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The reliability of a system is the probability that when operating under stated environmental 
conditions,
system X and the stress Y as random vari
applied to it exceeds the strength and the component will function satisfactorily whenever  X>Y. The 
quasi-likelihood function was introduced by 
unknown parameters in generalized linear models. In Quasi
posterior distribution the likelihood function could be replaced with the natural exponential of the 
quasi-likelihood function. This method reduces to the usual Bayesi
likelihood and the log
estimates for the stress 
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INTRODUCTION 
 

The problem of estimating the probability that one random variable exceeds another, that is, 
interest where X and Y are independent random variables. The parameter 
arises in the classical stress–strength reliability where one is interested in assessing the proport
X of a component exceeds the random stress 
the system that uses the component may malfunction. This problem also arises in situations w
two devices and has to estimate the probability that one fails before the other. Some practical examples can be found in 
(1984) and Weerahandi and Johnson (1992). 
 
Hall provided an example of a system application w
of a transverter (power supply) in order for a component to work properly. Weerahandi and 
motor experiment data where X represents the chamber burst strength and 
proposed inferential procedures for P(X > Y) 
papers that considered the stress–strength reliability problem, and for references see the recent article by Guo and 
(2004) or the book by Kotz et al. (2003). The quasi
estimating the unknown parameters in generalized linear models. The idea of quasi
know exactly the distribution of the random component in the model, and replace it by an assumption about how the variance 
changes with the mean.  The quasi-likelihood f
function. Wedderburn (1974) and McCullagh and Nelder (1983)
properties similar to the maximum likelihood estimate of t
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ABSTRACT 

The reliability of a system is the probability that when operating under stated environmental 
conditions, the system will perform its intended function adequately. We consider the strength of the 
system X and the stress Y as random variables. The component fails at the instant that the stress 
applied to it exceeds the strength and the component will function satisfactorily whenever  X>Y. The 

likelihood function was introduced by Wedderburn (1974)
own parameters in generalized linear models. In Quasi-Bayesian Estimation to construct a 

posterior distribution the likelihood function could be replaced with the natural exponential of the 
likelihood function. This method reduces to the usual Bayesi

likelihood and the log-likelihood function are identical. In this paper, we obtain Quasi Bayesian 
estimates for the stress –strength reliability for the power function distribution. We illustrate the 
performance of the estimators using a simulation study. 

is an open access article distributed under the Creative Commons Attribution License, which 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

The problem of estimating the probability that one random variable exceeds another, that is, R = 
are independent random variables. The parameter R is referred to as the reliability parameter. This problem 

strength reliability where one is interested in assessing the proportion of the times the random strength 
of a component exceeds the random stress Y to which the component is subjected. If X ≤ Y, then either the component fails or 

the system that uses the component may malfunction. This problem also arises in situations where 
two devices and has to estimate the probability that one fails before the other. Some practical examples can be found in 

  

Hall provided an example of a system application where the breakdown voltage X of a capacitor must exceed the voltage output 
of a transverter (power supply) in order for a component to work properly. Weerahandi and Johnson (1992)

represents the chamber burst strength and Y represents the operating pressure. These authors 
P(X > Y) assuming that X and Y are independent normal random variables. There are several 
ength reliability problem, and for references see the recent article by Guo and 

The quasi-likelihood function was introduced by Wedderburn (1974)
generalized linear models. The idea of quasi-likelihood weakens the assumption that we 

know exactly the distribution of the random component in the model, and replace it by an assumption about how the variance 
likelihood function could be used for estimation in the same way as the usual likelihood 

McCullagh and Nelder (1983) showed that the maximum quasi-
properties similar to the maximum likelihood estimate of the vector  (the vector of parameters in regression models).  
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The reliability of a system is the probability that when operating under stated environmental 
the system will perform its intended function adequately. We consider the strength of the 

ables. The component fails at the instant that the stress 
applied to it exceeds the strength and the component will function satisfactorily whenever  X>Y. The 

Wedderburn (1974), to be used for estimating the 
Bayesian Estimation to construct a 

posterior distribution the likelihood function could be replaced with the natural exponential of the 
likelihood function. This method reduces to the usual Bayesian estimation if the quasi-

In this paper, we obtain Quasi Bayesian 
strength reliability for the power function distribution. We illustrate the 

ribution License, which permits unrestricted 

 

= P(X > Y), has been continuous 
is referred to as the reliability parameter. This problem 

ion of the times the random strength 
, then either the component fails or 
here X and Y represent lifetimes of 

two devices and has to estimate the probability that one fails before the other. Some practical examples can be found in Hall 

of a capacitor must exceed the voltage output Y 
Johnson (1992) presented a rocket–

represents the operating pressure. These authors 
are independent normal random variables. There are several 

ength reliability problem, and for references see the recent article by Guo and Krishnamoorthy 
Wedderburn (1974), to be used for 

likelihood weakens the assumption that we 
know exactly the distribution of the random component in the model, and replace it by an assumption about how the variance 

unction could be used for estimation in the same way as the usual likelihood 
-likelihood estimates have many 

(the vector of parameters in regression models).   
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Also, if the underlying distribution comes from a natural exponential family the maximum quasi-likelihood estimate maximizes 
the likelihood function and so it has full asymptotic efficiency; under more general distributions there is some loss of efficiency, 
which had been investigated by Hill and Tsai (1988).  Youssef (2009) introduce the maximum quasi-likelihood estimates of the 
unknown parameters of the Pareto distribution and new quasi-Bayesian method of estimation. Many man made and naturally 
occurring phenomena including city sizes, incomes, word frequencies and earth quake magnitudes are distributed according to a 
power-law distribution.In the field of information technology the power law distribution is widely used in Networking and web 
trafficking.  For example a power law distribution can be used to model the usage time of the commercial web site by any 
customer, the time interval having maximum visit etc.  In fact a power law implies that small occurrence are extremely common, 
where as large instance are extremely rare.   
 
Quasi-Bayesian Estimation 
 
In Quasi-Bayesian Estimation to construct a posterior distribution the likelihood function could be replaced with the natural 
exponential of the quasi-likelihood function. This method reduces to the usual Bayesian estimation if the quasi-likelihood and the 

log-likelihood function are identical. Let 
1 2, ,..., nx x x  be an independent random sample, with mean ( )   , where  is a vector 

of parameters, and the variance var (x) = ( )V  , where V(.) is some known variance function, and  is a dispersion parameter 

which could be known or unknown. The quasi-likelihood Q(x,,) can be derived as defined by the  relation 
 

( , )i i

i

Q x 






=

( )
i i

i

x

V






                                                                                                                                                                   (1.1) 

 

and the natural exponential of Q(x,,) will be used as a likelihood function. Using a suitable prior density ( , )g    the posterior 

distribution  
 

 
1

( , ) exp{ ( , , )} ( , )
n

i

f x Q x g     

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  
 
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where ( )   , 1 2( , ,..., )n     and  >0. Consider the power function distribution 
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,( , , ) ,0 , 0
x
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Mean and variance of X    
 

E(X) = 
1( 1)    and  V(X) = 

2 2 1( 1) ( 2)                                                                                                           (1.4) 

 

So if we take   = E(X) = 
1( 1)   , we have V(X) = 

2





 
 

 
V() , with V()= 

2 , is the variance function. Thus for a 

sample 1 2, ,..., nx x x  of size n, the quasi-likelihood function is given by 

 

2

ix nQ 

 







 

 
which gives 

( , )Q x   = lnix
n 







 

substituting for  we get 

Q 1(x, , )   = ( 1) 1
ln( )n

 


 

 
                                                                                                                                          (1.5)                                            

with  
1

n

i
i

x


 . 
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To obtain the posterior density of (, ) we take natural exponent of Q(x, , ) as the likelihood function.  So we have  
 

 ,x    = 
( 1)

( 1)n

n
e









 .                                                                                                                                                    (1.6) 

 

We consider the prior of α =
1 , , , 0p e p                                                                                                                      (1.7) 

 
 
The joint posterior density function f(α,β) is as follows 
 

1 1( 1) ( 1)
( , ) [ (1)] exp ,

n
p

qb n
f x C

 
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 
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n
p
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C d d d d

 
    

 
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    

    
  

                                  

     
ESTIMATION OF STRESS STRENGTH RELIABILITY  
 
Let X and Y are two independent power function distribution random variables with parameters (1, ) and (2, ) respectively. 
Therefore 
   

R =P(X>Y)= 1 2( 1) ( 1)
1 2

0 0

(1 ) (1 )
x

x y dydx      


              = 2

1 2


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.                                                                     (2.1) 

 
Now we consider this in two cases  
 

(i) known 

 
In the inference problem considered here we assume that the scale parameter is  known and both 1 and2 are greater than 2.  
Let x = (x1, …, xn)  is random sample from power (1, ).  Taking the gamma prior 

 

  11
1 1 1,   , 0, 0pg e p                                                                                                                                            (2.2) 

 
The quasi posterior density of 1  is obtained as  
 

 1f x  = 
1

1
p 

1( 1)n  1Te 
,   1>0.                                                                                                                                 (2.3)  

 

where T=( 1

n

i
i

x



 


) 

 
Similarly let y = (y1, …, ym)  is random sample from power distribution (2, ). Taking the gamma prior  

  21
2 2 2,   , 0, 0qg e q                                                                                                                                       (2.4)   

              

The posterior density,  2f y =
1

2
q 

2( 1)m  2Se 
,α2>0                                                                                                  (2.5)    

            

    Where S=( 1

m

j
j

y







 )              

 

Hence the quasi joint density of ( 1 , 2 ) can be written as 
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1
1 2( , ) [ (1)]RQBf C     

1
1
p 

1( 1)n  1
2
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Where 
 

( )RQBC d =
1

1

2 2
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 
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q 
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 Under Square error loss the estimate of R is  
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R
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 
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and under Linex loss  the estimate of R is 
 

  2

1 2

1
ln exp

(1)
LL RQB
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R C a
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

 

    
         

                                                                                                                 (2.9)        

      
(ii)β  unknown 
 
In  this case we suggest the joint prior distribution for the parameters as 
 
g(1, ) = g1(1) g2(1)                                                                                                                                                               (2.10) 
 
where  g1(1)  1

-1                                                                                                                                                                                                                                                           (2.11) 
 
which is the Jeffrey’s non-informative prior and a gamma prior for   1 as 
 

  1
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,   , , 0
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p
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p
 

   


 
 

                                                                                                                           (2.12) 

Hence using  (2.11) and (2.12) the joint posterior density is obtained as 
 

    ( 1) 1
1 1 1 1, 1 exp

n

i
n p n i

x

f x T     

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n

i
i

x

T 

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

                                                           (2.13) 

Similarly let y = (y1, …, ym)  is random sample from power function distribution (2, ). Then the posterior density of 2 based 
on a gamma prior  

    1( 1)
2 2 2 2, 1 exp

m

j
m jq m

y

f y Z     
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where 
1

m

j
j

y

Z 



 


            

Quasi joint density of   1 2, ,   is  
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Under Square error loss the estimate of R is  
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and under Linex loss  the estimate of R is 
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SIMULATION STUDY 
 
In order to assess the performance of the estimators, we perform a simulation study of 2000 samples of sizes n = 10, 20, 50 and 
100 generated from power function distribution for values of (1,2) = (0.2,0.25),(0.3,0.35),( 0.4,0.45) and (0.5,0.55). The 
estimators was evaluated for the prior hyper-parameters p, =  1 and 2. We present the simulation results concerning the bias and 
mean square errors of all these estimators. In all the simulation results presented here, the bias of an estimator can be determined as 
the average value of the estimate report in the table – True value. The variance of an estimator was determined as the sample 
variance obtained from all the simulations carried out. Finally, the mean square error of estimator is (variance of the estimator + 
(Bias)2). The bias and mean squared errors (in parentheses) of the estimators are presented in Tables . 
 
Tables 
 

Table 1.β Known, when τ=1 and p=1 
 

(1,2) N Estimator Bias  MSE 

(0.2,0.25) 20 

SLR


 
0.0424 0.0125 

LLR


 0.0342 
 

0.006 

50 

SLR


 
0.0354 
 

0.0157 

LLR


 
0.0122 
 

0.0014 

100 
SLR



 
0.007 
 

0.0002 
 

LLR
  0.002 0.0003 

 
(0.3,0.35) 
 

20 
SLR



 
0.0533 
 

0.0125 

LLR


 
0.0483 
 

0.0014 

50 

SLR


 

0.0067 
 

.0005 

LLR


 
0.0049 
 

.0002 

100 

SLR


 

0.007 
 

.0003 

LLR


 

.0011 
 

.0002 
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Table 2. β Unknown, when τ=1 and p=1 
 

1 2 , ),(a a   N Estimator Bias  MSE 

(0.2,0.25,.5) 20 
SLR



 
0.0335 0.0025 

LLR


 
0.0221 
 

0.0012 

50 
SLR


 0.0044 0.0014 

LLR


 

0.0037 
 

0.0012 

100 
SLR



 
0.0219 
 

.0060 
 

LLR


 0.0025 
 

0.0001 

 
(.3,.35,.55) 
 

20 
SLR



 
0.0521 
 

0.0062 

LLR


 

0.0483 
 

0.0014 

50 

SLR


 

 
0.007 
 

.0005 

LLR


 
0.0059 
 

.0018 

100 
S LR



 
0.0007 
 

0.0003 

LLR


 
0.0008 0.0000 

 
Conclusion 
 
We obtained the estimators of the reliability function. From the table we can observe that the estimate under Linex Loss function 
has lesser bias and MSE than the squared error loss. Also the bias and the MSE reduces as the sample size increases. 
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