "Vapor Phase Ammoxidation of 4-Phenyl-o-Xylene into 4-Phenylphthalonitrile on V-Sb-Bi-Zr/γ-Al₂O₃ Oxide Catalyst", *Modern Research in Catalysis*, Vol.5, No.3, 2015, pp. 59-67.
- Bagirzade G.A. and D.B. Tagiev, "Chemical Technology and Biotechnology of New Materials and Products ", Abstracts of Papers of VI International Conference of the Mendeleev Russian Chemical Society, D.Mendeleev University of Chemical Technology of Russia, Moscow, 2014, pp.124-126. (in Russian)
- Bagirzade G.A., D.B. Tagiev, "Resources- and Energy-Saving Technologies in the Chemical and Petrochemical Industry", Abstracts of Papers of V International Conference of the Mendeleev Russian Chemical Society, D.Mendeleev University of Chemical Technology of Russia, Moscow, 2013, pp.56-58. (in Russian)
- Bagirzade G.A., D.B. Tagiyev, "Chemical Technology and Biotechnology of New Materials and Products", Abstracts of Papers of IV International Conference of the Mendeleev Russian Chemical Society, D.Mendeleev University of Chemical Technology of Russia, Moscow, Vol.1, 2012, pp. 9-11. (in Russian)
- Bagirzade, G. A., D. B. Tagiyev, M. R. Manafov "Synthesis of 4-Phenylphthalonitrile by Vapor-Phase Catalytic Ammoxidation of Intermediate 4-Phenyl-o-Tolunitrile: Reaction Kinetics", *Modern Research in Catalysis*, Vol.3, No.1, 2014, pp. 6-11. http://dx.doi.org/10.4236/mrc. 2014.31002
- Bagirzade, G.A. "Kinetics of Oxidative Ammonolysis of 4-Brom-o-Xylene: IV. Mechanism of Formation of the Reaction Products", *Russian Journal of General Chemistry*, Vol. 84, No.6, 2014, pp. 1079-1084.
- Bagirzade, G.A., D.B. Tagiev, V.E. Scheinin, Z.Y. Magerramova, "Kinetic Mod- el of Oxidative Ammonolysis of 4-Brom-o-Xylene", *Azerbaijan Chemical Journal*, No.1, 2014, pp.18-22.
- Bagirzade, G.A., D.B. Tagiyev, S.S. Fatullayeva, "Transformation Pathways of o-Xylene and Its 4-Substituted Derivatives in the Course of Vapor-Phase Oxidative Ammonolysis", *Russian Journal of Applied Chemistry*, Vol. 87, No. 11, 2014, pp. 1674–1679.

21640 Bagirzade et al. Kinetics of vapor phase Ammoxidation of o-xylene on v-sb-bi-zr/y-al203 oxide catalyst i. about the competing ways of formation of the main products

- Bagirzade, G.A., D.B.Tagiyev, "Kinetics of Oxidative Ammonolysis of 4-Brom-o-xylene: V. Synthesis of 4-Bromphthalonitrile", *Russian Journal of General Chemistry*, Vol. 84, No.6, 2014, pp. 1085-1090.
- Kolodina, I.S., B.V.Suvorov, Oxidation of Organic Compounds. Message XL. *Izv. AN Kaz.SSR*, No.2, 1962, pp.92-97. (in Russian)
- Rizayev, R.G., V.E.Scheinin, Allahkulu A.oglu, A.K.Avetisov, "Kinetics of Oxidative Ammonolysis of o-Xylene II.Formation of By-Products", *Kinetics and Catalysis*, Vol.27, No.2, 1986, pp.339-345.
- Rizayev, R.G., V.E.Scheinin, Allahkulu A.ogly, A.K.Avetisov, "Kinetics of Oxidative Ammonolysis of o-Xylene I. Transformation of o-Xylene and o-Tolunitrile", *Kinetics* and Catalysis, Vol.26, No.2, 1985, pp.345-348.
