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This paper is concerned with a mathematical solution to the 8 × 8 Lights Out Problem, a modification 
of an originally 5 × 5 electronic one
which can be turned on and off. A move consists of flippi
thereby toggling the on/off state of this and all four vertically and horizontally adjacent squares. 
Starting from a randomly chosen light pattern, the aim is to turn all the lamps off. The researcher 
describes the 
a curious puzzle fan, and the second as a mathematician), with the end intention of presenting a result 
of entertaining mathematical research and to share it with a
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1. INTRODUCTION 
 

Recreational mathematics is a treasury of problems which 
makes mathematics fun and which illustrates the idea that, 
“Mathematics is all around, one need only to look for it”. It is 
used either as a diversion from serious mathematics or as a way 
of making serious mathematics understandable or palatable, 
and is already present in the oldest known mathematics and 
continue to the present day. Recreational questions are 
interspersed with more straightforward problems to provide 
breaks in the hard slog of learning. An additional utility of 
recreational mathematics is that it provides one a way to 
communicate mathematical ideas to the public at large.  
problems are often based on reality, though with enough 
whimsy so that they have to be appealing to the 
the layman alike. The Lights Out Problem is an example of 
recreational mathematics. As such, a toy version of it, actually 
a handheld device, is made by Tiger Electronics, and is about 
the size of a VHS tape. It has 25 lights/buttons on it wh
either be on or off. Whenever one hits a button, if that button is 
off, it turns on. If that button was on, it turns off. But the four 
buttons that are on the top, bottom, left and right of that button 
also switch states that way. The object is to get all of the lights 
off, hence the name of the game. Surprisingly, the Lights Out 
Problem is a mathematical problem in disguise, and a solution 
of it can be sought for if one is to approach the said problem 
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ABSTRACT 

This paper is concerned with a mathematical solution to the 8 × 8 Lights Out Problem, a modification 
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of entertaining mathematical research and to share it with anyone who is interested in it.
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makes mathematics fun and which illustrates the idea that, 
“Mathematics is all around, one need only to look for it”. It is 
used either as a diversion from serious mathematics or as a way 

erious mathematics understandable or palatable, 
already present in the oldest known mathematics and 

ecreational questions are 
interspersed with more straightforward problems to provide 

An additional utility of 
recreational mathematics is that it provides one a way to 
communicate mathematical ideas to the public at large.  These 
problems are often based on reality, though with enough 
whimsy so that they have to be appealing to the students and 

The Lights Out Problem is an example of 
recreational mathematics. As such, a toy version of it, actually 
a handheld device, is made by Tiger Electronics, and is about 
the size of a VHS tape. It has 25 lights/buttons on it which can 
either be on or off. Whenever one hits a button, if that button is 
off, it turns on. If that button was on, it turns off. But the four 
buttons that are on the top, bottom, left and right of that button 

get all of the lights 
off, hence the name of the game. Surprisingly, the Lights Out 
Problem is a mathematical problem in disguise, and a solution 
of it can be sought for if one is to approach the said problem  
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from the said point of view. In this approach, one starts by 
checking to see if there are any lights still on in the top row. If 
there are, then the only way to turn them off without pressing 
any more buttons in the top row, is to press the buttons in the 
second row that are directly beneath the lit lights. One can't 
press any further buttons in the second row, since that would 
turn on lights in the top row. So now one can only use the 
bottom three rows. If one carries on in this way, he will 
eventually reach the bottom row. 
knows how to chase the lights to the bottom row, finding a 
solution amounts to tabulating all the possible c
lit squares at the bottom and finding the correct combination of 
lit squares to press on the top row that will eventually lead to 
each of the corresponding lit square combinations at the 
bottom. 
 
Having an ample background on the underlying 
original 5 × 5 Lights Out Problem and the method of Chasing 
the Lights, and realizing the potential of said problem in 
introducing the fundamentals of recreational mathematics, the 
researcher undertakes this study in an 8 × 8 grid, to empha
his own personal conviction that mathematics can indeed, be 
fun and recreational. 
 
2. Theoretical Background 
 
Lights Out Problem involves toggling lights on and off. If a 
light is on, it must be toggled an odd number of times to be 
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from the said point of view. In this approach, one starts by 
checking to see if there are any lights still on in the top row. If 

way to turn them off without pressing 
any more buttons in the top row, is to press the buttons in the 
second row that are directly beneath the lit lights. One can't 
press any further buttons in the second row, since that would 

w. So now one can only use the 
bottom three rows. If one carries on in this way, he will 
eventually reach the bottom row. As can be seen, once one 
knows how to chase the lights to the bottom row, finding a 
solution amounts to tabulating all the possible combinations of 
lit squares at the bottom and finding the correct combination of 
lit squares to press on the top row that will eventually lead to 
each of the corresponding lit square combinations at the 

Having an ample background on the underlying concepts of the 
original 5 × 5 Lights Out Problem and the method of Chasing 
the Lights, and realizing the potential of said problem in 
introducing the fundamentals of recreational mathematics, the 
researcher undertakes this study in an 8 × 8 grid, to emphasize 
his own personal conviction that mathematics can indeed, be 

Lights Out Problem involves toggling lights on and off. If a 
light is on, it must be toggled an odd number of times to be 
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turned off. If a light is off, it must be toggled an even number 
of times (including not being toggled at all) for it to remain off.  
A successful operation is therefore a sequence of presses that 
toggles all the "on" lights an odd number of times and all the 
"off" lights an even number of times.  
 
The following theorems are of utmost importance.  
 
Theorem 2.1 The order in which the lights are pressed does 
not matter.  
 
As an illustration, in the case of the original 5 × 5 grid, suppose 
the lights are numbered 1 to 25, left to right then from top to 
bottom. Pressing 3, 8 and 14 will toggle 2, 4, 7, 14, 15, and 19 
exactly once while 3, 8, 9, and 13 will be toggled exactly twice, 
(see Figure 1 below). No matter in what order one presses 3, 8 
and 14, all the affected lights will be toggled the same way in 
the end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 2.2  In order to solve the Lights Out Problem, each 
light needs to be pressed no more than once.  
 
Pressing a light an even number of times is equivalent to not 
touching it, and pressing it an odd number of times is 
equivalent to pressing it just once. Since the order in which the 
lights are pressed does not matter, a sequence in which one 
light is pressed an even number of times is equivalent to the 
same sequence with those even number of presses removed, 
and thus, the solution that uses the minimum number of moves 
is that in which no light is pressed more than once. 
 
Theorem 2.3  There are 2n number of ways in which the 
squares at the top row of an n × n grid can be lit up. 
 
Each of the squares at the top row of an 8 × 8 grid can be 
toggled on and off, and hence, the total number of possible 
ways in which the bottom row can be lit is 2 × 2 × … × 2, 
(there are n multiples of 2, since there are n squares in the row).  
 
Theorem  2.4 The maximum number of ways in which the 
pattern of lit squares in the bottom row can end up to after the 
method of Chasing the Lights is being applied in an arbitrarily 
lit n × n grid is 2n. 
 
It is of important interest that the number of ways in which the 
number of ways in which the top row of an n × n grid can be lit 

up will not necessarily be equal to the number of ways in which 
the pattern of lit squares in the bottom row of said grid can end 
up to after the method of Chasing the Lights is being applied. A 
classic example of this is the case n = 5, the original Lights Out 
Problem, it turns out!  
 

For this purpose, let a 1 × n vector M be defined as an ordered 
n-tuple of numbers, M = [m1, m2, …, mn] that lists the 
corresponding values of the squares in row M of an n × n grid 
from left to right, (where a square is given a value of 1 if it is 
lit, otherwise it is given a value of 0), thus, Figure 2 below has 
a corresponding vector M = [1 0 0 1 1].   

 

 
 

Figure 2. A row with vector M = [1 0 0 1 1] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At this juncture, let the five squares at the top row be denoted 
A through E, from left to right, while the squares at the bottom 
row be denoted 1 through 5, also from left to right, 
respectively. Furthermore, let an entry of 1 indicate that said 
square is lit, and that an entry of 0 indicates otherwise. In 
Figure 3 below, the right column indicates what squares at the 
bottom row of a 5 × 5 grid will remain lit if the corresponding 
square at the left column will be brought down using the 
method of chasing the lights.  
 

In vector notation, the five starting lights, with each of their 
corresponding bottom row pattern can be written as thus: 

 
A = [ 0 1 1 0 1 ] 
B = [ 1 1 1 0 1 ] 
C = [ 1 1 0 1 1 ] 
D = [ 0 0 1 1 1 ] 
E = [ 1 0 1 1 0 ] 

 
The next concern now is to find out what particular pattern will 
the bottom row come out if a combination of two or more 
squares at the top row are simultaneously pressed before the 
method of chasing the lights is performed. By letting n equals 
the number of squares at the top row and letting r equals the 
number of squares that are pressed on said row before 
performing the method of chasing the lights, then the number 
of possible ways of pressing r squares at a time from the set of  
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Figure 1. Corresponding Lit On Squares When Squares 3, 8 and 14 Are Toggled Respectively 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n available squares is given by the combination formula, herein 

denoted as is given by the formula,
 

 
 

 

!

! !

n n

r r n r
, where 

!r =           1 2 ... 3 2 1r r r . By definition, 0! = 1.  

Using the said combination formula, one expects that at the top 
row of a 5 × 5 grid, there are: 
 

a)  
5 5!

1
0 0! 5!

 
  

 
possible way of not pressing any square at 

a time  

b) 
5 5!

5
1 1! 4!

 
  

 
possible ways of pressing one square at a 

time 

c) 
5 5! 5 4

10
2 2! 3! 2!

  
   

 
possible ways of pressing two 

squares at a time 

d) 
5 5! 5 4

10
3 3! 2! 2!

  
   

 
possible ways of pressing three 

squares at  a time 

e) 
5 5!

5
4 4! 1!

 
  

 
possible ways of pressing four squares at a 

time 

f) 
5 5!

1
5 5! 0!

 
  

 
possible way of pressing all the five 

squares at a time 
 
All in all, there are 1 + 5 + 10+ 10+ 5 + 1 = 32 possible ways 
of pressing r squares at a time from a set of 5 available squares 
at the top row of a 5 × 5 grid, which is what is to be expected 
as per Theorem 2.3 for n = 5. Consider now the case of 
pressing two squares at the top row at a time before 
implementing the method of chasing the lights.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are 10 such combinations, namely AB, AC, AD, AE, 
BC, BD, BE, CD, CE, and DE, respectively.  
 
By virtue of Theorem 2.1 which states that the order in which 
the lights are pressed does not matter, pressing squares A and 
B, for example, is just equal to adding their corresponding 
vector notations. In this study and unless it will create a 
considerable confusion, the notation AB will stand to mean the 
vector sum A + B and is defined as: 
 
A+ B = AB = [a1, a2, …, an] + [b1, b2, …, bn]  
 
 = [a1+b1, a2+b2, …, an+bn] 
 = [0 1 1 0 1] + [1 1 1 0 0] 
 = [1 2 2 0 1]                        
 
Invoking Theorem 2.2, however, which claims, among others, 
that pressing a light an even number of times is equivalent to 
not touching it, and pressing it an odd number of times is 
equivalent to pressing it just once, then any nonzero even entry 
of the vector sum AB can be rewritten as zero, and any odd 
entry on said vector sum can be rewritten as 1, and thus: 
 

    AB = 1 2 2 0 1  = 1 0 0 0 1
 

 
Figure 4 below summarizes as to what particular pattern will 
the bottom row come out if a combination of two or more 
squares at the top row are simultaneously pressed before the 
method of chasing the lights is performed.   

 
As what the table indicates, pressing square A on top will result 
to the lighting of squares 2, 3, and 5 in the bottom row. The 
same result is obtained if one is to start by pressing squares C 
and E and chasing the lights all the way to the last bottom. To 
this effect, observe here that the 25 = 32 possible ways in which 
the top row can be lit up resulted only to 8 possible ways, 
(including the trivial all lights out solution), in which the 
pattern of lit squares in the bottom row can end up to after the 
method of Chasing the Lights. 
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Figure 3. What Squares at the Bottom Row Are Toggled When the Corresponding Squares at the Top Is Pressed 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 CHASING THE LIGHTS ON AN 8 × 8 GRID 
 

The most common method to solve the Lights Out Problem is 
to start by wiping all the lights except for in the last or bottom 
row. This is done by pressing lights that are directly below 
lights that are turned on to cancel them out until only lights in 
the last row remain. In the case of the 8 × 8 grid, there are 8 
possible ways to light exactly one square at a time at the top 
row. The right column in Figure 5 below indicates what 
squares will remain lit at the bottom row if the corresponding 
square at the left column will be brought down using the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

method of chasing the lights. Labeling the squares in the first 
row from left to right using the letters A through H, and doing 
the same in the last row using the numbers 1 through 8, this 
table indicates that by pressing square A in the top row and 
following the steps to bring down all the lights to the bottom 
row, then square 5 in the bottom row will be toggled. The next 
step now is to find all the possible combinations of selecting 
two or more squares to be pressed on the top row and find out 
what pattern at the bottom row will each of the above 
combinations end up to. Using the combination formula with n 
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Squares to be Toggled at the Top Row Remaining Lit Squares At the Bottom Row 
A, CE, BDE, ABCD 01101 
B, CD, ADE, ABCE 11100 
C, AE, BD, ABCDE 11011 
D, BC, ACDE, ABE 00111 
E, AC, ABD, BCDE 10110 
AB, DE, ACD, BCE 10001 
ACE, BCD, ABDE, (not a square toggled) 00000 
AD, BE, ABC, CDE 01010 

 
Figure 4. A Table That Indicates What Squares at the Bottom Row Will Light Up If the Corresponding  

Squares at the Top Row Are Toggled 
 

 
 

Figure 5. Table Showing What Squares at the Bottom Row Are Toggled When the Corresponding Squares at the Top Is Pressed 
 

In the vector notation, it can thus be said that the eight basic vectors of an 8 × 8 grid are the following: 
 

 
 



= 8 and r ranging from 0 to 8, one finds that at the top row of 
an 8 × 8 grid, there are: 
 

a)  
8 8!

1
0 0! 8!

 
  

 
possible way of not pressing any square at 

a time  

b) 
8 8!

8
1 1! 7!

 
  

 
possible ways of pressing one square at a 

time 

c) 
  

   
 

8 8! 8 7
28

2 2! 6! 2
possible ways of pressing two 

squares at a time 

d) 
   

   
 

8 8! 8 7 6
56

3 3! 5! 3!
possible ways of pressing 

three squares at  a time 

e) 
    

   
 

8 8! 8 7 6 5
70

4 4! 4! 4!
possible ways of pressing 

four squares at a time 

f) 
8 8! 8 7 6

56
5 5! 3! 3!

   
   

 
possible ways of pressing five 

squares at a time 

g) 
8 8! 8 7

28
6 6! 2! 2

  
   

 
possible ways of pressing six 

squares at a time 

h)  
8 8!

8
7 7! 1!

 
  

 
possible ways of pressing seven squares at 

a time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i) 
8 8!

1
8 8! 0!

 
  

 
possible way of pressing all the eight 

squares at a time 
 
This makes a total of 1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 
256 possible ways of pressing r squares at a time from a set of 
8 available squares at the top row,  which is in tally with 
Theorem 2.3 for n  = 8.  
 
The main concern of this study is to investigate if there is a 
solution to each and every possible pattern that the remaining 
lit switches at the bottom row can have after the first round of 
Chasing the Lights for any initial pattern is being made, 
thereby identifying along the way what squares to press at the 
top row to come up with the desired pattern at the bottom row. 
In the light of this objective, the researcher switches the rolls of 
the top row and the bottom row, that is, by listing all the 
possible light configurations at the bottom row and by the use 
of vector addition of the eight basic vectors taken r at a time, 
(where r ranges from 0 to 8), a correspondence between the 
two listings is then made to figure out what particular square 
combinations to be lit at the top row will end up to what 
particular possible light pattern in the bottom row.  
 

There are 
  

   
 

8 8! 8 7
28

2 2! 6! 2
possible ways that the 

bottom row can end up with two lit squares.  
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A solution to each of said possible ways is tabulated below: 
 

Table 1. Solutions to 2 lights on at the bottom row 
 

SEQUENCE  

SOLUTION 
 

SOLUTION 
SEQUENCE 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
1 1 0 0 0 0 0 0 BCEF CDFG 0 0 0 0 0 0 1 1 
1 0 1 0 0 0 0 0 ACEG BDFH 0 0 0 0 0 1 0 1 
1 0 0 1 0 0 0 0 CEH ADF 0 0 0 0 1 0 0 1 
0 1 1 0 0 0 0 0 ABFG BCGH 0 0 0 0 0 1 1 0 
0 1 0 1 0 0 0 0 BFH ACG 0 0 0 0 1 0 1 0 
1 0 0 0 1 0 0 0 ACE DFH 0 0 0 1 0 0 0 1 
0 0 1 0 1 0 0 0 G B 0 0 0 1 0 1 0 0 
1 0 0 0 0 1 0 0 BCEH ADFG 0 0 1 0 0 0 0 1 
1 0 0 0 0 0 1 0 EG BD 0 1 0 0 0 0 0 1 
0 1 0 0 1 0 0 0 ABF CGH 0 0 0 1 0 0 1 0 
0 1 0 0 0 1 0 0 FH AC 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 0 0 AGH ABH 0 0 0 0 1 1 0 0 
1 0 0 0 0 0 0 1 CDEF ABGH 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 AH BCFG 0 1 0 0 0 0 1 0 

 
Table 2. Solutions to 3 lights on at the bottom row 

 

SEQUENCE  

SOLUTION 
 

SOLUTION 
SEQUENCE 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
1 1 1 0 0 0 0 0 ABCEFG BCDFGH 0 0 0 0 0 1 1 1 
1 1 0 1 0 0 0 0 BCEFH ACDFG 0 0 0 0 1 0 1 1 
1 0 1 1 0 0 0 0 ACEGH ABDFH 0 0 0 0 1 1 0 1 
1 1 0 0 1 0 0 0 ABCEF CDFGH 0 0 0 1 0 0 1 1 
0 1 1 1 0 0 0 0 ABFGH ABCGH 0 0 0 0 1 1 1 0 
1 1 0 0 0 1 0 0 CEFH ACDF 0 0 1 0 0 0 1 1 
1 0 1 0 1 0 0 0 CEG BDF 0 0 0 1 0 1 0 1 
1 1 0 0 0 0 1 0 BEFG BCDG 0 1 0 0 0 0 1 1 

Continue….. 
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0 1 1 0 1 0 0 0 BFG BCG 0 0 0 1 0 1 1 0 
1 0 0 1 1 0 0 0 ACEH ADFH 0 0 0 1 1 0 0 1 
1 1 0 0 0 0 0 1 BCDE DEFG 1 0 0 0 0 0 1 1 
0 1 0 1 1 0 0 0 ABFH ACGH 0 0 0 1 1 0 1 0 
1 0 1 0 0 1 0 0 ABCEGH ABDFGH 0 0 1 0 0 1 0 1 
0 1 1 0 0 1 0 0 AFGH ABCH 0 0 1 0 0 1 1 0 
1 0 0 1 0 1 0 0 BCE DFG 0 0 1 0 1 0 0 1 
1 0 0 1 0 0 1 0 EGH ABD 0 1 0 0 1 0 0 1 
1 0 0 1 0 0 0 1 CDEFH ACDEF 1 0 0 0 1 0 0 1 
0 1 0 1 0 1 0 0 F C 0 0 1 0 1 0 1 0 
1 0 0 0 0 1 1 0 BEGH ABDG 0 1 1 0 0 0 0 1 
0 0 1 1 0 1 0 0 ABG BGH 0 0 1 0 1 1 0 0 
1 0 0 0 0 1 0 1 BCDEFG ACDEFG 1 0 1 0 0 0 0 1 
1 0 1 0 0 0 1 0 AE DH 0 1 0 0 0 1 0 1 
1 0 0 0 1 1 0 0 ABCEH ADFGH 0 0 1 1 0 0 0 1 
0 1 0 0 1 1 0 0 AFH ACH 0 0 1 1 0 0 1 0 
1 0 0 0 1 0 1 0 AEG BDH 0 1 0 1 0 0 0 1 
0 0 0 1 1 1 0 0 AB GH 0 0 1 1 1 0 0 0 
0 1 1 0 0 0 1 0 ABCF CFGH 0 1 0 0 0 1 1 0 

 
 

Table 3. Solutions to 4 lights on at the bottom row 
 

SEQUENCE SOLUTION SOLUTION SEQUENCE 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 1 1 1 0 0 0 0 ABCEFGH ABCDFGH 0 0 0 0 1 1 1 1 

1 1 0 0 0 1 1 0 EFGH ABCD 0 1 1 0 0 0 1 1 

1 1 1 0 1 0 0 0 BCEFG BCDFG 0 0 0 1 0 1 1 1 

1 1 0 1 1 0 0 0 ABCEFH ACDFGH 0 0 0 1 1 0 1 1 

1 1 1 0 0 1 0 0 ACEFGH ABCDFH 0 0 1 0 0 1 1 1 

1 0 1 1 1 0 0 0 CEGH ABDF 0 0 0 1 1 1 0 1 

1 1 1 0 0 0 1 0 ABEF CDGH 0 1 0 0 0 1 1 1 

0 1 1 1 1 0 0 0 ABCG BFGH 0 0 0 1 1 1 1 0 

1 1 0 1 0 1 0 0 CEF CDF 0 0 1 0 1 0 1 1 

1 1 1 0 0 0 0 1 ABCDEG BDEFGH 1 0 0 0 0 1 1 1 

1 1 0 1 0 0 1 0 BEFGH ABCDG 0 1 0 0 1 0 1 1 

1 0 1 1 0 1 0 0 ABCEG BDFGH 0 0 1 0 1 1 0 1 

1 1 0 1 0 0 0 1 BCDEH ADEFG 1 0 0 0 1 0 1 1 

0 1 1 1 0 1 0 0 AFG BCH 0 0 1 0 1 1 1 0 

1 1 0 0 1 1 0 0 ACEFH ACDFH 0 0 1 1 0 0 1 1 

1 0 1 0 1 1 0 0 BCEGH ABDFG 0 0 1 1 0 1 0 1 

1 1 0 0 1 0 1 0 ABEFG BCDGH 0 1 0 1 0 0 1 1 

0 1 1 0 1 1 0 0 FGH ABC 0 0 1 1 0 1 1 0 

1 1 0 0 1 0 0 1 ABCDE DEFGH 1 0 0 1 0 0 1 1 

1 0 0 1 1 1 0 0 ABCE DFGH 0 0 1 1 1 0 0 1 

1 1 0 0 0 1 0 1 CDEH ADEF 1 0 1 0 0 0 1 1 

0 1 0 1 1 1 0 0 AF CH 0 0 1 1 1 0 1 0 

1 0 1 1 0 0 1 0 AEH ADH 0 1 0 0 1 1 0 1 

0 1 1 1 0 0 1 0 ABCFH ACFGH 0 1 0 0 1 1 1 0 

1 0 0 1 1 0 1 0 AEGH ABDH 0 1 0 1 1 0 0 1 

1 0 1 0 1 0 1 0 E D 0 1 0 1 0 1 0 1 

1 0 1 1 0 0 0 1 ACDEFGH ABCDEFH 1 0 0 0 1 1 0 1 

1 0 1 0 1 0 0 1 CDEFG BCDEF 1 0 0 1 0 1 0 1 

1 0 1 0 0 1 1 0 ABEH ADGH 0 1 1 0 0 1 0 1 

1 0 0 1 0 1 1 0 BEG BDG 0 1 1 0 1 0 0 1 

0 1 1 0 1 0 1 0 BCF CFG 0 1 0 1 0 1 1 0 

1 0 0 0 1 1 1 0 ABEGH ABDGH 0 1 1 1 0 0 0 1 

0 0 1 1 1 1 0 0 BG ACFH 0 1 1 0 0 1 1 0 

1 1 0 0 0 0 1 1 BDEG ACDEFH 1 0 0 1 1 0 0 1 

1 0 1 0 0 1 0 1 ABCDEFGH ABCFGH 0 1 0 1 1 0 1 0 
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Table 4. Solutions to 5 lights on at the bottom row 
 

SEQUENCE 
SOLUTION SOLUTION 

SEQUENCE 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 1 1 1 1 0 0 0 BCEFGH ABCDFG 0 0 0 1 1 1 1 1 

1 1 1 1 0 1 0 0 ACEFG BCDFH 0 0 1 0 1 1 1 1 

1 1 1 1 0 0 1 0 ABEFH ACDGH 0 1 0 0 1 1 1 1 

1 1 1 0 1 1 0 0 CEFGH ABCDF 0 0 1 1 0 1 1 1 

1 1 1 1 0 0 0 1 ABDEFGH ABCDEGH 1 0 0 0 1 1 1 1 

1 1 0 1 1 1 0 0 ACEF CDFH 0 0 1 1 1 0 1 1 

1 1 1 0 1 0 1 0 BEF CDG 0 1 0 1 0 1 1 1 

1 0 1 1 1 1 0 0 BCEG BDFG 0 0 1 1 1 1 0 1 

1 1 1 0 1 0 0 1 BCDEG BDEFG 1 0 0 1 0 1 1 1 

0 1 1 1 1 1 0 0 FG BC 0 0 1 1 1 1 1 0 

1 1 1 0 0 1 1 0 AEFH ACDH 0 1 1 0 0 1 1 1 

1 1 0 1 1 0 1 0 ABEFGH ABCDGH 0 1 0 1 1 0 1 1 

1 1 1 0 0 1 0 1 ACDEGH ABDEFH 1 0 1 0 0 1 1 1 

1 0 1 1 1 0 1 0 EH AD 0 1 0 1 1 1 0 1 

1 1 1 0 0 0 1 1 ABDE DEGH 1 1 0 0 0 1 1 1 

0 1 1 1 1 0 1 0 BCFH ACFG 0 1 0 1 1 1 1 0 

1 1 0 1 1 0 0 1 ABCDEH ADEFGH 1 0 0 1 1 0 1 1 

1 1 0 1 0 1 1 0 EFG BCD 0 1 1 0 1 0 1 1 

1 1 0 1 0 1 0 1 CDE DEF 1 0 1 0 1 0 1 1 

1 0 1 1 0 1 1 0 ABE DGH 0 1 1 0 1 1 0 1 

1 1 0 1 0 0 1 1 BDEGH ABDEG 1 1 0 0 1 0 1 1 

1 1 0 0 1 1 1 0 AEFGH ABCDH 0 1 1 1 0 0 1 1 

0 1 1 1 0 1 1 0 ACF CFH 0 1 1 0 1 1 1 0 

1 0 1 0 1 1 1 0 BEH ADG 0 1 1 1 0 1 0 1 

1 0 0 1 1 1 1 0 ABEG BDGH 0 1 1 1 1 0 0 1 

1 0 1 1 1 0 0 1 ABCDEF CDEFGH 1 0 0 1 1 1 0 1 

1 1 0 0 1 1 0 1 ACDEH ADEFH 1 0 1 1 0 0 1 1 

1 0 1 1 0 1 0 1 ABCDEFG BCDEFGH 1 0 1 0 1 1 0 1 

 
Table 5. Solutions to 6 lights on at the bottom row 

 

SEQUENCE SOLUTION SOLUTION SEQUENCE 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 0 0 CEFG BCDF 0 0 1 1 1 1 1 1 

1 1 1 1 1 0 1 0 BEFH ACDG 0 1 0 1 1 1 1 1 

1 1 1 1 1 0 0 1 BCDEGH ABDEFG 1 0 0 1 1 1 1 1 

1 1 1 1 0 1 1 0 AEF CDH 0 1 1 0 1 1 1 1 

1 1 1 1 0 1 0 1 ACDEG BDEFH 1 0 1 0 1 1 1 1 

1 1 1 0 1 1 1 0 EFH ACD 0 1 1 1 0 1 1 1 

1 1 1 1 0 0 1 1 ABDEH ADEGH 1 1 0 0 1 1 1 1 

1 1 0 1 1 1 1 0 AEFG BCDH 0 1 1 1 1 0 1 1 

1 1 1 0 1 1 0 1 CDEGH ABDEF 1 0 1 1 0 1 1 1 

1 0 1 1 1 1 1 0 BE DG 0 1 1 1 1 1 0 1 

1 1 1 0 1 0 1 1 BDE DEG 1 1 0 1 0 1 1 1 

1 1 0 1 1 1 0 1 ACDE DEFH 1 0 1 1 1 0 1 1 

1 1 1 0 0 1 1 1 ADEH BCDEFG 1 0 1 1 1 1 0 1 

1 1 0 1 1 0 1 1 ABDEGH CF 0 1 1 1 1 1 1 0 

 
Table 6. Solutions to 7 lights on at the bottom row 

 

SEQUENCE SOLUTION SOLUTION SEQUENCE 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 0 EF CD 0 1 1 1 1 1 1 1 

1 1 1 1 1 1 0 1 CDEG BDEF 1 0 1 1 1 1 1 1 

1 1 1 1 1 0 1 1 BDEH ADEG 1 1 0 1 1 1 1 1 

1 1 1 1 0 1 1 1 ADE DEH 1 1 1 0 1 1 1 1 

 



The combination formula shows that there is only 
8

1
8

 
 

 
 

way that all squares in the bottom row are lit. The unique 
combination of squares D and E at the top row will deliver the 
desired effect. 
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