

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 06, pp.33173-33176, June, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

MORPHOCHEMICAL STUDIES OF TWO SPECIES OF APLOSPRELLA Speg. (=HAPLOSPORELA Speg.)

*Dharkar Ninad

S.P.M. Science and Gillani Art's Commerce College, Ghatanji Dist. Yavatmal (MS) India445301

ARTICLE INFO

ABSTRACT

Article History: Received 17th March, 2016 Received in revised form 23rd April, 2016 Accepted 14th May, 2016 Published online 30th June, 2016

Key words:

Aplosporella, Morphological characters, Chromatography, Amino acid, Carbohydrate, Organic acid. The present paper deals with morphological and chemical studies of two species of *Aplosporella* Speg. (*=Haplosporella* Speg.)The species under study found to be morphologically and biochemically distinct. The species were collected on different hosts of same angiospermic family on comparison with the known species it treated as new species viz, *Aplosporella leucocephala* sp.nov. on *Leucaena leucocephala* (Lamk)de wit. And *Aplosporella pithecolobiella sp.nov on Pithecolobium dulce* (Roxb.)

Copyright©2016, Dharkar Ninad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dharkar Ninad, 2016. "Morphochemical studies of two species of *Aplosprella* Speg. (=*Haplosporela* Speg.)", *International Journal of Current Research*, 8, (06), 33173-33176.

INTRODUCTION

Though morphchemical study is an interesting but debatable phenomenon, which helps to understand the diversity and conservation. It is very difficult to identify new species on the basis of morphological characters only hence some author advocate host specificity as one of the important character for speciation. In the present study chemical characters have been used to support speciation (Agrawal & Dhamij *et al.*, 1978; Harborn, 1984; Iyer *et al.*, 2001; Joshi & Patwardan, 1972; Kherda *et al.*, 2004; Kumar *et al.*,2011).

MATERIALS AND METHODS

Morphological characters were studied by taking free hand sections and mounting in lactophenol microscopic observation reveled some distinctly different characters Ainsworth *et al.*, 1973; Bilgrami *et al.*, 1991, Jamaluddin *et al.*, 2004; Sarbhoy *et al.*, 1996). To study the chemical characters the said species were cultured on Potato - Dextrose Agar. For chemical studies fully grown cultures were hydrolysed, residue was collected in 10% isopropyl alcohol. The chemical studies were done with

*Corresponding author: Dharkar Ninad,

S.P.M. Science and Gillani Art's Commerce College, Ghatanji Dist. Yavatmal (MS) India445301.

two dimentional paper chromatography the solvent systems used were n-butanol : acetic acid : water (4:1:1 w/v) and phenol:water (3:1 w/v)for amino acid.For carbohydrate n-butanol : acetic acid : water (4:1:5 w/v)was used. n-butanol : formic acid : water (4:1:5 w/v) system was used for organic acid. The indicator used were ninhydrine for studying different amino acids. Likewise aniline hydrogenpthalate used for carbohydrate and bromothymol blue for organic acids. On development, the RF values were compared with the standard run simultaneously. The specimen were deposited in Ajrekar Mycological Herbarium (AMH) Agharkar Research Institute, Pune 411 004. Aplosporella leucocephala sp.nov AMH No.9033 (Holotype), (Fig.1.a,b,c,d,e,f,g,h) Aplosporella pithecolobiella AMH No.9034 sp. nov (Holotype). Fig.2..a,b,c,d,e,f,g,h

RESULTS AND DISCUSSION

On comparison with known species the present collection were found to be different evident from size of stroma, locule and conidia (Table 1). The species under study were different chemically also as is evident from Table (2,3,4). The species were separated on the presence of certain chemicals like Glutamic acid,L-Hydroxyproline, L-Cystine Hcl, Tryptophan Arginine, Glycine, L-Ornithine, L-Threonine, Sucrose, Rhamnose, Tartaric acid, Citric acid, Succinic acid.

Illustration: - Morphochemical studies of two species of Aplosporella Speg. (=Haplosporella Speg.)

Fig. 1. *Aplosporella leucocephala* sp. nov, a=habit;b = pycnostroma (100 μm), conidia (10 μm); c=culture on PDA broth medium;d=growth of *Aplosprella leucocephala* on Potato Dextrose Agar medium;e=chromatogram of amino acid; f= chromatogram of carbohydrate;g= chromatogram of organic acid

Fig. 2. *Aplosporella pithecolobiella* sp. nov, a=habit;b = pycnostroma (100 μm), conidia (10 μm); c=culture on PDA broth medium;d=growth of *Aplosporella pithecolobiella* on Potato Dextrose Agar medium;e=chromatogram of amino acid; f= chromatogram of carbohydrate;g= chromatogram of organic acid

Species	Stroma	Locule	Conidia	Reference
A.acacie Tilak &Rao	80-100x65- 100μm	_	15-19x8-11 μm	Tilak & Rao (1964)
A. subhyalinae Anahosur	1.7mm	140-180x160-210 μm	18-22x4-6 µm	Anahosur (1970)
A. beumontiana Ahamad	0.6mm	150-200x80-120 μm	13-20x10-11.5 μm	Pande (1995)
A. clerodendri Ahamad	500-800 µm in diam up to 500	130-350x80-130 µm	12-16x8-10 μm	Pande (1995)
	μm in heigh			
A.ipomoeae Ahamad	0.5-1.0 μm	172-344 μm	11.4-22.8x11.4-19.0 μm	Pande (1995)
A.prunicola Damm &Crous	400-800x200-350 μm	60-80x150-175 μm	19-22x10-12 μm	Damm & Crous (2007)
A.lycopersie Kaste	64-164x44 -108 μm	240-432x84-560 μm	19-24x12-20 µm	Kaste (2014)
A.leucocephala Sp.nov	275.4-382.0x480-740 μm	76-229.5 x76-306 μm	7.6-22.8x7.6-11.4 μm	Understudy
A.pithecolobiella Sp.nov	200-350x320-800 μm	46.0-64.0x46.0-120 μm	11.4-22.8x4.6-11.4 μm	Understudy

Table 1. Comparison of Aplosporella species

Table 2. Biochemical studies of Aplosporella Species (Amino acid)

Amino acid	A.leucocephala	A.pithecolobiella
Histidine	+	+
Tyrosine	_	_
Aspartic acid	+	+
Glutamic acid		+
Dl-Norleucine	+	+
L-Hydroxyproline	+	
L-Cystine Hcl		+
Arginine	_ +	
Tryptophan		+
Glycine	+	
L-Ornithine	+	-
L-Threonine		+
Alanine	+	+

Table 3. Biochemical studies of Aplosporella Species (Carbohydrate)

Carbohydrates	A.leucocephala	A.pithecolobiella
Arabinose	-	-
Raffinose	-	-
Fructose	-	-
Glucose	-	-
Sucrose	-	+
Rhamnose	+	+
Lactose	-	-
Xylose	-	-

Table 4. Biochemical studies of Aplosporella Species (Organic acid)

Organic acid	A.leucocephala	A.pithecolobiella
Lactic acid	_	_
Tartaric acid	+	—
Citric acid		+
Succinic acid	+	
Malic acid	_	_
+=Pres	sent	- =Absent

REFERENCES

- Agarwal, G. P. and Dhamija, S. K. 1978. Amino acid composition of the mycelium of three isolated of *Bartalinia robillardoides*, *Indian Phytopath.*, 31: 530-532.
- Airsworth, G. C., Sparrow, F. K. and Sussam, A. S.1973. The fungi An advanced Treatise Vol.IV, A taxonomic review with Keyo; Ascomycites and Fungi Imperfeti, Academic Press Newyork, p.621.
- Anahosur, K.H. 1969. Conidial state of *Bagnisiella acacia*. *Indian Phytopath*, 23(1): 95-99.
- Barrett, H.L. and Hunter, B.B. 1972. Illustrated genera of imperfecti fungi, Burgess Publishing Company, p.240

- Bilgrami, K.S. Jamaluddin & Rizwi M.A.1991. *Fungi of India* list and references, Today and Tomorrow Printer and Publishers, New Delhi., p.798
- Harborne, J. B. 1984. Phytochemical methods, A guide to modern techniques of plant analysis second edition published to USA by Chapman and Hill Ltd pp.288.
- Iyer, R. S. and Rao, A.A. 2001. Significance of amino acid profile in the chemotaxonomic studies of keratinophilic fungi, *Indian Phytopath.*, 25(1):121-123.
- Jamaluddin S., Goswami M.G., Ojha B.M. 2004. Fungi of India (1989-2001) Scientific Publishers, India. Jodhpur., p.326
- Joshi, G. T. and Patwardhan P. G.1972. Free amino acid in *Daldinia concentrica, Indian Phytopth.*, XXV(1), 142-143.

- Kachroo, J. V.1966. Three new species of *Haplosporella* from India., *Mycopath et Mycol. Appl.*, 28:49-53.
- Kaste P.S.2014. Two undescribed speciesof*Aplosporella* Speg, *Biolife.*, 2(1):415-416.
- Kheroda, L. Devi, G. N.K. Chhetry and Iboton Singh H.2004. Biochemical alternation in discoloured Rice grains caused by fungi, J. Mycol. Pl. Pathol., 34(2):600-601.
- Kumar A., Singh and Jalali, B. L.2011.Variability in growth and biochemical components of Sclerotum oryze population of rice and its relevance to virulence, *J. Mycol. Pl. Pathol.*, 41(1): 143-145.
- Pande Alka & Rao V.G. 1995. The genus *Aplosporella* Speg. (*Haplosporella* Speg.) Coelomycetes from India. Nova Hedwigia.60:79-117.
- Sangwan, M.S., Jalali, B.L. and Nene, Y.L. 1990. Biochemical Variability in Chickpea blight pathogen Ascohyta rabiei race. Indian Phytopath., 43:285.

- Shreemali, J.L. and Bilgrami, K.S.1974.Amino acid contents of the five species of *Spheropsis*. *Indian Phytopath.*, 37:400
- Tilak, S.T. and R.Rao. 1964. The genus *Haplosporella*. *Mycopath et.Mycol.Appl.*, 24:362-368.
- Tilak, S.T. and R.Rao.1964. The genus *Haplosporella*. *Mycopath et. Mycol.Appl.*, 24:362-368.
- Ulrike Damm, Paul H. Fourie and Pedro W. Crous, 2007. *Aplosporella prunicola*, a novel species of anamorphic Botryosphaeriaceae, *Fungal Diversity*, 2:735 43.
- Vijay Kumar C.S.K. and Rao, A.S.1976. Amino acid, Organic acid and Sugar present in mycelium of *Alternaria triticina* and *A. tenuis. Trans. Brit. Mycol. Soc.*, 69:498.