

International Journal of Current Research Vol. 8, Issue, 06, pp.33209-33216, June, 2016

RESEARCH ARTICLE

DESCRIPTION AND MOLECULAR PHYLOGENY OF AN EXOTIC MYXOZOAN, MYXOBOLUS ARCTICUS (PUGACHEV AND KHOKHLOV, 1979) IN KIDNEY OF CLARIAS BATRACHUS FROM RIVER GOMTI, LUCKNOW, INDIA

^{1,*}Rehana Abidi, ¹Naireen Fariya and ²Chauhan, U. K.

¹ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow 226002, U.P., India

²School of Environmental Sciences, A.P.S. University, Rewa, M.P., India

ARTICLE INFO

Article History:

Received 24th March, 2016 Received in revised form 23rd April, 2016 Accepted 09th May, 2016 Published online 30th June, 2016

Key words:

Myxozoan, Clarias batrachus, Myxobolus arcticus, Kidney, Gomti, Molecular Phylogeny.

ABSTRACT

The *Myxobolus arcticus* Pugachev and Khokhlov, 1979 (P.- Myxozoa; C.-Myxosporea; O.-Bivalvulida; F.-Myxobolidae) is a protozoan parasite residing in brain, nerves and spinal cord of the salmons (F.-Salmonidae). Its principal fish hosts are sockeye salmon - *Oncorhynchus nerka*, masu salmon - *O. masou* and Arctic char *Salvelinus alpinus* found in North Pacific coast of Far East Asia and North America. This is the first report revealing two new facts; first that *Myxobolus arcticus* was in the kidney (a new site of infection) and, second the host is a freshwater native catfish *Clarias batrachus* (O.- Siluriformes; F.- Clariidae), from river Gomti at Lucknow, Uttar Pradesh, India. The present article deals with morphological, morphometric and molecular description of this parasite *Myxobolus arcticus*. Further the morphometric parameters and small sub unit ribosomal gene (SSu rDNA) sequences of mature spores (trophozoites) were compared to demonstrate the morphological and genetic similarities between geographically distant isolates of *M. arcticus*. Sequence analysis of present *M. arcticus* (accession number KF662475) revealed that it has 98% sequence similarity with *M. arcticus* (accession number JN003830). Based on the maximum parsimony and maximum likelihood inferences, it is confirmed that present *M. arcticus* is conspecific to *M. arcticus* from Japan and Canada

Copyright©2016, Rehana Abidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Rehana Abidi, Naireen Fariya and Chauhan, U. K. 2016. "Description and molecular phylogeny of an exotic Myxozoan, Myxobolus arcticus (Pugachev and Khokhlov, 1979) in kidney of Clarias batrachus from river Gomti, Lucknow, India", International Journal of Current Research, 8, (06), 33209-33216.

INTRODUCTION

The freshwater catfish *Clarias batrachus* (Family-Claridae) is an important native food fish of India. For good production, health of fish should be excellent but *C. batrachus* is highly prone to parasitic infections particularly protozoans which are responsible for high mortality in eggs, fries & fingerlings. Among protozoans, the Myxozoans encompass more than 1,300 known species mainly as parasites of fish and of few amphibians and reptiles. Out of these more than 450 species belong to the genus *Myxobolus* (Lom & Dykova, 1992). The *Myxobolus arcticus* Pugachev and Khokhlov, 1979 is a freshwater myxozoan which infects central nerve tissues of salmonid fishes in the North Pacific coasts of Far East Asia

*Corresponding author: Rehana Abidi,

ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow 226002, U.P., India.

and North America. There is an interesting story related to the origin of the M. arcticus Pugachev and Khokhlov, 1979. Shulman (1988) in a report of myxosporeans of the USSR, found that some spores of M. neurobius isolated from the brain of Pacific salmon are pyriform, with a distinctly narrow anterior end, in contradiction to the original description by Schuberg and Schro"der (1905). Pugachev and Khokhlov (1979) erected the species M. arcticus for these spores and also provided a supplemental diagnosis for M. neurobius in the USSR, clearly separating the two species. Although differences between these species were clarified, it took years for this Russian-language manuscript to be recognized by English speaking scientists. As a result, there are several reports of M. arcticus described as "M. neurobius" with pyriform spores infecting the brain of Oncorhynchus spp. from the Pacific Northwest (Bailey & Margolis, 1987; Quinn et al., 1987). Presently records of these infections are considered to belong M. arcticus (Urawa and Nagasawa, 1988; Kent et al.,

1994; Awakura *et al.*, 1995; McDonald and Margolis, 1995). The principal host of *M. arcticus* is masu salmon *Oncorhynchus masou* in Japan and *O. nerka* in Canada and Alaska (Awakura *et al.*, 1995; McDonald & Margolis 1995, Moles & Jensen 2000). The *M. arcticus* is being used as a biological tag to identify the stock origins of salmon in open seas and has been associated with reduced swimming performance in host fish (Moles *et al.*, 1990; Margolis, 1998; Moles & Heifetz, 1998).

Although genus Myxobolus Butschli, 1882 has been widely studied in India and several species like Myxobolus bivacuolatus; M. clarii; M. clariae sp. nov; M. koumingensis; M. kwangtungensis; M. tripathi; M. saraswatii; M. utlouensis sp. nov.; M. shaochingensis; M. magurii and M. leqingensis have been reported from C. batrachus in past but there is no report of M. arcticus occurrence in India (Narasimhamurti & Kalavati, 1986; Abidi, 2002; Abidi et al., 2015(b), Chakravarty, 1943; Hemananda et al., 2009; Chen & Ma, 1998; Kalavati et al, 1981; Gupta & Saraswati, 1993; Eiras et al., 2005; Sarkar, 1993; Wu et al., 1998). Hogge and his coworkers established that morphologically similar species can be differentiated using molecular data (Hogge et al., 2004). The small subunit ribosomal gene (SSU rDNA) is commonly used for molecular systematics in the Myxosporea for elucidating relationships because it is highly variable among very closely related species (Kent et al., 2001; Ferguson et al., 2008). Therefore to confirm the identity of present Myxobolus species, sequence analysis of its SSU rDNA gene was done and resultant sequence (NCBI Accn. no. KF662475) was compared with the sequences of same species from distant hosts and other closely related species to ascertain its position and similarity to them through construction of molecular phylogenic tree using maximum parsimony and maximum likelihood techniques. The present report is the first record of Myxobolus arcticus Pugachev and Khokhlov, 1979 from India.

MATERIALS AND METHODS

Morphology and Morphometry

Collection of Desi magur, Clarias batrachus was done from river Gomti (latitude 26°52'24.27"N and 80°54'55.77"E) around Lucknow (Uttar Pradesh, India). Screening of total 105 (one hundred and five) apparently healthy fish was done for isolation of parasites. Squash preparations of all the internal organs and gills were made and examined through a Nikon E600 microscope with 100X objective (plus immersion oil) for the presence of myxosporans. It was observed that both kidneys are filled with numerous minute spores of Myxobolus sp. but cysts were not seen. Spores in fresh wet mount were treated with 8-10 % KOH solution for extrusion of polar filaments. For permanent preparations, air-dried, methanol fixed smears were stained with Geimsa. Drawings were made from stained material with the help of Camera Lucida. Morphometry of fresh spores (n=50) was done with the help of software NIS-E-Br. All measurements were taken in micrometers (µm). For statistical analysis "Statistical Mean" and "Standard Deviation (SD)" are calculated from the raw data using Microsoft Excel. Morphometric data is presented as mean± SD (range).

DNA isolation and PCR amplification

DNA was isolated from spores through phenol: chloroform method (Sambrook et al., 1989) and used as template DNA for PCR reactions. For amplification of DNA, specific primers (McerlF - CCCGTCGCTACTACCGAGT & McerlR -GATCCTTCCGCAGGTTCAC) were selected from the 18 SSU rDNA sequences through NCBI, designed with the help of software 'Primer3' and were synthesized by Sigma-Aldrich. The standard reaction volume was 50 µl containing 1x PCR buffer, 0.2 mM dNTPs, 1.5 mM MgCl₂, 2.0U taq polymerase, $0.25 \mu M$ of each primer and 100ng of the DNA template. PCR amplification was performed using Eppendorf Master Cycler ep Gradient S, Germany. PCR conditions were as follows: initial denaturation at 95°C for 2 minutes, followed by 30 cycles of denaturation at 94°C for 1 min.; annealing at 52°C for 30 seconds; extension at 72°C for 2 min. and final extension at 72°C for 1 min. to amplify the product. Amplicons were excised from the agarose gel electrophoresis.

DNA Sequencing and Analysis

For DNA sequencing, Sanger's dideoxy chain termination method was followed (Sanger *et al.*, 1977). The alignment of sequences was done with the help of Clustal W and Mega 5 (Tamura *et al.*, 2011). The other analogous sequences available in "GenBank" were searched by 'BLAST' for comparison and verification of the present sequence. Comparison of sequences was done on the basis of multiple hosts and sites of infection of *M. arcticus*.

Molecular Phylogeny

To determine the phylogenetic position of *M. arcticus* (from *C.* batrachus) in relation to other geographically distant conspecific parasites and closely related species; sequences of M. arcticus infecting masu salmon Oncorhynchus masou from Japan (accn. no. JN003830) and Sockeye salmon O. nerka from Canada (accn. no. JN003829), sequences of M. cerebralis random sample (accn. no. U96493) & M. cerebralis clone (accn. no. AY479924), along with two freshwater and two marine myxosporean out groups i.e. Thelohanellus wuhanensis (accn. no. JQ690370) & T. kitauei (accn. no. JQ690367) and Zschokkella nova (accn. no. DQ377690) & Z. parasiluri (accn. DQ377689) were downloaded from GenBank. Phylogenetic analysis was conducted using software MEGA5. The methods used for construction of phylogenetic tree are Maximum Parsimony and Maximum Likelihood with bootstrap value of 500.

RESULTS AND DISCUSSION

Prevalence

Out of 105 (one hundred & five) *C. batrachus*, only 4 fish had infection of *Myxobolus* sp. in kidneys. The parasite was identified as *Myxobolus arcticus* on the basis of morphological features and morphometry of the mature spores (Trophozoites). Thus prevalence of *M. articus* infection in *C. batrachus* is 3.80%.

Taxonomic Summary

Phylum - Myxozoa Class - Myxosporea Order - Bivalvulida Family - Myxobolidae Genus - *Myxobolus* Species – *arcticus*

Description

The spores are histozoic. Mature spores (Trophozoites) are pyriform, narrowing down towards anterior side with sharp tips, having two elongated polar capsules with about 5-8 no. of filament coils, connected with the suture towards the anterior end of the spore; sporoplasm with one round nucleus and one or more vacuoles (Fig.-1 and 2). The length of spores was 13.47 ± 0.62 (12 - 14.1); width was 8.60 ± 0.41 (7.8 - 9.8) and thickness was 6.40 ± 0.53 (5.30 - 6.99). The length and width of polar capsule was 7.68 ± 0.74 (6.43 to 8.94) and 2.97 ± 0.21 (2.36 - 3.33) respectively (Fig. - 3).

Fig. 1. Mature Spores of *Myxobolus arcticus*. SL- Sutural line. Insert showing enlarged Frontal and Sutural (Lateral) view of Spores

Sequence Analysis and Molecular Phylogeny

Further on finer comparison of present parasite *M. arcticus* with other *M. arcticus* species described by earlier workers (Urawa *et al.*, 2009, 2011; Nagasawa *et al.*, 1994), minute morphometric variations were observed in spore organelles shape and size. This inconsistency compelled us to do sequence analysis of SSu-rDNA gene of present *M. arcticus*. The resultant sequence was deposited in GenBank as *Myxobolus arcticus* (accn. no. KF662475). Comparison of this sequence with sequences of other geographically distant conspecific parasites and closely related species through BLAST displayed 98% similarity with *M. arcticus* infecting masu salmon *Oncorhynchus masou* from Japan (accn. no. JN003830) and Sockeye salmon *O. nerka* from Canada (accn. no. JN003829); while it showed 96% similarity with *M. cerebralis* (accn. no. AY479924) clone.

Fig. 2. Camera Lucida drawings of the mature spore of *M. arcticus* showing (A) Frontal and (B) Sutural view

Further present species *M. arcticus* is placed in a closely related histozoic clade of *M. arcticus* species isolated from different distant hosts and sites of infection and interrelationships are ascertained through molecular phylogeny

Fig.3. Histogram showing Length and Width of M. arcticus Spores

Fig. 4. Maximum Parsimony tree of the small subunit ribosomal DNA sequence of *M. arcticus* and other selected myxozoan species. Bootstrap confidence values on the nodes of branches. GenBank Accession numbers given before the species name

5

Fig. 5. Maximum Likelihood tree of the SSU rDNA sequence of *M. arcticus* and other selected myxozoan species. Bootstrap confidence levels on the nodes of branches. GenBank Accession numbers before the species name

Species	Host& Place	Site of Infection				Polar Capsule		Reference
			Length (µm)	Width (µm)	Thickness	Length(µm)	Width(µm)	
	or	Terra .	12.12.07	0.00	(µm)			
Myxobolus	Clarias batrachus	Kidney	13.47± 0.6	8.60 ± 0.4	6.40 ± 0.5	6.70 ± 0.5	2.97 ± 0.2	Present paper
arcticus	River Gomti,India		(12 -14.1)	(7.8 - 9.8)	(5.3 - 6.99)	(5.79 - 7.7)	(2.36- 3.33)	
M. arcticus	Oncorhynchus	Medulla	14.2	8.6	2	8.1	3.4	Urawa et.al
	nerka , Canada	oblongata	(12.9 - 15.6)	(7.8 - 9.8)		(7.3 – 9.2)	(2.5 - 4.0)	2011
M. arcticus	O. nerka	Medulla	13.8 ± 0.6	8.6 ± 0.6	6.6 ± 0.4	8.1 ± 0.6	3.2 ± 0.2	Nagasawa
	Ozernaya River, Kamchatka, Russia	oblongata / spinal cord	(12.5 – 15.2)	(7.6 – 9.8)	(5.5 - 7.4)	(7.0 – 9.2)	(2.8 - 3.9)	et.al 1994
M. arcticus	Salvelinus malma	Medulla	14.4 ±0.6	10.0 ± 0.4	7.4 ± 0.3	8.6 ± 0.6	3.7 ± 0.3	Nagasawa
	Ozemaya River,	oblongata /	(13.3 - 15.6)	(9.4 - 10.9)	(6.8 - 7.8)	(7.0 - 9.4)	(3.1 - 4.5)	et.al 1994
	Kamchatka, Russia	spinal cord	ALBERT ESCORE	Chan House	OFFICE DISSERVE	175,000 (0000M)	Course Charles	ATTRACTOR SERVICE
M. arcticus	Oncorhynchus	Medulla	11.1 ± 0.6	8.9 ± 0.5	6.4 ± 0.5	6.1 ± 0.4	3.0 ± 0.1	Urawa et.al
	masou masou	oblongata /	(9.9-11.9)	(7.99.9)	(5.1 - 7.1)	(5.3 - 6.9)	(3.0 - 3.5)	2009
	Mena River,Japan	spinal cord						
M. arcticus	O. masou masou	Medulla	14.1 ± 0.5	8.7 ± 0.4	6.4 ± 0.3	8.4 ± 0.3	3.1 ± 0.2	Urawa et.al
	Chitose River	oblongata /	(13.3 - 15.6)	(7.8 - 9.4)	(5.6 - 7.0)	(7.5 - 9.0)	(2.6 - 3.5)	2009
	Japan,	spinal cord	Statement Passessan	Control of the Contro	CISSORY DANGER	ASSESSED OF THE PROPERTY.	COCCES EMOUNT	41
M. arcticus	O. nerka	Medulla	13.2 ± 0.6	8.4 ± 0.5	6.6 ± 0.3	8.3 ± 0.5	3.1 ± 0.2	Urawa et.al
	Chitose River,	oblongata /	(11.9 - 14.4)	(7.8 - 9.4)	(5.5 - 7.0)	(7.0 - 9.5)	(2.3 - 3.7)	2009
	Japan	spinal cord	20 07	80 00	25 50	20 20	20 20	
M. arcticus	O. keta	Medulla	14.0 ± 0.4	9.3 ± 0.3	6.3 ± 0.2	7.3 ± 0.3	3.1 ± 0.2	Urawa et.al
	Chitose River,	oblongata /	(13.3 - 14.8)	(8.6 - 10.1)	(5.9 - 7.0)	(6.6 - 7.8)	(2.7 - 3.9)	2009
	Japan	spinal cord	200-450-000000	TO THE PERSON OF	Control of the Contro	10	And the second s	TO THE REAL PROPERTY.
M. arcticus	Salvelinus alpines	Medulla	14.4 ± 0.6	10.6 ± 0.6	7.8 ± 0.2	7.8 ± 0.5	3.8 ± 0.3	Urawa et.al
	Laksadal River	oblongata /	(13.1 - 16.0)	(9.8 - 11.1)	(7.4 - 8.2)	(7.2 - 8.6)	(3.1 - 4.3)	2009
	System, Norway	spinal cord	20 00	W 020	20	20 00	D 0	
M. arcticus	S. leucomaenis	Medulla	13.5 ± 0.8	9.8 ± 0.5	7.7 ± 0.4	7.2 ± 0.6	3.7 ± 0.3	Urawa et.al
	Lake Shikotsu,	oblongata /	(11.9 - 15.0)	(8.4 - 10.9)	(6.9 - 8.9)	(5.8 - 8.5)	(3.0 - 4.2)	2009
	Japan	spinal cord	Part Service Control	()	7.		VALUE - WASSAGE	Li-
M. saraswatii	Clarias batrachus	Kidneys	10-20	7.8-11	•	3.5-9.5	2-3.5	Kaur &
				2,400,12-0				Singh, 2012
M. shaoch -	C. batrachus,	kidneys,intes	14.6	8.5	6.4	6.4	2.7	Eiras &
ingensis	C. argus	tine,stomach	(12-15.6)	(7.2-9.0)	(6.0-6.7)	(6.0-6.7)	(2.6-3.0)	Molnar 2005
M. koumin -		gills, kidney	15.8	9.9	6.2 - 6.5	7.1	3.5	Eiras &
gensis	C. batrachus	liver, spleen	(15–16.2)	(8.4-10.8)	No.	(6-7.8)	(3-3.6)	Molnar 2005
M. clariae	C. batrachus	gonads	10.53	7.03		3.67	2.38	Hemananda
M. ciariae	C. patracnus	cornea	(10.2–11.5)	(6.8-7.7)	San v enouge	(3.4-4.3)	(1.7-2.6)	et.al 2009
M. clarii	C. batrachus	liver, testes	11.3-12.4	10.3	6.1	6.1	3.0	Eiras &
M. Claru	C. bairacnus	liver, testes	11.3-12.4	10.5	0.1	0.1	3.0	Molnar 2005
M. kwangtu -	C. batrachus	gall-bladder	17.0	11.9 (10.8-	8.1 (7.8-	8.4	3.8	Eiras &
ngensis		mente de la constitución	(15.8-18.6)	13)	8.6)	(7.8-9.6)	(3.6-3.8)	Molnar 2005
M. legin-	C. batrachus	gills,	13.6	9.4	5.5 (5.2-	6.2	3.3	Eiras &
gensis		intestine	(12.9-14.2)	(9-9.6)	5.8)	(5.8-6.4)	(3.0-3.6)	Molnar 2005
M. bivacuo - latus	C. batrachus	Intestinal wall	8-11 (9.0)	9	4.2	3-4.5 (4.2)	2.6-4 (3.0)	Kaur & Singh,2012
M. magurii	Clarias magur	Accessory	14.13	7.75		7.53	2.34	Kaur &
guru	- Au Augur	Respiratory	(13–15)	(6.5–8)		(7–8)	(2-3)	Singh, 2012
M. tripathii	Clarias sp.	Wall of gut	10.1	13.0		5.5	2.5	Kaur & Singh
panini	Samuel Sp.	& visceral	(9.8–10.2)	(12.0-13.5)	Section to the section of the	(5-6)		2012

Fig. 6. Table showing comparison of Myxobolus arcticus along with other morphologically similar species

based on maximum parsimony and maximum likelihood analyses of present species (accn. no. KF662475) along with sequences of *M. arcticus* infecting *Oncorhynchus masou* (accn. no. JN003830) and *O. nerka* (accn. no. JN003829); *M. cerebralis* random sample (accn. no. U96493) and *M. cerebralis* clone (accn. no. AY479924); freshwater myxosporean out group *Thelohanellus wuhanensis* (accn. no. JQ690370) and *T. kitauei* (accn. no. JQ690367); and marine out group *Zschokkella nova* (accn. no. DQ377690) and

Z. parasiluri (accn. no. DQ377689). The maximum parsimony tree shows bootstrap confidence level of present *M. arcticus* as 100 in relation to *M. arcticus* from both hosts- masu salmon of Japan (accn. no. JN003830) and sockeye salmon of Canada (accn. no. JN003829) confirming the closeness of these three geographically distant populations (Fig. 4). The maximum likelihood tree yields same results with bootstrap confidence level of 97 to other *M. arcticus* species and place them as closely related clade (Fig. 5).

Thus it can be inferred that M. arcticus Pugachev and Khokhlov, 1979 isolated from kidney of C. batrachus is same species as the M. arcticus found in salmons of Far East Asia and North America and all these parasites are conspecific. Presence of the exotic myxozoan, M. arcticus Pugachev and Khokhlov1979, a brain specific parasite of salmonids, in kidney of native fish C. batrachus is the first record of M. arcticus from India. Recently in the year 2012, Kaur and Singh prepared a synopsis of 131 nominal species of Myxobolus Bu"tschli, 1882 reported from India including six exotic species but *M. arcticus* is not mentioned in this synopsis and thus it supports our results. The present M. arcticus isolated from kidney of C. batrachus is morphologically very much similar to all the conspecific M. arcticus populations isolated from salmonids (Urawa et al., 2009; Nagasawa et al., 1994) except M. arcticus from masu salmon, O. masou masou sampled from river Mena, Japan; which is smaller than present species. However in the same species O. masou masou and other salmonids collected from another river 'Chitose' of Japan, the spores are quite bigger; resemble to each other and; to conspecific M. arcticus from salmonids of Norway, Russia and Eastern Siberia (Fig.6-Table). The minute morphometric differences in spore shape and size of present parasite M. arcticus in comparison to various M. arcticus species isolated by earlier workers (Urawa et al., 2011; Kaur & Singh, 2012) in distant geographical locations can be explained by interpretation of Moser (1977), who studied more than 700 species of 30 myxosporean genera and found that spore morphology is more constant among isolates of the same myxosporean species of different unrelated geographical origins whereas species from different tissues and different hosts displayed greater diversity of spore morphology. He concluded that spore size and shape is determined by selective forces imposed by host behavior and the particular environment within the respective host tissues. Hervio and his colleagues in the year 1997 analyzed 18S rDNA sequences of 4 Kudoa species and revealed that parasites are grouped according to geographical locations rather than spore morphology. Ferguson and his coworkers (2008) suggested that Myxosporeans can be distinguished from each other by the site of infection, SSU rDNA sequence and spore length. Andree and his coworkers (1999) reported that ten Myxobolus sp. groups based on 18S rRNA sequences data are more similar to species grouped on the basis of tissue tropism rather than spore morphology or on the basis of geographical origin but the degree of tissue tropism or degree of tissue specificity of host with which it interacts to a parasite is variable in Myxosporeans.

The *M. arcticus* has morphological and genetic diversity even among salmonids. Urawa and his coworkers (2009) revealed considerable genetic diversity in *M. arcticus* isolated from various host species and SSu rDNA analysis indicated 3.2 – 4.7 % sequence variation between Pacific salmon (genus *Oncorhynchus*) and Chars (genus *Salvelinus*). Intraspecific SSu rDNA sequence variations have been observed in geographically distant (allopatric) representatives of both *Kudoa amamiensis* and *K. thyrsites* (Whipps *et al.*, 2003). Kent and Poppe (1998) reported that distant geographic isolates (North America and South Africa) of *K. thrysites* showed 99.4% homology in the 18S rDNA sequences. However

Intraspecific SSU rDNA sequence deviations have been reported in sympatric myxozoans also from different host species, like Myxidium lieberkuehni and M. pseudodispar (Schlegel et al., 1996; Molnar et al., 2002). Andree and his coworkers (1999) reported 0.8% SSU rDNA sequence variation between geographic isolates of M. cerebralis. Thus, the molecular data indicated that M. arcticus isolates from the C. batrachus are slightly distinct biological individuals from the allopatric *M arcticus* of salmons of Japan and Canada and high sequence similarity of present M. arcticus to other M. arcticus from masu salmon of Japan and Sockeye salmon O. nerka of Canada does not necessarily equate to conspecificity, nor do the minor sequence differences mean they are separate species. Urawa and his coworkers (2011) also observed that differences in host specificity are not compelling evidence for distinct species or strains of the parasites. Presently there are no uniform criteria, whether morphological or molecular, for deciding boundaries between myxozoan species. The two distant allopatric populations may indicate dispersal or diversity but not speciation. Likewise genetic differences in a few specimens from a conserved gene such as the SSU rDNA are suggestive of an ecological separation, but not necessarily speciation. Different sequences may represent multiple alleles of the same gene.

Conclusion

Present record raises many questions like do all the allopatric populations of *M. arcticus* have same origin? Is it originated in marine or freshwater habitat as specific hosts are anadromous salmons? Do they really belong to one species? How this exotic species crossed the boundaries and entered in a totally different niche? How it parasitized kidney instead of brain? To answer these questions and to determine the patterns or routes of spread of myxozoan parasites, epidemiological study is required which should be based on highly variable nuclear and mitochondrial DNA regions like microsatellites sequences coupled with data regarding ultra-structure, life cycle, tissue tropism or host parasite interactions, geographical distribution of host species and alternate host. This will provide insight into evolution, life history and dispersal of these parasites. The trans-boundary movement of salmonids can also be a reason for presence of *M. arcticus* in India. Further studies should be undertaken to identify the parasite genes which control important processes as the recognition, attachment, multiplication and destruction of host tissues by the parasite. This will lead to a better understanding of the molecular mechanisms which determine the critical host parasite interaction.

Acknowledgement

The authors are extremely grateful to The Director, National Bureau of Fish Genetic Resources, Lucknow, India for providing all the facilities and support for research.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

- Abidi Rehana 2002. Fish pathogens and diseases in India: A Bibliography (1898-2001) Published by NBFGR, Lucknow, India.: 500 p.
- Abidi, R., Fariya, N., Irshan, M. & Chauhan, U.K. (2015 {b}). A new species of myxozoan parasite, *Myxobolus lucknowii* sp. nov. in kidney of *Clarias batrachus* Linn. from river Gomti at Lucknow. *Trends in Parasitology Research*, 4(1): 2319-3158.
- Andree KB, Szekely C, Molnar K, Gresoviac SJ, Hedrick RP 1999. Relationships among members of the genus Myxobolus (Myxozoa: Bilvalvidae) based on small subunit ribosomal DNA sequences. *J. Parasitol.*, 85(1): 68-74.
- Awakura T, Nagasawa K, Urawa S 1995. Occurrence of *Myxobolus arcticus* and *M. neurobius* (Myxozoa: Myxosporea) in masu salmon *Oncorhynchus masou* from northern Japan. *Sci. Rep. Hokkaido Salmon Hatchery*, 49: 35-40.
- Bailey RE, Margolis L 1987. Comparison of parasite fauna of juvenile sockeye salmon (*Oncorhynchus nerka*) from southern British Columbian and Washington State lakes. *Can. J. Zool.*, 65: 420–431.
- Chakravarty M 1943. Studies on myxosporidia from the common food fishes of Bengal. Proc. Indian Acad. Sci. 18: 21–35.
- Chen QL, Ma CL 1998. Myxozoa, Myxosporea. Fauna Sinica. Beijing: Sci. Press, pp. 292-528
- Eiras JC, Molnar K, Lu YS 2005. Synopsis of the species of *Myxobolus* Butschli, 1882 (Myxozoa: Myxosporea: Myxobolidae). *Syst. Parasitol.*, 61:1–46.
- Ferguson JA, Stephen DA, Christopher MW, Kent ML 2008. Molecular and morphological analysis of *Myxobolus* spp. of salmonid fishes with the description of a new *Myxobolus* species. *J. Parasitol.*, 94 (6): 1322–1334.
- Gupta N, Saraswati H 1993. Haemoprotozoosis in *Clarias batrachus* (Linn) from freshwater ponds of Rohilkhand region, India. *Himalayan J. Environ. Zool.*, 7: 47–52.
- Hemananda T, Mohilal N, Bandyopadhyay PK, Mitra AK 2009. Two new Myxosporidia (Myxozoa:Myxosporea) of the genus *Myxobolus* Butschli, 1882 from cornea of *Clarias batrachus* (Linnaeus, 1758) caught from a fish farm in India. *North-Western J. Zool.*, 5 (1):165-169.
- Hervio DML, Kent ML, Khattra J, Sakanari J, Yokoyama H, Devlin RH 1997. Taxonomy of Kudoa species (Myxosporea), using a small-subunit ribosomal DNA sequence. *Can. J. Zool.*, 75: 2112-2119.
- Hogge C, Campbell M, Johnson K 2004. Discriminating between a neurotropic *Myxobolus* sp. and *M. cerebralis*, the causative agent of salmonid whirling disease. *J. Aquat. Anim. Hlth.*, 16: 137–144.
- Kalavati C, Sandeep BV, Narasimhamurti CC 1981. Two new species of myxosporidians, *Myxosoma channai* n. sp. and *Myxobolus tripathii* n. sp., from freshwater fishes of Andhra Pradesh. *Proc. Indian Acad. Sci.*, 90: 61–78.
- Kaur H, Singh R 2012. A synopsis of the species of *Myxobolus* Bu"tschli, 1882 (Myxozoa: Bivalvulida) parasitising Indian fishes and a revised dichotomous key to myxosporean genera. *Syst. Parasitol.*, 81:17–37.

- Kent ML, Andree KB, Bartholomew JL, El-Matbouli M and 12 others (2001) Recent advances in our understanding of the Myxozoa. *J. Eukaryot. Microbiol.*, 48:395–413.
- Kent ML, Margolis L, Whitaker DJ, Hoskins GE, McDonald TE 1994. Review of Myxosporea of importance to salmonids fisheries and aquaculture in British Columbia. *Folia Parasitol.*, 41: 27-37.
- Kent ML, Poppe TT 1998. Diseases of Seawater Netpen-reared Salmonid Fishes. Fish. Oceans, Pacific Biolog. Stn, Nanaimo. BC.
- Lom J and Dykova I 1992. Protozoan parasites of fishes. Elsevier Science, New York.
- Margolis L 1998. Are naturally-occurring parasite 'tags' stable? An appraisal from four case histories involving Pacific salmonids. North Pac Anadromous Fish Comm. Bull. 1: 205 212.
- McDonald TE, Margolis L 1995. Synopsis of the parasites of fishes of Canada: Supplement (1978–1993). Can. Special Publ. Fish. *Aquat. Sci.*, 122: 256.
- Moles A, Heifetz J 1998. Effects of the brain parasite *Myxobolus arcticus* on sockeye salmon. *J. Fish Biol.*, 52: 146–15.
- Moles A, Jensen K. 2000. Prevalence of the sockeye salmon brain parasite *Myxobolus arcticus* in selected Alaska streams. *Alska Fish Res. Bull.*, 6: 85-93.
- Moles A, Rounds P, Kondzela C 1990. Use of the brain parasite *Myxobolus neurobius* in separating mixed stocks of sockeye salmon. *Am. Fish Soc. Symp.*, 7: 224 231.
- Molnár K, Eszterbauer E, Székely C, Dán Á, Harrach B 2002. Morphological and molecular biological studies on intramuscular *Myxobolus* spp. of cyprinid fish. *J. Fish Dis.*, 25: 643–652.
- Moser, M. 1977. Myxosporida (Protozoa): The determination and maintenance of spore size and shape. *Int. J. Parasitol.*, 7: 389-391.
- Nagasawa K, Urawa S, Dubinin VA 1994. A parasitological survey of sockeye salmon (Oncorhynchus nerka) and Dolly Varden (Salvelinus malma) from the Ozernaya River sytem. Sci. Rep. Hokkaido Salmon Hatchery 48: 17-21.
- Narasimhamurti CC, Kalavati C 1986. A new myxosporidian *Myxobolus bivacuolatus* n. sp. parasitic in the intestinal wall of the fresh water fish *Clarius batrachus*. *Archiv fu'r Protistenkunde.*, 131:153–157.
- Pugachev ON, Khokhlov PP 1979. Myxosporidia of the genus *Myxobolus*-Parasites of the brain and spinal column of salmonids fishes. In: Systematics and ecology of fish of the continental watersheds of Far East. USSR Acad. Sci. Press, Vladivostok, pp 137–139.
- Quinn TP, Wood CC, Margolis L, Riddell BE, Hyatt KD 1987. Homing in wild sockeye salmon (*Oncorhynchus nerka*) populations as inferred from differences in parasite prevalence and allozyme allele frequencies. *Can. J. Fish Aquat. Sci.*, 44: 1963-1971.
- Sambrook J, Fritsch EF, Maniatas T 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Lab. Press, New York.
- Sanger F, Nicklen S, Coulson AR 1977. DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci.*, USA 74(12): 5463–5467.

- Sarkar NK 1993. On two new species of Myxobolus Bu¨tschli, 1882 (Myxozoa: Myxosporea) from some freshwater fish of West Bengal, India. Proc. Zool. Soc. Calcutta 46: 61–66.
- Schlegel M, Lom J, Stechmann A, Bernhard D, Leipe D, Dyková I, Sogin ML 1996. Phylogenetic analysis of complete small subunit ribosomal RNA coding region of *Myxidium lieberkuehni*: evidence that Myxozoa are Metazoa and related to the Bilateria. Arch. Protistenkd. 147:1–9.
- Schuberg A, Schroder O 1905. Myxosporidien aus dem Nervensytem und der Haut der Bachforelle. Arch. Protistenkd. 6: 47-60.
- Shulman SS 1988. Myxosporidia of the U.S.S.R. Nauka Publ, Moscow; English Translation: 1988, Amerind, New Delhi, India
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28(10): 2731–2739.
- Urawa S, Freeman MA, Johnson SC, Jones SRM, Yokoyama H. 2011. Geographical variation in spore morphology, gene sequences, and host specificity of *Myxobolus arcticus* (Myxozoa) infecting salmonid nerve tissues. *Dis. Aquat. Org.*, 96: 229–237.

- Urawa S, Nagasawa K 1988. Prevalences of two species of *Myxobolus* (Protozoa: Myxozoa) in Chinook salmon, *Oncorhynchus tshawytscha*, collected from the north Pacific Ocean and the northwest coast of North America in 1987, with special reference to the stock identification of ocean-caught Chinook salmon by the parasites. Doc. Subm. 1988. Annu. Meet. Int. North Pacific Fish. Comm. Tokyo.
- Urawa S, Iida Y, Freeman MA, Yanagida T, Karlsbakk E, Yokoyama H 2009. Morphological and molecular comparisons of *Myxobolus* spp. in the nerve tissues of salmonid fishes with the description of *Myxobolus murakamii* n. sp., the causative agent of myxosporean sleeping disease. *Fish Pathology*, 44 (2): 72-80.
- Whipps CM, Adlard RD, Bryant MS, Lester RJG, Findlay V, Kent ML 2003. First report of three *Kudoa* species from eastern Australia: *Kudoa thyrsites* from Mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa minithyrsites n. sp. from Sweeper (Pempheris ypsilychnus). J. Eukaryot. Microbiol., 50: 215–219.
- Wu B H, Wang SX, Jiang NC. 1998. A new species *Tetrauronema macropodus* sp. nov. (gen. et fam. nov.) from freshwater fishes of China (In Chinese). *Acta Zoo. Sin.*, 13: 315–316.
