

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 12, pp.24203-24208, December, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

PERFORMANCE OF BROILER BIRDS SUPPLEMENTED WITH HERBAL ANTISTRESS PRODUCT AND SYNTHETIC VITAMIN C UNDER PHYSIOLOGICAL HEAT STRESS

¹Sandeep Rindhe, ¹Shrinivas Uttamrao Suryavanshi, ¹Kakasaheb Kalyanrao Khose, ²Kotagiri Ravikanth, ²Adarsh and ^{2,*}Ankush Reothia

¹College of Veterinary and Animal Sciences, MAFSU, Parbhani, Maharashtra, India. ²Research & Development Division, Ayurvet Limited, Baddi, India

ARTICLE INFOABSTRACTArticle History:
Received 25^{th} September, 2015
Received in revised form
 20^{th} October, 2015
Accepted 17^{th} November, 2015
Published online 30^{th} December, 2015
Fublished online 30^{th} December, 2015
replicates each. Untreated control group (T_0) was fed standard basal diet without any supplement,
treatment group T_1 was supplemented with AV/LAP/19 at the rate of 1ml/100 birds/day from 0-14
days, 2ml/100 birds/day from 14-28 days and 3ml/100 birds/day from 28-42 days in water and
treatment group T_2 supplemented with synthetic ascorbic acid@100g/tonne of feed. Record of
temperature were maintained on daily basis with mean maximum daily temperature of $39\pm 2^{\circ}C$,
relative humidity (RH) 82.57 ± 1.40 % (Recorded twice daily at a fixed time by hygrometer).

Antioxidant, Broiler, Stress, Performance, Hemato-biochemical.

replicates each. Untreated control group (T₀) was fed standard basal diet without any supplement, treatment group T₁ was supplemented with AV/LAP/19 at the rate of 1ml/100 birds/day from 0-14 days, 2ml/100 birds/day from 14-28 days and 3ml/100 birds/day from 28-42 days in water and treatment group T₂ supplemented with synthetic ascorbic acid@100g/tonne of feed. Record of temperature were maintained on daily basis with mean maximum daily temperature of 39±2°C, relative humidity (RH) 82.57 ± 1.40 % (Recorded twice daily at a fixed time by hyperometer). AV/LAP/19 is a polyherbal formulation containing natural vitamin C and bioflavonoids, scientifically well known for their anti-oxidant and free radical scavenging activities. During present experiment, growth and performance parameters were recorded at weekly intervals. Hematological and biochemical parameters were analyzed at 3rd and 5th week of study. The mean live body weight (gm) mean weekly feed consumption (gm) on 42nd day was significantly (P<0.05) improved in AV/LAP/19 supplemented group T_1 birds (2572.72 and 1108.69, respectively) as compared to control group (2385 and 1179.44, respectively) and varied non significantly from synthetic ascorbic acid supplemented group T_2 birds (2527.16 and 1211.95, resopectively). FCR on 42^{nd} day was significantly (P<0.05) better in AV/LAP/19 supplemented group T_1 birds (2.05) than synthetic ascorbic acid supplemented group T_2 birds (2.12) and control group (2.25). Hematological and biochemical parameters, which were altered under stressful conditions, also improved in AV/LAP/19 supplemented group T₁ birds.

Copyright © 2015 Sandeep Rindhe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Sandeep Rindhe, Shrinivas Uttamrao Suryavanshi, Kakasaheb Kalyanrao Khose, Kotagiri Ravikanth, Adarsh and Ankush Reothia, 2015. "Assessment of Seasonal trends in groundwater quality across the Itawa Tehsil of Kota District of Rajasthan, India", *International Journal of Current Research*, 7, (12), 24203-24208.

INTRODUCTION

Heat stress is the result of negative balance between the net amount of energy flowing from the animal's body to its surrounding environment and the amount of heat energy produced by the animal. Environmental stressors, such as heat stress, are particularly detrimental to animal agriculture (Nienaber and Hahn, 2007). High temperatures, especially when coupled with high humidity, impose severe stress on birds and lead to reduced performance (Ajakaiye *et al*, 2011). Prolonged, severe heat stress affects DMI and daily gain of broiler chickens, especially after 28 d of age (Cooper and Washburn, 1998; Yalcin *et al.*, 2001).

*Corresponding author: Ankush Reothia, Research & Development Division, Ayurvet Limited, Baddi, India. During the periods of heat stress, most of the production energy is diverted to thermoregulatory adaptations which results in oxidative stress induced immunosupression. predisposing birds to various infectious diseases and high mortality rates (Maini et al., 2007). Acclimation to high thermal conditions at an early age (4 to 7 d) noticeably reduces the effect of heat stress at a later age (Yahav and Plavnik, 1999; Altan et al., 2000). Male broiler breeders are affected more by heat stress than females (McDaniel et al., 1995). Dietary parameters can modulate the effect of diet stress (Bollengier-Lee et al., 1998; Sahin et al., 2002) as well as management factors (Kassim and Sykes, 1982; Sahin and Kucuk, 2001). Vitamin C and vitamin E are used in the poultry diet because of their anti-oxidant properties in the neutralization of the free radicals generated during heat stress (Ramnath et al., 2008). Poultry are renal synthesizers of vitamin C but its quantity becomes insufficient during heat stress as a result of the increased rate of usage in combating the free radicals thus generated. In the past few decades a number of Ayurvedic herbal preparations have been extensively used in poultry industry (Ramnath *et al.*, 2008). Polyherbal products containing different immunomodulator (*Withania somnifera*), antistressor (*Phyllanthus emblica, Mangifera indica*) and adaptogenic (*Ocimum sanctum, W. somnifera*) herbs have been used to protect tissues from superoxide radicals and enhance cell survival by stimulating antioxidative enzymatic systems (Sujatha *et al.*, 2010). Therefore present study was conducted to evaluate comparative effects of supplementation of synthetic ascorbic acid (Vitamin C) and AV/LAP/19, a polyherbal antistressor product (M/S Ayurvet Limited, India) on growth and performance related parameters and haemato-biochemical parameters in broiler birds exposed to a heat stress.

MATERIALS AND METHODS

The present study was undertaken at Department of Livestock Products Technology, College of Veterinary and Animal Sciences, MAFSU, Parbhani, India during hot dry season. (June to July, 2011). The experimental chicks were housed in three different pens and each pen was partitioned for treatment group to have 3 replications accommodating 15 birds in each. Brooding was continued until 2 weeks of age in the respective pen of each replication and treatment group. The experimental birds were vaccinated against Ranikhet disease on 6th day, Gumboro disease/IBD on 14th day and vaccination of booster dose of Gumboro was carried out on 24th day and of Ranikhet (strain) disease given on 29th day. All the birds were subjected to artificially induced heat stress using room heaters and electric bulb. Record of temperature were maintained on daily basis with mean maximum daily temperature of 39±2°C, relative humidity (RH) 82.57 ± 1.40 % (Recorded twice daily at a fixed time by hygrometer)

supplemented with AV/LAP /19 along with drinking water @1ml/ 100 birds/day from 0-14 days, 2ml/100 birds/day from 14 to 28 days and 3ml/100 birds/day from 28 to 42 days and Group T₂: supplemented with synthetic ascorbic acid @ 100gm/tonne of feed from 0-42 days.

Parameters studied

The growth performance parameters (body weight, growth rate, cumulative weight gain, average feed intake and mean FCR) were recorded at weekly intervals throughout the experimental period. Blood samples were drawn from the wing vein for estimation of Hb and PCV as per standard procedure. Serum samples were separated from the blood. These samples were used for the estimation of total protein, albumin and cholesterol on 3^{rd} and 5^{th} weeks from 6 representative birds of each group (2 birds /replicate).

Statistical analysis

Observations were summarized in tabular form for each individual group. The data were analyzed following standard procedure (Snedecor and Cochran, 1994).

RESULTS AND DISCUSSION

Growth and Performance Parameters

Body weight

High ambient temperature constitutes a significant hindrance to poultry production in the tropical world. Thermal stress exerts its deleterious effects on feed intake and body weight gain (MacLeod and Hocking, 1993).

		Grou	ps
Ingredients	T ₀	T_1	T_2
	(Control)	(AV/LAP/19 In drinking water)	(Synthetic Ascorbic Acid @ 100gm/tonne)
Maize	57.00	57.00	57.00
Soyabean meal	35.60	35.60	35.60
Vegetable oil	3.50	3.50	3.50
DCP	1.50	1.50	1.50
LSP	1.00	1.00	1.00
Salt	0.30	0.30	0.30
	98.90	98.90	98.90
Micro-ingredients			
Trace Mineral	0.300	0.300	0.300
Vitamin Mix	0.150	0.150	0.150
Methionine	0.200	0.200	0.200
Lysine	0.140	0.140	0.140
Choline chloride 60%	0.060	0.060	0.060
Toxin binder	0.050	0.050	0.050
Coccidiostat	0.050	0.050	0.050
Sodium Bicarbonate	0.150	0.150	0.150
	100.000	100.000	100.000

Table 1. Percent (%) ingredient and nutrient of different dietary composition of starter rations used in experimental diet

Experimental design

135 day old Vencob straight run commercial broiler chicks were randomly allotted to three treatment groups with each treatment having three replicates and each replicate comprised of fifteen birds. Group T_0 : Untreated control, Group T_1 In the current study, the body weight at the end of 1^{st} week was found to be significantly improved (P < 0.05) in AV/LAP/19 supplemented group T₁ birds (164.15 gm) as compared to synthetic ascorbic acid supplemented group T₂ birds (152.82gm) (Table 3). At the end of 4th and 5th week the body weight in AV/LAP/19 supplemented group T_1 birds (1343.67gm and 1986.35gm, respectively) was significantly improved as compared to control group (1312.45gm and 1890.93gm, respectively).

supplemented group T_2 birds (264.69gm and 553.17gm, respectively) (Table 4). But at 5th week of age the body weight gain was found to be significantly (P<0.05) better in AV/LAP/19 supplemented group T_1 birds (637.71gm) from

		Gro	ups
Ingredients	А	В	С
	(Control)	(AV/LAP/19 In drinking water)	(Synthetic Ascorbic Acid @ 100gm/tonne)
Maize	59.00	59.00	59.00
Soyabean meal	31.80	31.80	31.80
Vegetable oil	5.00	5.00	5.00
DCP	1.50	1.50	1.50
LSP	1.28	1.28	1.28
Salt	0.30	0.30	0.30
	98.88	98.88	98.88
Micro-ingredients			
Trace Mineral	0.300	0.300	0.300
Vitamin Mix	0.150	0.150	0.150
Methionine	1.140	1.140	1.140
Lysine	0.080	0.080	0.080
Choline chloride 60%	0.150	0.150	0.150
Toxin binder	0.100	0.100	0.100
Coccidiostat	0.050	0.050	0.050
Sodium Bicarbonate	0.150	0.150	0.150
	100.000	100.000	100.000

	Table 2. Percent	Ingredient	Composition	of Finisher	mashes
--	------------------	------------	-------------	-------------	--------

Table 3. Weekly body weight (gm) per bird of broilers at weekly interval in different treatment groups

Age Groups	Age (weeks)						
Age Groups	1 st	2^{nd}	3 rd	4 th	5 th	6 th	
T ₀	162.80 ^a	411.38	780.73	1312.45 ^b	1890.93 ^b	2385 ^b	
T_1	164.15 ^a	412.90	792.52	1343.67 ^a	1986.35 ^a	2572.72 ^a	
T ₂	152.82 ^b	417.80	799.80	1358.66 ^a	1969.25 ^a	2527.16 ^a	
SE +	2.529	5.145	7.988	9.956	23.10	30.70	
CD	7.957	NS	NS	33.32	72.67	96.58	
Means with com	mon supers	scripts did	not differ s	ignificantly (P < 0.05)		

Table 4. Weekly body weight gain (gm) per bird of broilers at weekly interval in different treatment groups

A ao Crouna	Age (weeks)							
Age Gloups	1 st	2 nd	3 rd	4 th	5 th	6 th		
T ₀	114.82	250.61 ^b	371.37	527.69 ^c	568.50 ^c	496.10 ^b		
T_1	111.85	266.99 ^a	383.99	560.89 ^a	637.71 ^a	599.82ª		
T ₂	106.50	264.69 ^a	389.96	553.17 ^{ab}	603.67 ^b	587.96 ^{ab}		
SE +	2.410	3.383	5.477	6.319	10.57	11.011		
CD	NS	10.643	NS	19.873	31.103	34.653		

Means with common superscripts did not differ significantly (P < 0.05)

This significant (P < 0.05) improvement in body weight in AV/LAP/19 supplemented group T₁ birds continued up to 6th week. The final body weight at the end of 6th week in AV/LAP/19 supplemented group T₁ birds (2572.72gm) was found to be significantly (P<0.05) better from un supplemented control group T₀ birds (2385gm) and varied non significantly from. synthetic ascorbic acid supplemented group T₂ birds (2527.16gm) (Table 3).

The mean weekly weight gains at 1^{st} week of age were 114.82gm, 111.85gm and 106.50gm for treatment group T_0 , T_1 and T_2 respectively (Table 4). At 2^{nd} and 4^{th} week of age significantly (P<0.05) better body weight gain was found in AV/LAP/10 supplemented Group T_1 birds (266.99gm and 560.89gm, respectively) as compared to control group (250.61gm and 527.69gm, respectively) and body weight gain was non-significantly better from synthetic ascorbic acid

both control group (568.50gm) and synthetic ascorbic acid supplemented group T_2 birds (603.67 gm) (Table 4). At 6th week of age the body weight gain was significantly (P<0.05) better in AV/LAP/19 supplemented group T_1 birds (599.82gm) as compared to control group (496.10gm) and varied nonsignificantly from synthetic ascorbic acid supplemented group T_2 birds (587.96gm) (Table 4). The improved in weekly body weight and body weight gain may be attributed to ingredient herbs of AV/LAP/19 viz *Phyllanthus emblica and Withania somnifera* which are known to have adaptogenic properties (Krupavaram *et al.*, 2007: Anila and Vijayalaxmi, 2000).

Weekly Feed Consumption and Feed conversion ratio (FCR)

Stress in broilers results in a decline in feed consumption and overall feed efficiency. Supplementation of antioxidants along with the basal diet has been scientifically well proven to improve growth and performance in birds (Sahin *et al.*, 2003). At 1st, 2nd and 3rd week of age no significant variation in weekly feed consumption was recorded in different treatment groups. Feed consumption at 4th week of age was recorded to be significantly (P<0.05) better in AV/LAP/19 supplemented group T₁ birds (877.47gm) as compared to untreated control group T₀ birds (855.26gm) (Table 5). At 6th week of age significantly (P<0.05) low feed intake was recorded in AV/LAP/19 supplemented group T₁ birds (1108.69gm) from both untreated control group T₀ birds (1211.95gm).

FCR varied non significantly between different treatment groups from 1st week to 5th week of age. At 6th week of age feed conversion was found to be significantly better in AV/LAP/19 supplemented group T₁ birds (2.05) as compared to synthetic ascorbic acid supplemented group T₂ birds (2.12) and un supplemented control group T₀ birds (2.25) (Table 6). Antioxidant plays an important role in both nutrition and production performance in poultry. Significantly better feed consumption ration in AV/LAP/19 supplemented group T₁ birds may be attributed to its ingredient herbs viz *Ocimum sanctum* and *Phyllanthus emblica* which are known to have antistress and antioxidant property (Moinuddin *et al.*, 2011; Reddy, 2011).

Hematological Parameters

Heat distress causes reduction in Packed cell volume (PCV) and hemoglobin which is apparently associated with hemodilution (Darre and Harrison, 1987). At 3^{rd} week of age hemoglobin level was found to be improved in AV/LAP/19 supplemented group T₁ birds (8.51gm/dl) as compared to un supplemented control group T₀ birds (8.31 gm/dl), But at 5^{th} week of age significantly (P<0.05) improved hemoglobin level was recorded in AV/LAP/19 supplemented group T₁ birds (8.81gm/dl) as compared to untreated control group (8.81gm/dl) as compared to untreated control group (8.47gm/dl) (Table 7). The hemoglobin level in ascorbic acid supplemented group was found to be 8.82gm/dl and 9.10gm/dl at 3^{rd} and 5^{th} week, respectively (Table 7).

Packed cell volume (PCV) values also vary with the ambient temperature at which birds are reared. The exposure of chickens to high temperatures causes a decrease in blood PCV (Deyhim *et al.*, 1991). PCV concentration at the 3rd week of age was found to be non significantly improved in AV/LAP/19 supplemented group T₁ (24.61%) birds as compared to un supplemented group T₂ birds (23.69%). In synthetic ascorbic acid supplemented group T₂ birds the PCV concentration was recorded to be 25.81% at 3rd week of age. At 5th week of age PCV concentration varied non significantly among Group T₀ (24.86%), Group T₁ (25.23%) and Group T₂ (25.80%).

Table 5. Weekly feed consumption (gm) per bird of broilers at weekly interval in different treatment groups

A go Cround			Ag	ge (weeks)		
Age Gloups	1 st	2^{nd}	3 rd	4^{th}	5 th	6 th
T ₀	134.90	345.51	559.50	855.26 ^c	1051.18 ^b	1179.44 ^a
T_1	123.75	346.42	560.27	877.47 ^b	1101.91 ^{ab}	1108.69 ^b
T_2	123.09	349.17	573.47	897.57 ^a	1118.36 ^a	1211.95 ^a
SE +	4.288	5.912	6.194	6.163	14.81	18.13
CD	NS	NS	NS	19.37	46.67	58.92

Means with common superscripts did not differ significantly (P < 0.05)

 Table 6. Weekly feed conversion ratio (FCR) of broilers at weekly interval in different treatment groups

A C	Age (weeks)							
Age Groups	1 st	2^{nd}	3 rd	4 th	5 th	6^{th}		
T ₀	1.19	1.40	1.51	1.62	1.82	2.25°		
T_1	1.15	1.39	1.48	1.60	1.77	2.05 ^a		
T_2	1.11	1.32	1.51	1.61	1.79	2.12 ^b		
SE +	0.0240	0.02728	0.01038	0.01872	0.03173	0.0152		
CD	0.078	0.08719	0.03402	0.0590	0.1104	0.0461		
				101 1 (25				

Means with common superscripts did not differ significantly (P < 0.05)

 Table 7. Mean (+ SE) values of Haemoglobin (gm/dl) and Packed cell volume (PCV) (%) of broilers of different groups at 3rd and 5th week of age

Parameters Groups	Hem	oglobin	PCV			
rataineters Oroups	3 rd week	5 th week	3 rd week	5 th week		
T ₀	$8.31^{a} \pm 0.13$	$8.47^{a} \pm 0.11$	$23.69^{ab} \pm 0.26$	24.86 ± 0.44		
T_1	$8.51^{ac} \pm 0.16$	$8.81^{b} \pm 0.16$	$24.61^{ab} \pm 0.11$	25.23 ± 0.10		
T ₂	$8.82^{\circ} \pm 0.17$	$9.10^{\circ} \pm 0.13$	$25.81^{\circ} \pm 0.27$	25.80 ± 0.23		

Means with common superscripts did not differ significantly (P < 0.05)

 Table 8. Mean (+ SE) values of Total serum Protein (gm/dl), albumin (gm/dl) and Cholesterol (mg/dl) of broilers of different groups at 3rd and 5th week of age

Deremeters Crouns	Total Protein				Albumin				Cholesterol			
Parameters Groups	3 rd	week	5 th v	week	3 rd v	veek	5 th v	week	3 rd w	eek	5 th week	
T ₀	2.26^{ab}	± 0.14	2.68^{ab}	± 0.14	1.03 ^{ab}	± 0.07	1.20 ^{ab}	± 0.07	155.09 ^{ab}	± 1.69	144.36 ^{ab}	± 3.66
T_1	2.50^{ab}	± 0.21	2.94^{ab}	± 0.21	1.13 ^{ab}	± 0.10	1.32 ^{ab}	± 0.10	154.53 ^{ab}	± 1.81	138.60 ^{ab}	± 2.11
T ₂	3.27 ^c	± 0.20	4.06 ^c	± 0.20	1.45 ^c	± 0.09	1.80 ^c	± 0.09	117.16 ^c	± 2.54	111.64 ^c	± 2.52

The normalization in the haematological blood values may be attributed to the efficacy of indvidual constituent herbs of Ayucee premix namely; *Withania somnifera*, *Ocimum sanctum* and *Phyllanthus emblica* in ameliorating stress and restoring hematological profile (Pandurang *et al.*, 2011).

Biochemical Parameters

Total protein, albumin and globulin concentration decreases significantly when birds are exposed to heat stress. This decline in blood protein levels in heat-stressed birds may be due to reduced protein synthesis (Hamoud et al., 1993; Zhou et al., 1998). At 3rd and 5th week of age total protein values increased non-significantly in AV/LAP/19 supplemented group T₁ birds (2.50gm/dl and 2.94gm/dl, respectively) as compared to unsupplemented control group T_0 birds (2.26gm/dl and 2.68gm/dl, respectively). In ascorbic acid supplemented group T₂ birds the total protein values were recorded to be 3.27gm/dl and 4.06gm/dl at 3^{rd} and 5^{th} week, respectively. Similarly, albumin level at 3^{rd} and 5^{th} week of age was found to be nonsignificantly more in AV/LAP/19 supplemented group T₁ birds (1.13gm/dl and 1.32gm/dl, respectively) as compared to unsupplemented control group T₀ birds (1.03gm/dl and 1.20gm/dl, respectively). In ascorbic acid supplemented group T₂ birds the albumin level was recorded to be 1.45gm/dl and 1.80gm/dl at 3rd and 5th week, respectively. High ambient temperature may result in hypercholesterolemia (Kutlu and Forbes, 1993). Exposure of Japanese quails to a temperature of 34°C elevated plasma cholesterol concentrations (Sahin et al., 2004). At 3rd and 5th week non significantly lower cholesterol level was found in AV/LAP/19 supplemented group T₁ birds (154.53mg/dl and 138.60mg/dl, respectively) as compared to un-supplemented control group T₀ birds (155.09mg/dl and 144.36mg/dl, respectively) (Table 8). In ascorbic acid supplemented group T₂ birds the cholesterol level at 3rd and 5th week of age were found to be 117.16mg/dl and 111.64mg/dl) (Table 8). Lower level of cholesterol in AV/LAP/19 supplemented group T_1 birds may be attributed to its ingredient herb viz Phyllanthus emblica which is known to have hypolipidaemic and hypocholesterolaemic effect (Sujatha et al., 2010).

Conclusion

It can be concluded that supplementation of polyherbal formulations is efficacious in improving growth and performance parameters such as body weight, body weight gain, feed consumption and feed conversion ratio. The hematological parameters viz hemoglobin and PCV and biochemical parameters viz total protein, albumin and cholesterol also improved in AV/LAP/19 supplemented group. AV/LAP/19 is a polyherbal antistressor and an antioxidant formulation which comprises herbal ingredients that are scientifically validated possess antioxidant, to hypocholesterolemic and hypolipidaemic activity. The product is a rich source of natural bioflavonoids and ascorbic acid that help to reduce oxidative stress thus ameliorate stress in broilers, potentiate immune response and combat lipid peroxidation.

REFERENCES

Ajakaiye, J. J., Perez-Bello, A. and Mollineda, T. A. 2011. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. *Vet Arhiv.*, 81 (1): 119-132.

- Altan, O., Altan, A., Oguz, I., Pabuccuoglu, A. and Konyalioglu, S. 2000. Effects of heat stress on growth, some blood variables and lipid oxidation in broilers exposed to high temperature at an early age. *Br. Poult. Sci.*, 41:489–493.
- Anila, L. and Vijayalakshmi, N. R. 2000. Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charanita. Phytotherapy Research, 14: 1–4.
- Bollengier-Lee, S., Mitchell, M. A., Utomo, D. B., Williams, P. E. and Whitehead, C. C. 1998. Influence of high dietary vitamin E supplementation on egg production and plasma characteristics in hens subjected to heat stress. *Br. Poult. Sci.* 39:106–112.
- Cooper, M. A. and Washburn, K. W. 1998. The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. *Poult. Sci.*, 77:237–242.
- Darre, M. J. and Harrison, P. C. 1987. Heat rate, blood pressure, cardiac output and total peripheral resistance of single comb. *Poult Sci.*, 66(3):541-7.
- Deyhim, F. and Teeter, R. G. 1991. Sodium and potassium chloride drinking water supplementation effects on acidbase balance and plasma corticosterone in broiler reared in thermoneutral and heatdistressed environments. *Poultry Science*, 70:2551-2553.
- Hamoud, M. M., Zakia, A. M. and Shaker, M. S. 1993. Breed differences and immune responsiveness of broiler breeders under prevailing environment. *Journal of Egyptian*. *Veterinary Medical Association*, 53 (1-2): 161-167.
- Kassim, H. and Sykes, A. H. 1982. The respiratory responses of the fowl to hot climates. *J. Exp. Biol.* 97:301–309.
- Krupavaram, B., Rao, V. N., Nandakumar, K., Gowda, T. S., Shalam, M. D. and Shantakumar, S. 2007. Study on adaptogenic activity of root extracts of *Boorhaavia diffusa* (Linn). *Indian drugs*, 44 (4): 264-270.
- Kutlu, H. R. and Forbes, J. M. 1993. Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. *Livestock Prod. Sci.* 36: 335-350.
- MacLeod, M. G. and Hocking, P. M. 1993. Thermoregulation of high temperature of genetically fat and lean broiler hens fed ad libitum or on a controlled-feeding regime. *Br. Poult. Sci.*, 34: 589-596.
- Maini, S., Rastogi, S. K., Korde, J. P. 2007. Evaluation of oxidative stress and its amelioration through certain antioxidants in broilers during summer. *J. Poult. Sci.*, 44: 339-347.
- Mathur, R. Sharma, A. Dixit, V. P. and Verma, M. 1996. Hypolipidaemic effect of fruit of E. officinalis in cholesterol fed rabbits. *J. Ethnopharmacol.*, 50(2): 61-68.
- McDaniel, C. D., Bramwell, R. K., Wilson, J. L. and Howarth, B. Jr. 1995. Fertility of male and female broiler breeders following exposure to elevated ambient temperatures. *Poult. Sci.*, 74:1029–1038.
- Moinuddin, G., Devi, K. and Satish, H. 2011. Comparative Pharmacological Evaluation of *Ocimum sanctum* and Imipramine for Antidepressant Activity. *Latin American Journal of Pharmacy*, 30 (3): 435-439.

Nienaber, J. A. and Hahn, G. L. 2007. Livestock production system management responses to thermal challenges. *Int. J. Biometereol.*, 52: 149–157.

- Panossian, A. and Wikman, G. 2005 Effects of Adaptogens on the Central Nervous System. *Arquivos Brasileiros de Fitomedicine Cientifica*. 3(1): 29-51.
- Ramnath, V. Rekha, P. S. and Sujatha, K. S. 2008. Amelioration of heat stress induced disturbances of antioxidant defense system in chicken by Brahma Rasayana. *Evidence- Based Complementary and Alternative Medicine*. 5(1):77-84.
- Reddy, V. D., Padmavathi, P., Kavitha, G., Gopi, S. and Varadacharyulu, N. 2011. *Emblica officinalis* ameliorates dysfunction in rats. *J Med Food.*, 14(1-2): 62-68.
- Sahin, K. and Kucuk, O. 2001. A simple way to reduce heat stress in laying hens as judged by egg laying, body weight gain and biochemical parameters. *Acta Vet. Hung.*, 49:421– 430.
- Sahin, K., Onderci, M., Sahin, N., Gursu, M. F. and Kucuk, O. 2003. Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. J Nutri., 133: 1882-1888.
- Sahin, K., Ozbey, O., Onderci, M., Cikim, G. and Aysondu, M. H. 2002. Chromium supplementation can alleviate negative

effects of heat stress on egg production, egg quality and some serum metabolites of laying Japanese quail. *J. Nutr.* 132:1265–1268.

- Snedecor, G. W. and Cochran, W. G. 1994. Indian 6th reprint Edn. Oxford and IBH Publishing Co.Calcutta,124-126.
- Sujatha, V., Korde, J. P., Sunil, K., Rastogi, Maini, S., Ravikanth, H. and Rekhe. D. S. Amelioration of heat stress induced disturbances of the antioxidant defense system in broilers. *Journal of Veterinary Medicine and Animal Health*. 2(3): 18-28.
- Yahav, S. and Plavnik, I. 1999. Effect of early-stage thermal conditioning and food restriction on performance and thermo tolerance of male broiler chickens. *Br. Poult. Sci.* 40:120–126
- Yalcin, S., Ozkan, S., Turkmut, L. and Siegel, P. B. 2001. Responses to heat stress in commercial and local broiler stocks performance traits. *Br. Poult. Sci.*, 42:149–152.
- Zhou, W. T., Fujita, M., Yamamoto, S., Iwasaki, K., Ikawa, R., Oyama, H. and Horikawa, H. 1998. Effects of glucose in drinking water on the changes in whole blood viscosity and plasma osmolality of broiler chickens during high temperature exposure. *Poultry Science*, 77 (5): 644-647.
