

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 12, pp.24811-24815, December, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

EXAMINATION OF GARCH MODEL FOR DETERMINANTS OF INFOSYS STOCK RETURNS

*Dr. Jeelan Basha, V.

Assistant Professor in Commerce, Government First Grade College, Mariyammanahalli-583222, Karnataka, India

ARTICLE INFO	ABSTRACT			
<i>Article History:</i> Received 20 th September, 2015 Received in revised form 18 th October, 2015 Accepted 15 th November, 2015 Published online 30 th December, 2015	The research on asset volatility in financial market is the foundation of finance. To measure and predict asset volatility accurately, Bollerslev built a generalised ARCH (GARCH) model based on the ARCH model. The GARCH process is often preferred by financial modeling professionals because it provides a more real-world context than other forms when trying to predict the prices and returns of financial instruments. It is the general process for a GARCH model involves three steps. The first is to estimate a best-fitting autoregressive model; secondly, compute autocorrelations of the error term and lastly, test for significance. The objective of the study is to GARCH (1,1) model for the			
Key words:	volatility of Infosys stock returns and factors influencing the volatility in the returns of Infosys stock returns. The study covers monthly data ranging from Sept. 2009 to Nov.2015 having 98 observations.			
Unit Root Test, ARCH, GARCH and Clustering Volatility	The empirical investigation considers returns of closing prices of all variables namely Infosys Stock Return as dependent and S&P CNX Nifty and Dow Jones Industrial Average as independent variables. Data for all variables are collected from the official websites of nseindia.com and yahoofinance.com. E-Views is used to analyze the data. It is concluded that despite there is a weakness of this student's t distribution model about its non-normality of residuals, many suggest that non-normality in the residuals may not be that serious problem for estimation. Hence this model will be used for forecasting.			

Copyright © 2015 Jeelan Basha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Jeelan Basha, V. 2015. "Examination of garch model for determinants of infosys stock returns", *International Journal of Current Research*, 7, (12), 24811-24815.

INTRODUCTION

The research on asset volatility in financial market is the foundation of finance, such as capital assets pricing, financial derivatives pricing, and financial risk measurement. The premise of quantitative financial analysis is to accurately measure and predict asset quality. Therefore, the measurement and prediction of asset volatility are a hotspot of research all the time. To measure and predict asset volatility accurately, Bollerslev built a generalised ARCH (GARCH) model based on the ARCH model. Then, GARCH model was extended. The preferred by financial GARCH process is often modelling professionals because it provides a more real-world context than other forms when trying to predict the prices and returns of financial instruments. It is the general process for a GARCH model involves three steps. The first is to estimate a best-fitting autoregressive model; secondly. compute autocorrelations of the error term and lastly, test for significance.

*Corresponding author: Dr. Jeelan Basha,V., Assistant Professor in Commerce, Government First Grade College, Mariyammanahalli-583222Karnataka, India. Admittedly, GARCH- type models have fairly strong predictive power, but there is a room for improvement, as the accuracy pursuit for future volatility prediction is endless in financial operation such as capital assets pricing, financial derivatives pricing, and financial risk measurement. Therefore, it is necessary to improve the predictive power of the models.

Objectives

To study GARCH (1,1) model for the volatility of Infosys stock returns and factors influencing the volatility in the returns of Infosys stock returns.

Data and Methodology

The empirical investigation was carried out based on monthly data ranging from Sept. 2009 to Nov.2015 which covers 98 observations. The study has selected two stock indices variables namely S&P CNX Nifty and Dow Jones Industrial Average which may have influence on the Infosys stock Returns.

The empirical investigation considers returns of closing prices of all variables. Infosys Stock Return as dependent variable of Indian stock market. Data for all variables are collected from the official websites of nseindia.com and yahoofinance.com. E-Views is used to analyze the data.

Hypothesis Testing

The hypotheses of this research are given below:

H01: There is unit root of Infosys Stock Returns, S&P CNX Nifty Returns and Dow Jones Industrial Average Returns.

H02: There is no ARCH Effect.

H03: The residuals/ Error Term of Infosys Stock Returns are normally distributed.

H04: The residuals of Infosys Stock Returns are not serially correlated.

H05: The residuals of Infosys Stock Returns have no ARCH effect.

Unit Root Test

The foundation of time series analysis is stationarity. A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space. If the variable is not stationary, we can obtain a high regression although there is no meaningful relation between variables i.e. spurious regression between totally unrelated variables. Therefore before estimating regression augmented Dickey Fuller test (Hamilton, J., 1994) was conducted to check the stationarity of the data. The test for a unit root is conducted on the coefficient of y_{t-1} in the regression. Where Y_t is the variable in period t, T denotes a time trend, is the difference operator, et is pure white noise error term disturbance with mean zero and variance deviation 2, k represents the no. of lags of the differences in the ADF equation and $Y_{t1} = (Y_{t-1} - Y_{t-2})$.

GARCH

If an autoregressive moving average model (ARMA model) is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH), Bollerslev (1986)) model. In that case, the GARCH (p, q)model (where p is the order of the GARCH terms σ^2 and q is the order of the ARCH terms ϵ^2), following the notation of original paper is given by

$$\begin{split} y_t &= x'_t b + \epsilon_t \\ \epsilon_t | \psi_t \sim \mathcal{N}(0, \sigma_t^2) \\ \sigma_t^2 &= \omega + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 \end{split}$$

Generally, when testing for heteroskedasticity in econometric models, the best test is the White test. However, when dealing with time series data, this means to test for ARCH errors (as described above) and GARCH errors (below). Exponentially weighted moving average (EWMA) is an alternative model in a separate class of exponential smoothing models. It can be an alternative to GARCH modeling as it has some attractive properties such as a greater weight upon more recent observations but also some drawbacks such as an arbitrary decay factor that introduce subjectivity into the estimation. GARCH (p, q) model specification The lag length p of a GARCH (p, q) process is established in three steps:

• Estimate the best fitting AR(q) model

$$y_t = a_0 + a_1 y_{t-1} + \dots + a_q y_{t-q} + \epsilon_t = a_0 + \sum_{i=1}^q a_i y_{t-i} + \epsilon_t$$

• Compute and plot the autocorrelations of \in^2 by

$$\rho = \frac{\sum_{t=i+1}^{T} (\hat{\epsilon}_{t}^{2} - \hat{\sigma}_{t}^{2}) (\hat{\epsilon}_{t-1}^{2} - \hat{\sigma}_{t-1}^{2})}{\sum_{t=1}^{T} (\hat{\epsilon}_{t}^{2} - \hat{\sigma}_{t}^{2})^{2}}$$

The asymptotic, that is for large samples, standard deviation of *ρ(i)* is 1/√*T*. Individual values that are larger than this indicate GARCH errors. To estimate the total number of lags, use the Ljung-Box test until the value of these are less than, say, 10% significant. The Ljung-Box Q-statistic follows X² distribution with *n* degrees of freedom if the squared residuals e²/_i are uncorrelated. It is recommended to consider up to T/4 values of *n*. The null hypothesis states that there are no ARCH or GARCH errors. Rejecting the null thus means that such errors exist in the conditional variance.

RESULTS

Table 1. shows the variables selected for the study namely Infosys Stock Returns, S&P CNX Nifty Index Returns and Dow Jones Industrial Average Index (DJIA) Returns are stationary.

Table 1. ADF- t Statistic

Variables	ADF-t stat. value	ADF-t stat Prob. value
Infosys Stock Returns	-13.2538	0.0001
NSE Nifty index Returns	-9.26493	0
DJIA index Returns	-8.70253	0

Chart 1. Residuals of Infosys Return

On visual inspection of Chart-t depicts that the residuals of the Infosys returns based on the output regression, there is clustering volatility in the residuals. It means that the periods of low volatility is followed by the periods of low volatility for long period. Again the periods of high volatility is tended to be followed by periods of high volatility. It suggests that residual or error term is conditional and it can be represented by ARCH and GARCH effect.

Table 2. Heteroskedasticity Test: ARCH

Heteroskedasticity Test: ARCH						
F-statistic	5.158177	Prob. F(1,9	5)	0.0254		
Obs*R-squared	4.99553	Prob. Chi-S	Square(1)	0.0254		
Test Equation:						
Dependent Variable: RE	SID^2					
Method: Least Squares						
Date: 11/22/15 Time: 1	1:00					
Sample (adjusted): 2 98						
Included observations: 9	7 after adjustments	3				
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	0.013475	0.008192	1.644826	0.1033		
RESID ² (-1)	0.226908	0.099908	2.271162	0.0254		
R-squared	0.0515	Mean depend	Mean dependent var			
Adjusted R-squared	0.041516	S.D. depende	S.D. dependent var			
S.E. of regression	0.078856	Akaike info c	Akaike info criterion			
Sum squared resid	0.59073	Schwarz crite	Schwarz criterion			
Log likelihood	109.7666	Hannan-Quin	Hannan-Quinn criter.			
F-statistic	5.158177	Durbin-Wats	Durbin-Watson stat			
Prob(F-statistic)	0.025395					

Table 3. GARCH (1,1) Student's t distribution

Dependent Variable: INFO						
Method: ML - ARCH (Marquardt) - Student's t distribution						
Date: 11/22/15 Time: 11:1	0					
Sample: 1 98						
Included observations: 98						
Failure to improve Likeliho	od after 48 iterations					
Presample variance: backca	st (parameter $= 0.7$)					
t-distribution degree of free	dom parameter fixed	at 10				
GARCH = C(3) + C(4)*RE	$SID(-1)^2 + C(5)^*G_4$	$ARCH(-1) + C(6)^{3}$	*DJIA			
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C	-0.01213	0.009221	-1.31556	0.1883		
NSE	0.525798	0.119743	4.391067	0		
Variance Equation						
C	0.006658	0.002177	3.058061	0.0022		
RESID(-1)^2	0.371288	0.141018	2.632912	0.0085		
GARCH(-1)	-0.02223	0.186309	-0.11932	0.905		
DJIA	0.029491	0.039651	0.74378	0.457		
R-squared	0.032317	Mean depend	Mean dependent var -0.00			
Adjusted R-squared	0.022237	S.D. depende	S.D. dependent var			
S.E. of regression	0.133338	Akaike info c	Akaike info criterion			
Sum squared resid	1.706773	Schwarz crite	Schwarz criterion -			
Log likelihood	90.4897	Hannan-Quii	nn criter.	-1.66027		
Durbin-Watson stat	2 643059					

Table 4. Serial Correlation of Residuals of Infosys Stock Returns

Date: 11/22/15 Time: 11:17	7					
Sample: 1 98 Included observations: 98						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. *	. *	1	0.161	0.161	2.6177	0.106
	* .	2	-0.059	-0.087	2.9753	0.226
		3	-0.004	0.021	2.9772	0.395
		4	-0.014	-0.023	2.9983	0.558
		5	-0.057	-0.051	3.3365	0.648
		6	-0.038	-0.023	3.4891	0.745
		7	-0.058	-0.058	3.8502	0.797
		8	0.008	0.024	3.8565	0.87
. *	. *	9	0.136	0.126	5.8803	0.752
* .	* .	10	-0.073	-0.125	6.4804	0.773
		11	-0.003	0.051	6.4814	0.839
		12	-0.011	-0.045	6.4959	0.889
		13	-0.021	-0.007	6.545	0.924
		14	-0.017	-0.004	6.5768	0.95
		15	-0.019	-0.023	6.6174	0.967
		16	-0.016	0.002	6.6491	0.979
		17	0.032	0.021	6.7743	0.986
	* .	18	-0.035	-0.072	6.9236	0.991
	. *	19	0.069	0.129	7.5157	0.991
. **	. **	20	0.267	0.22	16.445	0.689

	* .	21	-0.033	-0.116	16.58	0.736
		22	-0.01	0.062	16.593	0.785
		23	0.042	0.021	16.824	0.818
		24	-0.009	-0.009	16.834	0.856
		25	-0.048	-0.012	17.138	0.877
		26	-0.035	-0.033	17.306	0.9
		27	-0.033	0.023	17.458	0.919
		28	-0.016	-0.056	17.494	0.938
		29	0.025	-0.028	17.583	0.952
		30	-0.048	0.024	17.919	0.96
		31	0.002	-0.021	17.92	0.971
		32	0.062	0.067	18.498	0.973
		33	-0.035	-0.06	18.678	0.979
		34	-0.034	-0.006	18.859	0.983
		35	0	0.02	18.859	0.988
i. i		36	-0.018	-0.042	18.909	0.991

Table 5. Normal Distribution of Residuals of Infosys Stock Return

Heteroskedasticity Test: A	RCH			
F-statistic	2.961708	Prob. F(1,95	5)	0.0885
Obs*R-squared	2.932632	Prob. Chi-So	quare(1)	0.0868
Test Equation:				
Dependent Variable: WGT	_RESID^2			
Method: Least Squares				
Date: 11/22/15 Time: 11:	16			
Sample (adjusted): 2 98				
Included observations: 97	after adjustments			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.899527	0.340818	2.639318	0.0097
WGT_RESID^2(-1)	0.173776	0.100976	1.720961	0.0885
R-squared	0.030233	Mean depende	nt var	1.08651
Adjusted R-squared	0.020025	S.D. dependent var		3.21388
S.E. of regression	3.181534	Akaike info criterion		5.17301
Sum squared resid	961.6052	Schwarz criter	5.22609	
Log likelihood	-248.891	Hannan-Quinn	5.19447	
F-statistic	2.961708	Durbin-Watson	1.96912	
Prob(F-statistic)	0.088513			

It is evident from Table-2 that there is ARCH effect from the test of Heteroskedasticity ARCH test. Since its Obs*R-squared Prob. Chi-Square (1) is less than 0.05., it denies null hypothesis and accepts alternative hypothesis. So, there is validity to run GARCH (1, 1) model. Table-3 indicates that under Student's t Distribution, ARCH is significant since its Prob. Value is 0.0085. It means that previous month's Infosys's stock Return information can influence today's

Infosys's volatility.GARCH is insignificant since its prob. value is 0.905. It means that current month's Infosys's volatility is not influenced by its internal shock previous month's Infosys's stock Return volatility.Dow Jones Industrial Average Index (DJIA) Returns volatility is also insignificant whose prob. Value is 0.457. It means that Current month's Infosys volatility is not influenced by external shock volatility of Dow Jones Industrial Average Index (DJIA) Returns.

Diagnostic checking of the Student's t Distribution

Table -4 discloses that there is no serial correlation in the residuals since its all 36 lags prob. value is more than 0.05. Hence, null hypothesis is accepted. Table-5 indicates that Residuals are not normally distributed since Table-6 shows that there is no ARCH effect since Prob. Chi-Square (1) is 0.0868which is more than 0.05. Therefore, null hypothesis is accepted. A weakness of this student's t Distribution model is non-normality of residuals. Many suggest that non-normality in the residuals may not be that serious problem for estimation. Hence this model will be used for forecasting. Other models of Normal Distribution and Generalised Error Distribution of residual of Infosys Stock Returns do not satisfy the requirements under diagnostic checking and hence, they are not useful model for forecasting.

Conclusion

To study GARCH (1,1) model for the volatility of Infosys stock returns and factors influencing the volatility in the returns of Infosys stock returns under three distributions namely Normal Distribution, Students, t Distribution and Generalised Error Distribution. Among these models, the best model is Student's, t Distribution. Under this model, Current month's Infosys's stock Return volatility is influenced by its own internal shock of ARCH but not by another internal shock of GARCH and external shock of Dow Jones Industrial Average Index (DJIA) Returns factors. It satisfies diagnostic tests of no serial Correlation and No ARCH effect but not normality Distribution. Many suggests that this model is still suitable for forecasting.

REFERENCES

- Bollerslev, Tim 1986. "Generalized Autoregressive Conditional Heteroskedasticity". *Journal of Econometrics*, 31 (3): Pp: 307–327.
- Engle, Robert F. 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation". *Econometrica.*, 50 (4): 987–1007.
- Engle, Robert F. 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics". *Journal of Economic Perspectives*, 15 (4): pp:157–168
- Gujarati, D. N. 2003. Basic Econometrics. pp. 856-862.
- Huannan Zhang and Qiujun Lan 2014. "GARCH type Models with Continuous and Jump Variation for Stock Volatility and its Empirical Study in China", *Hindawi Publishing Corporation Mathematical Problems in Engineering*, Vol.2014, pp.1-8.
- Jeelan Basha. V. 2015. "Testing for Granger Causality between BSE Sensex and Forex Reserves – An Empirical Study", *International Journal of Current Research*, Vol.7, Issuel1, Nov. 2015, pp. 23381-23385.

www.investopedia.com
