

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 10, pp.21506-21510, October, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

# **RESEARCH ARTICLE**

# EVALUATION OF ANTI-BACTERIAL ACTIVITY OF HIGH VALUED MEDICINAL PLANT EXTRACTS AGAINST MULTI-DRUG RESISTANT PSEUDOMONAS AERUGINOSA AND PROTEUS VULGARIS

# <sup>1</sup>Murad Khan, <sup>1</sup>,\*Aftab Ali Shah, <sup>1</sup>Murad khan, <sup>1</sup>Anam Bibi, <sup>2</sup>Nazish Sherin, <sup>2</sup>Manzoor Ahmad and <sup>3</sup>Mohammad Nisar

<sup>1</sup>Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Pakistan <sup>2</sup>Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Pakistan <sup>3</sup>Department of Botany, University of Malakand, Chakdara, Lower Dir, Pakistan

#### **ARTICLE INFO**

#### ABSTRACT

Article History: Received 24<sup>th</sup> July, 2015 Received in revised form 05<sup>th</sup> August, 2015 Accepted 07<sup>th</sup> September, 2015 Published online 31<sup>st</sup> October, 2015

*Key words:* Multi drug resistant, Medicinal plants, Crude extract, Fractionation, Disc diffusion assay. Human pathogenic bacteria have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality. MDR develop hindrance in disease control by intensifying the possibility of spreading of resistant pathogens, thus, declining efficacy of treatment. MDR in bacterial infections has impaired the current antimicrobial therapy and demanding the search for other alternatives. Search for natural product extracting from high valued medicinal plants are the alternative source for discovery of new drugs useful against MDR bacteria. Henceforward, this study is designed to investigate the in vitro antibacterial activity of selected medicinal plants extracts against Pseudomonas aeruginosa and Proteus Vulgaris in comparison with commercial antibiotic discs using disc diffusion method. Different fractions of eight high valued medicinal plants were screened. The fractionated extract of Chenopodium album, Quercusincana, Zizipus jujube leaves, Zizipus jujube Flower, Grevillea robusta, Corydalis govaniana, Solanum nigrum showed antibacterial activity confirming through zone of inhibition ranging from 0-18.3 mm against Pseudomonas aeruginosa and Proteus Vulgaris. While Trifoliumrepens, Lamoniumcabuliciumfailed to control bacterial growth on disc diffusion. We suggest that the protocol used in this study is useful for the investigation of more plants used for antibacterial activity and plant having active natural products serve as a source for antibacterial compounds.

Copyright © 2015 Murad Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Citation:* Murad Khan, Aftab Ali Shah, Murad khan, Anam Bibi, Nazish Sherin, Manzoor Ahmad, and Mohammad Nisar, 2015. "Evaluation of anti-bacterial activity of high valued medicinal plant extracts against multi-drug resistant pseudomonas Aeruginosa and *Proteus vulgaris*", *International Journal of Current Research*, 7, (10), 21506-21510.

# **INTRODUCTION**

The development and spread of antibiotic resistance in pathogenic bacteria is a continuous threat both to humans as well as animals (Bush *et al.*, 2011). The molecular mechanisms of bacterial resistant to antibiotics are very complex. They are also significantly more expensive to diagnose. Naturally antibiotic resistance is far much less common than the acquired one resulted from conjugation of plasmid and transmitted horizontally (Davies and Davies, 2010). Thus resulted in the simultaneous development of resistance to several antibiotic classes creating very dangerous multidrug-resistant (MDR) bacterial strains. Some of MDR Bacteria are also known as "superbugs" (Alanis, 2005). The spread of MDR bacteria in community remains as critical healthcare problem (Brusselaers *et al.*, 2011).

#### \*Corresponding author: Aftab Ali Shah

Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Pakistan Despite to advances in antibiotic therapy, infectious complications remain an important cause of mortality and morbidity among hospitalized patients thus leading to considerable clinical and economic burden (Salgado *et al.*, 2005). Pseudomonas aeruginosa and Proteus vulgar is are MDR bacteria. These bacteria are found in soil, water, human skin, throat, and stool of a healthy human naturally. Common diseases caused by Pseudomonas aeruginosa in human urinary tract infections are ventilator-associated pneumonia, surgical site infection, respiratory, ocular, ear, skin and soft tissue infections.

Proteus Vulgaris are opportunistic pathogen; commonly it can cause urinary and septic infections. It also cause severe kidney infection which is because of its attachment to host urothelial cells (Fuchs *et al.*, 1996; Hsu *et al.*, 1994; Thornsberry and Yee, 1996). Due to the increase of resistance to antibiotics, there is an urgent need to develop new and innovative antimicrobial agents. Different plants sources have long been

investigated as potential sources of new antibacterial agents. Because of their low toxicity, there is a long tradition of using dietary plants in the treatment of infectious disease (Djeussi *et al.*, 2013). The present study is designed to determine the antibacterial activity of eight selected high valued medicinal plants (Chenopodiumalbum, Quercusincana, Zizipus jujube, Zizipus jujube, Trifoliumrepens, Grevillearobusta, Lamoniumcabulicium, Corydalis govaniana, Solanumnigrum) against MDR Pseudomonas aeruginosa and Proteus vulgaris.

# **MATERIALS AND METHODS**

## **Collection of Plant Materials**

A total of eight medicinal plants were used in the present study: *Trifoliumrepens, Quercusincana, Zizipus jujube, Chenopodium album, Lamoniumcabulicium, Solanum nigrum, Grevillea robusta,* and *Corydalis govaniana*. These plants were collected from different areas of district Swat and Lower Dir, Khyber Pakhtunkhwa, Pakistan as shown in Table 1.

#### Growth medium

Different bacterial growth media including Nutrient agar (Merck, Darmstadt, Germany) and McConky Agar (Oxoid Ltd, Hampshire, UK) were used for the culturing and sub-culturing of the selected bacterial strains.

## In-vitro antibiotic sensitivity test

The antibiotic sensitivity and pattern of resistant of each plant extract was determined against MDR bacteria including *Pseudomonas aeruginosa* and *Proteus vulgaris*. In addition, for comparative analysis, the commercial antibiotic discs (Ciprofloxacin, Cefepime, Moxifloxicin, Gentamicin, and Ceftriaxone) used as standard. Discs prepared from plant extracts and commercial antibiotic discs were applied on the surface of the agar plates with the help of sterile forceps separated at an equal distance from each other. All plates were incubated for 24 hours at 37°C.

| S. No | Plant name           | Plant part used | Area of sample collection               |
|-------|----------------------|-----------------|-----------------------------------------|
| 1     | Trifoliumrepens      | Seeds           |                                         |
| 2     | Gravilearobista      | Leaves          |                                         |
| 3     | Zizipusjujuba        | Leaves, flowers | Lower Dir, Khyber Pakhtunkhwa, Pakistan |
| 4     | Chinipodium album    | Leaves          |                                         |
| 5     | Lamoniumcabulicium   | Leaves          |                                         |
| 6     | Solinumnigrum        | Seeds           |                                         |
| 7     | Quercusincana        | Leaves          | Swat Khyber Pakhtunkhwa, pakistan       |
| 8     | Corydalis govanniana | Flower          | -                                       |

#### **Plant extracts preparation**

The plants materials were shad dried and then chopped into small pieces performed previously (Bhalodia and Shukla, 2011). The crude extracts were separated through filtration rotary evaporator(Hossain *et al.*, 2014). The isolated plant extracts were stored in an airtight bottle at 4°C until further use.

#### Different concentration discs preparation

A total of 1g/10 ml of crude extract was dissolved in distilled water for preparation of different concentration of discs from these isolated plant extracts. After preparing different concentration of each extract the disc were subjected with each concentration. About 10ul of each concentration was poured on individual disc. Different discs were prepared having different concentration of (10ug, 50ug, 100ug, 750ug and 1gm). The 5 mm discs were prepared from the filter paper using a punching paid. All the prepared discs were sterilized(Thomas and Veda, 2008). Each sterile disc was individually treated with each extract of plant in various concentrations (10ug, 50ug, 100ug, 250ug, 500ug, 750 $\mu$ g, 1g). Over flow of the compounds was avoided on the outer surface of the discs and were placed for drying and then stored at 4°C.

#### **Tested microorganisms**

The MDR bacteria used in this study were *Pseudomonas aeruginosa* and *Proteus vulgaris*. Both bacteria were collected from government hospitals of Khyber Pakhtunkhwa Pakistan.

The effectiveness of the drug and fraction of crude extract was determined by measuring the diameter of the zones of inhibition using digital verniercaliper that resulted from the diffusion of the active ingredient in the medium surrounding the plant extracts discs as well as commercial antibiotics. After incubation, the zones of inhibition were observed around the discs on nutrient agar plates.

## RESULTS

The chloroform, methanolic, ethyl acetate extracts from the screened plant material (Chenopodium album, Quercusincana, Zizipus jujube leaves, Zizipus jujube Flower, Trifoliumrepens, Grevillearobusta, Lamoniumcabulicium, Corydalis govaniana, Solanumnigrum) showed variable zones of inhibition (ranging from 0-17.3, 0-18.3, 0-16) respectively against Pseudomonas aeruginosa. Only the chloroform extracts of Chenopodium album showed antibacterial activity (17.3mm). The methanolic extracts of Chenopodium album (7.3mm), Quercusincana (7mm), Zizipus jujube leaves (18.3mm), Zizipus jujube flower (8mm), Grevillea robusta (6.3mm), Corydalis govaniana (7mm) and Solanumnigrum (13.3mm). Similarly only the ethylacetate extracts of Chenopodium album showed antibacterial activity (16mm) as shown in Figure 1. Only the chloroform extracts of Chenopodium album showed antibacterial activity (17.3mm). The tested commercial antibiotics (Ciprofloxacine. Cefepime. Moxifloxicin. Gentamicin, and Ceftriaxone) showed different antibacterial activities (22.1mm, 34.8mm, 27.3mm, 8mm, and 20.4mm) against Pseudomonas aeruginosa respectively as shown in Table 2.

| Type of MDR<br>bacteria | Lis            | st of con     | nmercia  | l antibi     | otics      | Z<br>in<br>Che<br>alb | Zone of<br>inhibition<br>of<br>Quercusinc<br>ana (mm) |            |               | Zone of<br>inhibition of<br>Zizipusjujube<br>leaves (mm) |            |               | Zone of<br>inhibition of<br>Zizipus<br>jujube<br>Flower (mm) |            |               | ii<br>Ti<br>pe | Zone of<br>inhibition<br>of<br><i>Trifoliumre</i><br><i>pens</i> (mm) |               |            | e of inhib<br>of<br><i>avilliarub</i><br>(mm) | i<br>La<br>l  | Zone of<br>inhibition of<br><i>Lamoniumcabu</i><br><i>licium</i> (mm) |            |               | Zone of<br>inhibition of<br><i>Corydalis</i><br><i>govaniana</i><br>(mm) |            |               | Zone of<br>inhibition of<br>Solinumnigrun<br>(mm) |            |               |            |            |               |
|-------------------------|----------------|---------------|----------|--------------|------------|-----------------------|-------------------------------------------------------|------------|---------------|----------------------------------------------------------|------------|---------------|--------------------------------------------------------------|------------|---------------|----------------|-----------------------------------------------------------------------|---------------|------------|-----------------------------------------------|---------------|-----------------------------------------------------------------------|------------|---------------|--------------------------------------------------------------------------|------------|---------------|---------------------------------------------------|------------|---------------|------------|------------|---------------|
|                         |                | Ciprofloxacin | Cefepime | Moxifloxicin | Gentamicin | Ceftriaxone           | Chloroform                                            | Methanolic | Ethyl acetate | Chloroform                                               | Methanolic | Ethyl acetate | Chloroform                                                   | Methanolic | Ethvl acetate | Chloroform     | Methanolic                                                            | Ethyl acetate | Chloroform | Methanolic                                    | Ethyl acetate | Chloroform                                                            | Methanolic | Ethyl acetate | Chloroform                                                               | Methanolic | Ethyl acetate | Chloroform                                        | Methanolic | Ethyl acetate | Chloroform | Methanolic | Ethvl acetate |
| Pseudomonas             |                | 22            | 35       | 27           | 9          | 20                    | 19                                                    | 8          | 20            | 0                                                        | 8          | 0             | 0                                                            | 19         | 0             | 0              | 9                                                                     | 0             | 0          | 0                                             | 0             | 0                                                                     | 7          | 0             | 0                                                                        | 0          | 0             | 0                                                 | 7          | 0             | 0          | 14         | 0             |
| aeruginosa              |                | 23            | 35.3     | 26.2         | 8          | 19.5                  | 16                                                    | 7          | 15            | 0                                                        | 7          | 0             | 0                                                            | 18         | 0             | 0              | 8                                                                     | 0             | 0          | 0                                             | 0             | 0                                                                     | 6          | 0             | 0                                                                        | 0          | 0             | 0                                                 | 7          | 0             | 0          | 12         | 0             |
|                         |                | 21.4          | 34.3     | 28.7         | 7          | 21.9                  | 17                                                    | 7          | 13            | 0                                                        | 6          | 0             | 0                                                            | 18         | 0             | 0              | 7                                                                     | 0             | 0          | 0                                             | 0             | 0                                                                     | 6          | 0             | 0                                                                        | 0          | 0             | 0                                                 | 7          | 0             | 0          | 14         | 0             |
|                         | Mean<br>Values | 22.1          | 34.8     | 27.3         | 8          | 20.4                  | 17.3                                                  | 7.3        | 16            | 0                                                        | 7          | 0             | 0                                                            | 18.3       | 0             | 0              | 8                                                                     | 0             | 0          | 0                                             | 0             | 0                                                                     | 6.3        | 0             | 0                                                                        | 0          | 0             | 0                                                 | 7          | 0             | 0          | 13.3       | 0             |

#### Table 2. Antibacterial efficacy of organic extracts fractions (Ethyl acetate, methanolic and chloroform) of different plant parts against multi-drug resistance (MDR Pseudomonas aeruginosa

#### Table 3. Antibacterial efficacy of organic extracts fractions (Ethyl acetate, methanolic and chloroform) of different plant parts against multi-drug resistance (MDR Proteus vulgaris)

| Type of<br>MDR<br>bacteria | Type of List of commercial antibiotics MDR bacteria |                |          |              |            | Zone of<br>inhibition of<br>Chenopodium<br>album |            |            | Zone of<br>inhibition of<br>Quercusincana |            |            | Zone of<br>inhibition of<br>Zizipus<br>jujube leaves |            |            | Zone of<br>inhibition of<br>Zizipus<br>jujube<br>flower |            |            | T             | Zone of<br>inhibition of<br><i>Trifoliumrepens</i> |            |               | Zone of<br>inhibition of<br>Gravilliarubista |            |               | Zone<br>hibitic<br>moniu<br>uliciu | of<br>m of<br>mcab<br>m | ini<br>(<br>go | Zone o<br>hibition<br>Corydal<br>ovannia | of<br>1 of<br><i>lis</i><br>ana | Zone of<br>inhibition of<br>Solinumnigrum |            |            |               |
|----------------------------|-----------------------------------------------------|----------------|----------|--------------|------------|--------------------------------------------------|------------|------------|-------------------------------------------|------------|------------|------------------------------------------------------|------------|------------|---------------------------------------------------------|------------|------------|---------------|----------------------------------------------------|------------|---------------|----------------------------------------------|------------|---------------|------------------------------------|-------------------------|----------------|------------------------------------------|---------------------------------|-------------------------------------------|------------|------------|---------------|
| Proteus<br>vulgaris        |                                                     | Ciprofloxacine | Cefepime | Moxifloxicin | Gentamicin | Ceftrixone                                       | Chloroform | Methanolic | Ethyl acetate                             | Chloroform | Methanolic | Ethyl acetate                                        | Chloroform | Methanolic | Ethyl acetate                                           | Chloroform | Methanolic | Ethyl acetate | Chloroform                                         | Methanolic | Ethyl acetate | Chloroform                                   | Methanolic | Ethyl acetate | Chloroform                         | Methanolic              | Ethyl acetate  | Chloroform                               | Methanolic                      | Ethyl acetate                             | Chloroform | Methanolic | Ethyl acetate |
|                            |                                                     | 28             | 22       | 32           | 22         | 18                                               | 0          | 10         | 0                                         | 0          | 8          | 0                                                    | 0          | 7          | 0                                                       | 0          | 7          | 0             | 0                                                  | 0          | 0             | 7                                            | 6          | 0             | 0                                  | 0                       | 0              | 0                                        | 7                               | 0                                         | 0          | 15         | 0             |
|                            |                                                     | 27.8           | 21.2     | 32.9         | 21.2       | 19                                               | 0          | 10         | 0                                         | 0          | 7          | 0                                                    | 0          | 7          | 0                                                       | 0          | 7          | 0             | 0                                                  | 0          | 0             | 7                                            | 6          | 0             | 0                                  | 0                       | 0              | 0                                        | 8                               | 0                                         | 0          | 13         | 0             |
|                            |                                                     | 29.5           | 23.2     | 31.9         | 23.3       | 20                                               | 0          | 10         | 0                                         | 0          | 6          | 0                                                    | 0          | 7          | 0                                                       | 0          | 7          | 0             | 0                                                  | 0          | 0             | 7                                            | 6          | 0             | 0                                  | 0                       | 0              | 0                                        | 7                               | 0                                         | 0          | 14         | 0             |
|                            | Mean<br>Value                                       | 28.4           | 22.4     | 32.2         | 22.2       | 19                                               | 0          | 10         | 0                                         | 0          | 7          | 0                                                    | 0          | 7          | 0                                                       | 0          | 7          | 0             | 0                                                  | 0          | 0             | 7                                            | 6          | 0             | 0                                  | 0                       | 0              | 0                                        | 7.3                             | 0                                         | 0          | 14         | 0             |



Figure 1. An example of antibacterial activity of *Zizipus jujube* leaves against *Pseudomonas aeruginosa* (plate A) and plate B shows the antibacterial activity of *Solanum nigrum* against *Proteus vulgaris* 

The chloroform, methanolic, ethyl acetate extracts from the screened plant material (Chenopodium album, Quercusincana, Zizipus jujube leaves, Zizipus jujube Flower, Trifoliumrepens, Grevillearobusta, Lamoniumcabulicium, Corydalis govaniana, Solanumnigrum) showed variable zones of inhibition (ranging from 0-7, 0-14, 0) respectively against Proteus vulgarisas shown in Figure 1. The methanolicextracts of Chenopodium album (10mm), Quercusincana (7mm), Zizipus jujube leaves (7mm), Zizipus jujube flower (7mm), Grevillea robusta (6mm), Corydalis govaniana (7.3mm) and Solanumnigrum(14mm). Similarly only the ethyl acetateextracts of Chenopodium album showed antibacterial activity (16mm). The tested commercial antibiotics (Ciprofloxacine, Cefepime, Moxifloxicin, Ceftrixone) showed different antibacterial Gentamicin, activities (28.4mm, 22.4mm, 32.2mm, 22.2mm, 19mm) against Pseudomonas aeruginosa respectively as shown in Table 2.

## DISCUSSION

Each fraction of the extract tested in present study exhibitedantibacterial activity on both studied bacteria. However, differences were observed between antibacterial activities of plant's different extracts depending on the organic solvent used for preparation. These differences could be due to the differences in the chemical composition of these extracts as the secondary metabolites of plants have many effects including antibacterial and antiviral properties (Cowan, 1999; Noumedem et al., 2013). Our data showed antibacterial activity of all three types of fractionsof Chenopodium albumleaves against Pseudomonas aeruginosa which were in accordance with previous observation (Elif Korcan et al., 2013). Singh et al has also showed that aqueous extract of Chenopodium album revealed strongest antibacterial activity on Staphylococcus aureus and methanol leaf extract indicated strongest antibacterial activity on Pseudomonas aeruginosa. (Pandey and Gupta, 2014).

However, Amjad and Alizad mentioned that the flowers and leaves methanolic and ethanolic extracts of *Chenopodium album* don't have any activity against the tested bacterial strain *Pseudomonas aeruginosa* (Amjad and Alizad, 2012). Jan *et al*, 2012 investigated the antibacterial activity of thirty-three plant species belonging to 26 families. The results indicated that all medicinal plants showed anti-bacterial activity which is in accordance with our studied plant species (Jan et al., 2012). Our study showed that methanolic leaves fraction of Zizipus jujube have antibacterial activity against MDR Pseudomonas aeruginosa which is in accordance with the results of Bashir Ahmad et al 2011(Ahmad et al., 2013). It was previously shown that methanolic extract of exhibit moderate activity. We investigated that methanolic extract showed best activity on Pseudomonas aeruginosa. Moreover Majid et al reported that Zizipus jujube has no activity against Pseudomonas aeruginosa (Majid, 2014). Borchardt et al reported that Trifoliumrepens have no antibacterial activity against Pseudomonas aeruginosa on any extract which is according to our results (Borchardt et al., 2008). According to the Sharif Ullah et al, Grevillea robusta had antimicrobial activity in chloroform extract and no activity in methanolic extract which is in contrast to our findings (Ullah et al., 2015).

In our results methanolic fraction show activity while the other two extracts (chlorofomic and ethyl acetate) fractions did not show any activity. Ethyl alcohol extract Solanumnigrum showed activity against Pseudomonas aeruginosa (Nithya et al., 2006). While, Parameswari, K showed that it hadno zone of inhibition against Pseudomonas aeruginosa (Parameswari et al., 2012). Using these plant extracts no previous study was conducted on Corydalis govaniana and Lamoniumcabulicium. In Chenopodium album moderate antibacterial activities were recorded by Proteus vulgaris by K.P.Singh et al., 2011. Our study also showedmoderate result within a range of 10 mm zone of inhibition. T.M. Sridhar 2011 mentioned in his work that Solanumnigrum has activity in all the three extracts Ethanol, chloroform and ethyl acetate 10mm 21mm and 10.5mm respectively. While in our study only the methanolic extract show significant results with a zone of 14.4mm. While the other plants Quercusincana, Grevillearobusta, Zizipus jujube, Trifoliumrepens, Lamoniumcabulicium, and Corydalis govaniana have not been previously studied against Proteus vulgaris.

#### Conclusion

Multidrug resistance (MDR) bacteria is an alarming issue in health care with enhanced morbidity and mortality. Present investigation revealed the pivotal role medical plants as an alternative to the commercial antibiotics. Further studies are required to explore the bioactive constituents of the studied plants extracts.

#### Acknowledgments

We are thankful to Dr. Fazli Bari, Lady reading hospital Peshawar, Khyber Pakhtunkhwa Pakistan for providing the MDR strains of *Pseudomonas aeruginosa* and *Proteus vulgaris* and Ms. Bakht Huma, Department of Biotechnology, University of Malakand, Chakdara Pakistan for providing an excellent technical support.

## REFERENCES

- Ahmad, B., Khan, I., Bashir, S., Azam, S., Hussain, F., 2013. Screening of Zizyphus jujuba for antibacterial, phytotoxic and haemagglutination activities. *Afr. J. Biotechnol.*, 10, 2514-2519.
- Alanis, A.J., 2005. Resistance to antibiotics: are we in the postantibiotic era? Arch. Med. Res., 36, 697-705.
- Amjad, L., Alizad, Z. 2012. Antibacterial Activity of the Chennopodium album Leaves and Flowers Extract, Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology.
- Bhalodia, N.R., Shukla, V.J., 2011. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. J. Adv. Pharm. Technol. Res., 2, 104-9.
- Borchardt, J.R., Wyse, D.L., Sheaffer, C.C., Kauppi, K.L., Fulcher, R.G., Ehlke, N.J., Biesboer, D.D., Bey, R.F., 2008. Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J. Med. Plants Res., 2, 98-110.
- Brusselaers, N., Vogelaers, D., Blot, S., 2011. The rising problem of antimicrobial resistance in the intensive care unit. Ann. Intensive Care. 1, 47.
- Bush, K., Courvalin, P., Dantas, G., Davies, J., Eisenstein, B., Huovinen, P., Jacoby, G.A., Kishony, R., Kreiswirth, B.N., Kutter, E., Lerner, S.A., Levy, S., Lewis, K., Lomovskaya, O., Miller, J.H., Mobashery, S., Piddock, L.J., Projan, S., Thomas, C.M., Tomasz, A., Tulkens, P.M., Walsh, T.R., Watson, J.D., Witkowski, J., Witte, W., Wright, G., Yeh, P., Zgurskaya, H.I., 2011. Tackling antibiotic resistance. *Nat. Rev. Microbiol.*, 9, 894-6.
- Cowan, M.M., 1999. Plant products as antimicrobial agents. *Clin. Microbiol. Rev.*, 12, 564-82.
- Davies, J., Davies, D., 2010. Origins and evolution of antibiotic resistance. *Microbiol. Mol. Biol. Rev.*, 74, 417-33.
- Djeussi, D.E., Noumedem, J.A., Seukep, J.A., Fankam, A.G., Voukeng, I.K., Tankeo, S.B., Nkuete, A.H., Kuete, V., 2013. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. *BMC Complement Altern. Med.*, 13, 164.
- Elif Korcan, S., Aksoy, O., Erdogmus, S.F., Cigerci, I.H., Konuk, M., 2013. Evaluation of antibacterial, antioxidant and DNA protective capacity of Chenopodium album's ethanolic leaf extract. *Chemosph.*, 90, 374-9.

- Fuchs, P.C., Barry, A.L., Brown, S.D., Group, A.S., 1996. Survey of antimicrobial activity of four commonly used third generation cephalosporins tested against recent bacterial isolates from ten American medical centers, and assessment of disk diffusion test performance. *Diagn. Microbiol. Infect. dise.*, 24, 213-219.
- Hossain, M.A., Al-Hdhrami, S.S., Weli, A.M., Al-Riyami, Q., Al-Sabahi J.N., 2014. Isolation, fractionation and identification of chemical constituents from the leaves crude extracts of Mentha piperita L grown in Sultanate of Oman. Asian. Pac. J. Trop. Biomed., 4, S368-72.
- Hsu, H., Greenberg, H., Hoeprich, P., Jordan, M., Ronald, A., 1994. Infectious Diseases: A treatise of infectious processes, Philadelphia: JB Lippincott Co.
- Jan, S., Hamayun, M., Ahmad, N., Nawaz, Y., Khan, A.L., Iqbal A., Lee I.-J., 012. Antibacterial potential of plants traditionally used for curing diarrhea in Khyber Pakhtunkhwa, Pakistan. J. Med. Plants Res., 6, 4039-4047.
- Majid, A., 2014. Antibacterial Efficacy of Twenty Two Medicinal Plants Crude Extracts against Six Human Pathogenic Bacterial Strains of Hazara Davison Khyber Pakhtunkhwa. *Rev. Progr.*, 2, 1-5.
- Nithya, T., Somasundaram, S., Karthikeyan, A., Selvabala, S., 2006. Antibacterial Activity of Alcoholic Leaf Extract of Solanum nigram L. Against Human Pathogenic Bacteria. *Plant Biotechnol.*, 347.
- Noumedem, J.A., Mihasan, M., Lacmata, S.T., Stefan, M., Kuiate, J.R., Kuete, V., 2013. Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria. BMC Complement Altern. Med., 13:26.
- Pandey, S., Gupta, R.K., 2014. Screening of nutritional, phytochemical, antioxidant and antibacterial activity of Chenopodium album (Bathua). J Pharmacogn Phytochem., 3:1-9.
- Parameswari, K., Sudheer, A., Kishori, B., 2012. In vitro antibacterial activity in the extracts of Solanum nigrum. *Indian Streams Res. J.*, 2:1-4.
- Salgado, C.D., O'Grady, N., Farr B.M., 2005. Prevention and control of antimicrobial-resistant infections in intensive care patients. *Crit. CareMed.*, 33:2373-82.
- Thomas, J., Veda, B., 2008. Screening Of Ten Indian Medicinal Plants For Their Antibacterial Activity Against Shigella sSpecies And Escherichia coli. *Afr. J. Infect. Dis.*, 1:36-41.
- Thornsberry, C., Yee, Y.C., 1996. Comparative activity of eight antimicrobial agents against clinical bacterial isolates from the United States, measured by two methods. *Am. J. Med.*, 100:26S-38S.
- Ullah, M.S., Sikder, M.A.A., Sharmin, T., Rashid, M.A., 2015. Pharmacological Activities of Grevillea robusta, a Medicinal Plant of Bangladesh. *Bangladesh. pharm. J.*, 17:135-137.

\*\*\*\*\*\*