

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 08, pp.35963-35972, August, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

# **RESEARCH ARTICLE**

# COMPUTATIONAL THERMAL DESIGN OF FORCED DRAFT COUNTER TO CROSS FLOW AIR COOLED HEAT EXCHANGER AT NORMAL AMBIENT TEMPERATURE I.E. AT 38°C

### \*,1Parag Mishra and <sup>2</sup>Dr Manoj Arya

<sup>1</sup>Department of Mechanical Engineering, PhD Scholar, AISECT University Bhopal, MP India <sup>2</sup>Department of Mechanical Engineering, MANIT Bhopal, MP, India

#### **ARTICLE INFO**

#### ABSTRACT

Article History: Received 10<sup>th</sup> May, 2016 Received in revised form 21<sup>st</sup> June, 2016 Accepted 16<sup>th</sup> July, 2016 Published online 20<sup>th</sup> August, 2016

Key words:

Thermal Design, Counter to cross flow heat exchanger, Thermal design problems, Uncertainties in design. Normal ambient temperature, Permissible/minimum tube Skin temperature. Heat exchangers are equipment that transfers heat from one medium to another. An air cooled heat exchanger, or ACHE, is simply a pressure vessel which cools a circulating fluid within finned tubes by forcing ambient air over the exterior of the tubes. In cross flow exchangers, the hot and cold fluids move perpendicular to each other. Some actual heat exchangers are a mixture of cross flow and counter flow (Known as Counter to Cross Flow Heat Exchangers) due to design features (Parag Mishra and Dr Manoj Arya, 2016). The proper design, operation and maintenance of heat exchangers will make the process energy efficient and minimize energy losses. Heat exchanger performance can deteriorate with time, off design operations and other interferences such as fouling, scaling etc. It is necessary to assess periodically the heat exchanger performance in order to maintain them at a high efficiency level. This section comprises certain proven techniques of monitoring the performance of heat exchangers, coolers and condensers from observed operating data of the equipment. In this we are doing the thermal design of forced draft counters to cross flow Air Cooled heat exchanger at normal ambient temperature i.e at 38 °C. The most important parameter, while taking into consideration of designing Air Cooled Heat Exchanger is permissible /minimum tube skin temperature. A major problem constantly faced by heat exchanger designers is to predict accurately the performance of a given heat exchanger or a system of heat exchangers for a given set of service conditions. The problem is complicated by the fact that uncertainties exist in most of the design parameters and in the design procedures themselves. The design parameters that are used in the basic thermal design calculations of a heat exchanger include process parameters, heat-transfer coefficients, tube dimensions (e.g., tube diameter, wall thickness), thermal conductivity of the tube material, and thermo physical properties of the fluids. Nominal or mean values of these parameters are used in the design calculations. However, uncertainties in these parameters prevent us from predicting the exact performance of the unit. The effect of the uncertainties is mostly in the performance degradation in service. Hence, there is an imperative need to consider all the uncertainties and to critically evaluate them and correctly predict the thermal performance of a heat exchanger. This is particularly true for critical applications. In thermal design of heat exchangers there are presently many stages in which assumptions in mathematical solution of the design problem are being made. Accumulation of these assumptions (e.g. use of mean values) may introduce variations in design as large as the uncertainties introduced in heat-transfer and flow friction correlations. The designer needs to understand where these inaccuracies may arise, and strive to eliminate as many sources of error as possible by choosing design configurations that avoid such problems at source. Heat Exchanger Thermal Design Problem referred to as the rating and sizing problems (Parag Mishra and Dr Manoj Arya, 2016)

*Copyright©2016, Parag Mishra and Dr Manoj Arya.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

**Citation: Parag Mishra and Dr Manoj Arya. 2016.** "Computational thermal design of forced draft counter to cross flow air cooled heat exchanger at normal ambient temperature i.e. at 38°C", *International Journal of Current Research*, 8, (08), 35963-35972.

# **INTRODUCTION**

Heat exchangers are equipment that transfers heat from one medium to another. An air cooled heat exchanger, or ACHE, is simply a pressure vessel which cools a circulating fluid within finned tubes by forcing ambient air over the exterior of the tubes (CFD, 2015).

#### \*Corresponding author: Parag Mishra

Department of Mechanical Engineering, PhD Scholar, AISECT University Bhopal, MP India.

A heat exchanger is a heat-transfer devise that is used for transfer of internal thermal energy between two or more fluids available at different temperatures.

In most heat exchangers, heat transfer between fluids takes place through a separating wall or into and out of a wall in a transient manner. In many heat exchangers, the fluids are separated by a heat transfer surface, and ideally they do not mix or leak.

### Types of draft in air cooled heat exchangers

There are many similar configurations by different manufacturers; however most of these are a derivative of one of these types. The most common type of air cooler is the horizontal coil with horizontal fan and vertical air flow. This type is typically driven by an electric motor drive attached to the fan through v-belts to allow for speed reduction between the motor and the fan. The normal application for these models are in plants or refineries where electric power is available, and where the cooler is installed away from other equipment to allow adequate air flow around the air cooler. This model is built in both induced draft and forced draft configurations (Parag Mishra, 2015).

### **Forced Draft ACHE**

The most economical and most common style of air cooler is the forced draft ACHE, uses axial fans to force air across the fin tube bundle. The fans are positioned below the bundle thus not exposing the mechanical sections to the hot exhaust airflow. The forced draft air cooler also simplifies future plant expansion by providing direct access to bundle for replacement. Structural disassembly is not required. Forced Draft – fans are positioned below the tube bundle and force air across the fin tubes (Parag Mishra, 2015). A subset of the forced draft unit is called a "Winterized" unit. Here, a forced draft unit is outfitted with one or more methods to control the process fluid temperature leaving the ACHE. This type of unit is typically found in colder climates but is also used in hotter climates for process fluids with high viscosities and/or high pour points (Parag Mishra, 2015).

#### **Induced Draft ACHE**

The second most economical and most common style air cooler is the induced draft ACHE. This design uses axial fans to pull air across the fin tube bundle. The fans are positioned above the bundle thus offering greater control of the process fluid and bundle protection due to the additional structure. Lower noise levels at grade are another benefit. The induced draft air cooler does require some structural disassembly if bundle replacement is required. Induced Draft – fans are positioned above the bundle and pull across the fin tubes. Induced draft coolers offer improved air distribution and protection of the tube bundle from the elements (Parag Mishra, 2015).

# Problems with Heat Exchangers in Low-Temperature Environments

Heat Exchanger is designed on the basis of hot fluid temperature, cold fluid temperature & ambient temperature, but in practical sense, the ambient temperature changes throughout the year. In that case, the fluid in heat exchanger freezes. In extremely cold environments, overcooling of the process fluid may cause freezing. This may lead to tube burst, and hence freeze protection is required to prevent plugging or damage to the tubes. For this, we can use steam coil in Heat Exchanger for heating the working fluid (Parag Mishra, 2016).

# The process parameters/boundary conditions for thermal design of Air Cooled heat Exchanger are

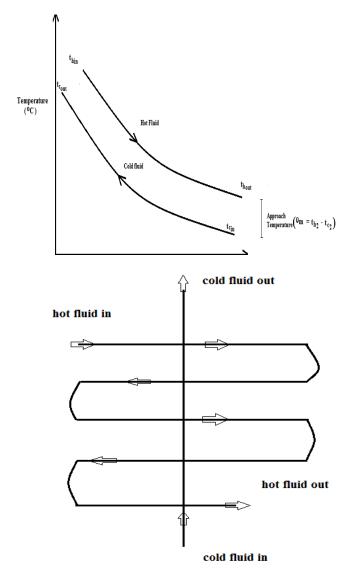
- Flow rate of hot & cold fluid
- Inlet & outlet temperature of hot & cold fluid
- Inlet temperature of cold fluid
- Allowable pressure drop

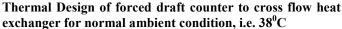
#### Dimensions of Air Cooled Heat Exchanger

Dimension of Air Cooled Heat Exchanger is based on plot area or land area. Important dimensions of Air Cooled Heat Exchanger includes-

- Total Plot area
- Bays in parallel per unit
- Bundles parallel per bay
- Bundle width
- Length of tube
- Number of rows
- Number of fan/bay
- Fan Diameter

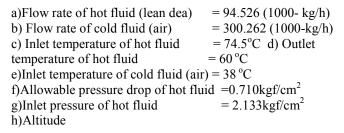
#### Computational Software for Using Thermal Design of Air Cooled Heat Exchanger

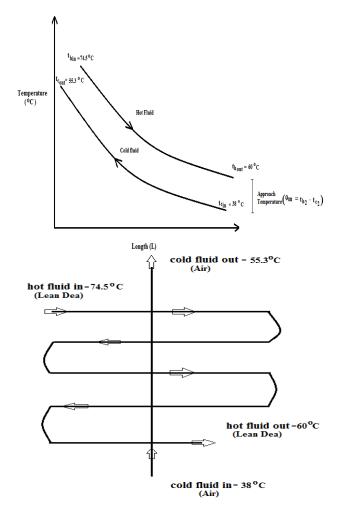

Reflecting the growing trend of using computers for design and teaching, recent heat transfer texts incorporate computer software for the design and optimization of heat exchangers. These software are written to reinforce fundamental concepts and ideas and allow design calculations for generic configurations with no reference to design codes and standards used in the heat exchanger industry. For actual engineering applications, most heat exchangers are designed using commercially available software such as those developed by co-operative research organizations such as Heat Transfer and Fluid Flow Service (HTFS) and Heat Transfer Research Inc. (HTRI) and by computer service companies such as B-JAC International. These programs offer design and cost analysis for all primary heat exchanger types and incorporate multiple design codes and standards from the American Society of Mechanical Engineers (ASME), Tubular Exchangers Manufacturers Association (TEMA) and the International Standards Organization (ISO). These are user-friendly computer software developed for the thermal and hydraulic design of heat exchangers. (LEONG and TOH, 1998)


**Approach Temperatures** The approach temperatures are the difference between the Outlet Temperature of one stream and the Inlet Temperature of the other stream. Although each application will have two approach temperatures, typically it is obvious which one is important from a design standpoint. (Parag Mishra and Dr manoj Arya, 2016)

### Objectives

• The main objective of this master thesis is to give the idea for thermal design of Forced Draft Counter to Cross Flow Air Cooled Heat Exchanger at normal ambient temperature, as there are lots of problems associated, while designing an Air Cooled Heat Exchanger


- In this research paper we analyze the effect of ambient temperature on Forced Draft Counter to Cross flow Air Cooled Heat Exchanger. Here, we have taken the temperature of surrounding air, as 38°C. Here, we are studying the performance & design analysis of Air Cooled heat exchanger at normal ambient temperature.
- To give the thermal design & procedure of Air cooled heat exchanger counter to cross flow at normal ambient temperature
- To discuss the various challenges while designing the Counter to Cross Flow Heat Exchanger.






In this we have done the thermal design & performance analysis of forced draft counter to cross flow cooled air heat exchanger at normal ambient conditions, so we have taken 38<sup>o</sup>C temperature for designing & performance analysis of Air Cooled Heat Exchanger. The most important parameter, while taking into consideration of designing Air Cooled Heat Exchanger is permissible /minimum tube skin temperature. In this forced draft counter to cross flow air cooled heat exchanger, the process fluid is lean dea. The pour point of any fluid can be defined as that point, when fluid ceases to flow i.e. fluid start freeze on this temperature In this case, the hot fluid lean dea enters in the Air Cooled Heat Exchanger &the hot fluid is cooled by passing the ambient air with the help of fans, which directs the air in tube bundles & fluid cools down.

# For normal atmospheric conditions, i.e. ambient temperature is 38°C, the process parameters are





#### Nomenclature

Hot fluid (lean dea) enters in Air Cooled Heat Exchanger  $=t_{hin} =74.5^{\circ}C$ 

Hot fluid (lean dea) leaves the Air Cooled Heat Exchanger =  $t_{hout} = 60 \ ^{o}C$ 

Cold fluid (air) enters in Air Cooled Heat Exchanger  $= t_{cin} = 38 \ ^{\circ}C$ 

| Cold fluid (air) leaves the Air Cooled Heat Exchanger                                                | =    |
|------------------------------------------------------------------------------------------------------|------|
| $t_{cout} = 55.3 ^{\circ}\text{C}$                                                                   |      |
| Change in hot fluid (lean dea) temperature $\Delta t_h$                                              | =    |
| $t_{hin}$ - $t_{hout} = 74.5^{\circ}$ C-60 °C=14.5 °C                                                |      |
| Change in cold fluid (air) temperature $\Delta t_c$                                                  | =    |
| $t_{cout}$ - $t_{cin}$ =55.3 °C-38 °C =17.3 °C                                                       |      |
| Approach Temperature = $m1 = t_{hout} \cdot t_{cin} = 60 ^{\circ}\text{C} \cdot 38 ^{\circ}\text{C}$ | = 22 |
| °C                                                                                                   |      |
| Approach Temperature $m_2 = t_{hin} - t_{cout} = 74.5^{\circ}C - 55.3^{\circ}C$                      | C    |
| =19.2 °C                                                                                             |      |

There are two different approach temperatures, but in counter to cross flow heat exchanger, we consider the Approach Temperature  $= m_1 = t_{hout} \cdot t_{cin}$ 

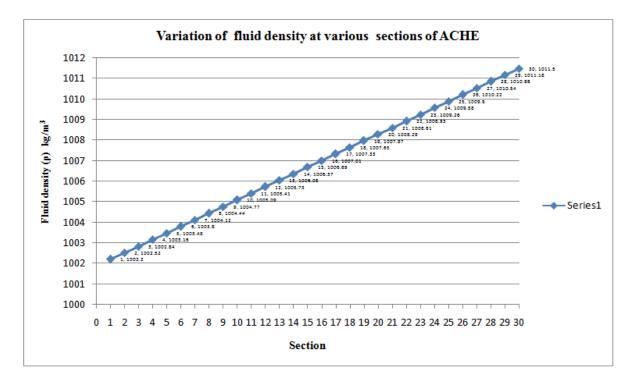
Only this approach temperature is important, while designing the forced draft counter to cross flow heat exchanger.

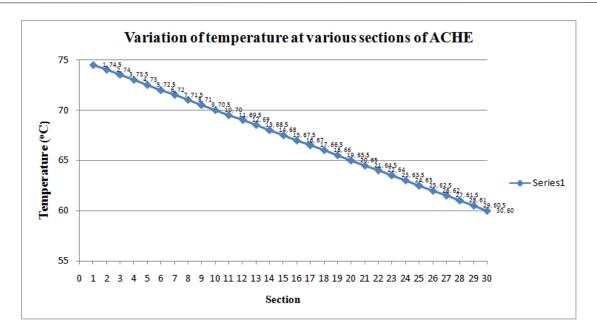
#### By using thermal design software we found the following properties of hot fluid (lean dea) & cold fluid (Air) Stream properties of hot fluid side fluid (lean dea)

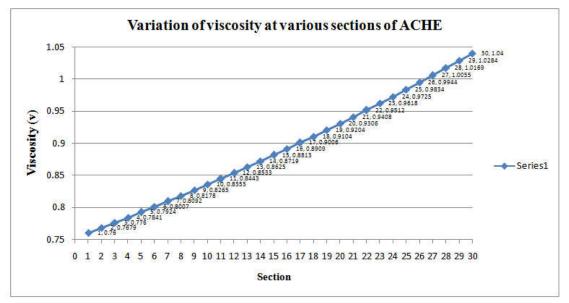
| Rating-Horizontal  | air-cooled heat e | xchanger fo | orced draft | countercurr | ent to cross |         | KH Units |
|--------------------|-------------------|-------------|-------------|-------------|--------------|---------|----------|
| Hot Tubeside Flui  |                   |             | Inlet       |             |              | Outlet  |          |
| Fluid name         |                   |             |             | Lear        | 1 DEA        |         |          |
| Temperature        | (C)               |             | 74.50       |             |              | 60.00   |          |
| Pressure           | (kgf/cm2A)        |             | 2.133       |             |              | 1.559   |          |
| Weight fraction va | por ()            |             | 0.0000      |             |              | 0.0000  |          |
| Vapor Pro          | perties           |             |             |             |              |         |          |
| Density            | (kg/m3)           |             |             |             |              |         |          |
| Viscosity          | (cP)              |             |             |             |              |         |          |
| Conductivity       | (kcal/hr-m-C)     |             |             |             |              |         |          |
| Heat capacity      | (kcal/kg-C)       |             |             |             |              |         |          |
| Molecular weight   | ()                |             |             |             |              |         |          |
| Liquid Pro         | operties          |             |             |             |              |         |          |
| Density            | (kg/m3)           |             | 1002.20     |             |              | 1011.50 |          |
| Viscosity          | (cP)              |             | 0.7600      |             |              | 1.0400  |          |
| Conductivity       | (kcal/hr-m-C)     |             | 0.4428      |             |              | 0.4338  |          |
| Heat capacity      | (kcal/kg-C)       |             | 0.9150      |             |              | 0.9090  |          |
| Molecular weight   | ()                |             | 0           |             |              | 0       |          |
| Latent heat        | (kcal/kg)         |             |             |             |              |         |          |
| Surface tension    | (dyne/cm)         |             | 0.0000      |             |              | 0.0000  |          |
| Molar Com          | position          | Vapor       | Liquid      | K-Value     | Vapor        | Liquid  | K-Valu   |
| 1 [New User-De     | efined]           |             |             |             |              |         | -        |

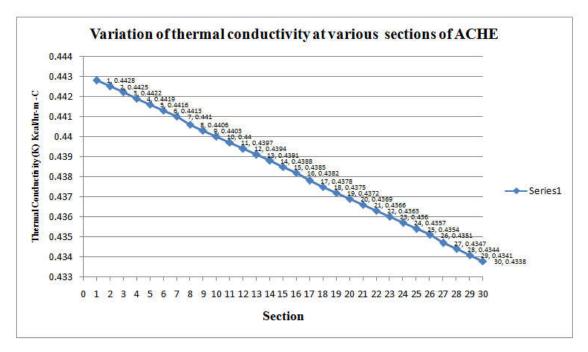
#### Stream properties of cold outside fluid (Air)

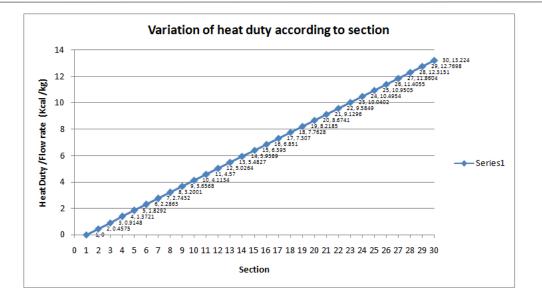
| Rating-Horizontal a | air-cooled heat ex | changer forced draft | countercurre |              | KH Units |
|---------------------|--------------------|----------------------|--------------|--------------|----------|
| Cold Outside Flui   | d                  | Inlet                |              | Outlet       |          |
| Fluid name          |                    |                      |              |              |          |
| Temperature         | (C)                | 38.00                |              | 55.31        |          |
| Pressure            | (kgf/cm2A)         | 1.031                |              | 1.030        |          |
| Weight fraction va  | oor ()             | 1.0000               |              | 1.0000       |          |
| Vapor Pro           | perties            |                      |              |              |          |
| Density             | (kg/m3)            | 1.1324               |              | 1.0727       |          |
| Viscosity           | (cP)               | 0.0190               |              | 0.0197       |          |
| Conductivity        | (kcal/hr-m-C)      | 0.0234               |              | 0.0245       |          |
| Heat capacity       | (kcal/kg-C)        | 0.2404               |              | 0.2407       |          |
| Molecular weight    | ()                 | 28.96                |              | 28.96        |          |
| Liquid Pro          | perties            |                      |              |              |          |
| Density             | (kg/m3)            |                      |              |              |          |
| Viscosity           | (cP)               |                      |              |              |          |
| Conductivity        | (kcal/hr-m-C)      |                      |              |              |          |
| Heat capacity       | (kcal/kg-C)        |                      |              |              |          |
| Molecular weight    | ()                 |                      |              |              |          |
| Latent heat         | (kcal/kg)          |                      |              |              |          |
| Surface tension     | (dyne/cm)          |                      |              |              |          |
| Molar Com           | position           | Vapor Liquid         | K-Value      | Vapor Liquid | K-Valu   |


# Physical properties of hot tube side (lean dea) at various sections of forced draft counters to cross flow Air Cooled heat exchanger at normal ambient temperature


#### Properties Profile Monitor


|                                       |      |            |             |            |             |         |         |         |         | MK      | H Units |
|---------------------------------------|------|------------|-------------|------------|-------------|---------|---------|---------|---------|---------|---------|
| Rating-Horizontal air-cooled heat exe | char | iger force | d draft cou | Intercurre | nt to cross | flow    |         |         |         |         |         |
| Physical Properties Profile: Hot To   |      |            |             |            |             |         |         |         |         |         |         |
| Reference pressure, (kgf/cm2A)        | (P1  | = 2.133)   |             |            |             |         |         |         |         |         |         |
|                                       | (P)  | 1          | 2           | 3          | 4           | 5       | 6       | 7       | 8       | 9       | 10      |
| Temperature, (C)                      | 1    | 74.50      | 74.00       | 73.50      | 73.00       | 72.50   | 72.00   | 71.50   | 71.00   | 70.50   | 70.00   |
| Heat duty/flow rate, (kcal/kg)        | 1    | 0.0000     | 0.4575      | 0.9148     | 1.3721      | 1.8292  | 2.2863  | 2.7432  | 3.2001  | 3.6568  | 4.1134  |
| Weight fraction vapor                 | 1    | 0.0000     | 0.0000      | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Liquid Properties                     |      |            |             |            |             |         |         |         |         |         |         |
| Density, (kg/m3)                      | 1    | 1002.20    | 1002.52     | 1002.84    | 1003.16     | 1003.48 | 1003.80 | 1004.12 | 1004.44 | 1004.77 | 1005.09 |
| Viscosity, (cP)                       | 1    | 0.7600     | 0.7679      | 0.7760     | 0.7841      | 0.7924  | 0.8007  | 0.8092  | 0.8178  | 0.8265  | 0.8353  |
| Thermal conductivity, (kcal/hr-m-C)   | 1    | 0.4428     | 0.4425      | 0.4422     | 0.4419      | 0.4416  | 0.4413  | 0.4410  | 0.4406  | 0.4403  | 0.4400  |
| Enthalpy, (kcal/kg)                   | 1    | 0.0000     | -0.4575     | -0.9148    | -1.3721     | -1.8292 | -2.2863 | -2.7432 | -3.2001 | -3.6568 | -4.1134 |
| Specific heat, (kcal/kg-C)            | 1    | 0.9150     | 0.9148      | 0.9146     | 0.9144      | 0.9142  | 0.9140  | 0.9138  | 0.9136  | 0.9133  | 0.9131  |
| Surface tension, (dyne/cm)            | 1    | 0.0000     | 0.0000      | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Critical pressure, (kgf/cm2A)         | 1    | 0.000      | 0.000       | 0.000      | 0.000       | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| Latent heat, (kcal/kg)                | 1    | 0.0000     | 0.0000      | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |


|                                                                              |      |            | Propert    | ies Pro    | file Mo     | nitor   |         |         |         |         |         |
|------------------------------------------------------------------------------|------|------------|------------|------------|-------------|---------|---------|---------|---------|---------|---------|
| Dating Harizantal air apolad baat av                                         | obor | ager force | d droft oo | untorourro | at to propo | flow    |         |         |         | МК      | H Units |
| Rating-Horizontal air-cooled heat exe<br>Physical Properties Profile: Hot Tu |      |            |            | untercurre |             | now     |         |         |         |         |         |
| Reference pressure, (kgf/cm2A)                                               |      | = 2.133)   |            |            |             |         |         |         |         |         |         |
|                                                                              | (P)  | 11         | 12         | 13         | 14          | 15      | 16      | 17      | 18      | 19      | 20      |
| Temperature, (C)                                                             | 1    | 69.50      | 69.00      | 68.50      | 68.00       | 67.50   | 67.00   | 66.50   | 66.00   | 65.50   | 65.00   |
| Heat duty/flow rate, (kcal/kg)                                               | 1    | 4.5700     | 5.0264     | 5.4827     | 5.9389      | 6.3950  | 6.8510  | 7.3070  | 7.7628  | 8.2185  | 8.6741  |
| Weight fraction vapor                                                        | 1    | 0.0000     | 0.0000     | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Liquid Properties                                                            |      |            |            |            |             |         |         |         |         |         |         |
| Density, (kg/m3)                                                             | 1    | 1005.41    | 1005.73    | 1006.05    | 1006.37     | 1006.69 | 1007.01 | 1007.33 | 1007.65 | 1007.97 | 1008.29 |
| Viscosity, (cP)                                                              | 1    | 0.8443     | 0.8533     | 0.8625     | 0.8719      | 0.8813  | 0.8909  | 0.9006  | 0.9104  | 0.9204  | 0.9306  |
| Thermal conductivity, (kcal/hr-m-C)                                          | 1    | 0.4397     | 0.4394     | 0.4391     | 0.4388      | 0.4385  | 0.4382  | 0.4378  | 0.4375  | 0.4372  | 0.4369  |
| Enthalpy, (kcal/kg)                                                          | 1    | -4.5700    | -5.0264    | -5.4827    | -5.9389     | -6.3950 | -6.8510 | -7.3070 | -7.7628 | -8.2185 | -8.6741 |
| Specific heat, (kcal/kg-C)                                                   | 1    | 0.9129     | 0.9127     | 0.9125     | 0.9123      | 0.9121  | 0.9119  | 0.9117  | 0.9115  | 0.9113  | 0.9111  |
| Surface tension, (dyne/cm)                                                   | 1    | 0.0000     | 0.0000     | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Critical pressure, (kgf/cm2A)                                                | 1    | 0.000      | 0.000      | 0.000      | 0.000       | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| Latent heat, (kcal/kg)                                                       | 1    | 0.0000     | 0.0000     | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |


|                                       |      |            | Propert     | ies Pro    | file Moı    | nitor   |         |         |         |         |         |
|---------------------------------------|------|------------|-------------|------------|-------------|---------|---------|---------|---------|---------|---------|
| Rating-Horizontal air-cooled heat exc | char | nger force | d draft cou | untercurre | nt to cross | flow    |         |         |         | MK      | H Units |
| Physical Properties Profile: Hot Tu   | ubes | side (Lea  | n DEA)      |            |             |         |         |         |         |         |         |
| Reference pressure, (kgf/cm2A)        | (P′  | 1= 2.133)  |             |            |             |         |         |         |         |         |         |
|                                       | (P)  | 21         | 22          | 23         | 24          | 25      | 26      | 27      | 28      | 29      | 30      |
| Temperature, (C)                      | 1    | 64.50      | 64.00       | 63.50      | 63.00       | 62.50   | 62.00   | 61.50   | 61.00   | 60.50   | 60.00   |
| Heat duty/flow rate, (kcal/kg)        | 1    | 9.1296     | 9.5849      | 10.0402    | 10.4954     | 10.9505 | 11.4055 | 11.8604 | 12.3151 | 12.7698 | 13.2240 |
| Weight fraction vapor                 | 1    | 0.0000     | 0.0000      | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Liquid Properties                     |      |            |             |            |             |         |         |         |         |         |         |
| Density, (kg/m3)                      | 1    | 1008.61    | 1008.93     | 1009.26    | 1009.58     | 1009.90 | 1010.22 | 1010.54 | 1010.86 | 1011.18 | 1011.50 |
| Viscosity, (cP)                       | 1    | 0.9408     | 0.9512      | 0.9618     | 0.9725      | 0.9834  | 0.9944  | 1.0055  | 1.0169  | 1.0284  | 1.0400  |
| Thermal conductivity, (kcal/hr-m-C)   | 1    | 0.4366     | 0.4363      | 0.4360     | 0.4357      | 0.4354  | 0.4351  | 0.4347  | 0.4344  | 0.4341  | 0.4338  |
| Enthalpy, (kcal/kg)                   | 1    | -9.1296    | -9.5849     | -10.040    | -10.495     | -10.951 | -11.406 | -11.860 | -12.315 | -12.770 | -13.224 |
| Specific heat, (kcal/kg-C)            | 1    | 0.9109     | 0.9107      | 0.9104     | 0.9102      | 0.9100  | 0.9098  | 0.9096  | 0.9094  | 0.9092  | 0.9090  |
| Surface tension, (dyne/cm)            | 1    | 0.0000     | 0.0000      | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Critical pressure, (kgf/cm2A)         | 1    | 0.000      | 0.000       | 0.000      | 0.000       | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| Latent heat, (kcal/kg)                | 1    | 0.0000     | 0.0000      | 0.0000     | 0.0000      | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  |











# RESULTS

|                              | C               | Dutput S      | ummary        |             |          |                |              |      |
|------------------------------|-----------------|---------------|---------------|-------------|----------|----------------|--------------|------|
| Rating-Horizontal air-cooled | d heat exchange | er forced dra | ft countercur | rent to cro | ssflow   |                | MKH Un       | nits |
| Process C                    | onditions       |               | Out           | side        |          | Tubesi         | do           |      |
| Fluid name                   | onunions        |               | Out           | Side        |          | Lean DEA       | ue           |      |
| Fluid condition              |                 |               |               | Sens. Ga    |          |                | Sens. Liquid |      |
| Total flow rate              | (1000-kg/hr)    |               |               | 300.26      |          |                | 94.526       |      |
| Weight fraction vapor, In/O  | · · · ·         |               | 1.000         | 1.00        |          | 0.000          | 0.000        |      |
| Temperature, In/Out          | (Deg C)         |               | 38.00         | 55.3        |          | 74.50          | 60.00        |      |
| Skin temperature, Min/Max    | (Deg C)         |               | 50.49         | 65.43       |          | 57.16          | 71.83        |      |
| Pressure, Inlet/Outlet       | (kgf/cm2A)      |               | 1.031         | 1.03        |          | 2.133          | 1.559        |      |
| Pressure drop, Total/Allow   | ,               | (kgf/cm2)     | 14.141        | 0.00        |          | 0.575          | 0.710        |      |
| Midpoint velocity            | (m/s)           |               | 1.1.1.1       | 6.8         |          | 0.575          | 1.48         |      |
| - In/Out                     | (m/s)<br>(m/s)  |               |               | 0.0.        | ´        | 1.49           | 1.53         |      |
| Heat transfer safety factor  | ()              |               |               |             | 1        | 1.40           | 1.00         |      |
| Fouling                      | (m2-hr-C/kcal)  |               |               | 0.00000     |          |                | 0.000500     |      |
| - Connig                     |                 |               | Exchange      | er Perform  |          |                | 0.000000     |      |
| Outside film coef            | (kcal/m2-hr-C)  |               | 40.11         | Actua       |          | (kcal/m2-hr-C) | 21.814       |      |
| Tubeside film coef           | (kcal/m2-hr-C)  |               | 4508.25       | Regui       | red U    | (kcal/m2-hr-C) |              |      |
| Clean coef                   | (kcal/m2-hr-C)  |               | 31.113        | Area        |          | (m2)           |              | )    |
| Hot regime                   | (,              |               | ens. Liquid   | Overc       | lesign   | (%)            |              |      |
| Cold regime                  |                 |               | Sens. Gas     |             |          | Tube Geome     |              |      |
| EMTD                         | (Deg C)         |               | 20.4          | Tube        | tvpe     |                | High-finned  |      |
| Duty                         | (MM kcal/hr)    |               | 1.249         | Tube        |          | (mm)           | •            |      |
|                              | Unit Geo        |               |               | Tube        | ID       | (mm)           |              |      |
| Bays in parallel per unit    |                 |               | 1             | Lengt       |          | (mm)           |              |      |
| Bundles parallel per bay     |                 |               | 2             |             | atio(ou  | ( )            |              |      |
| Extended area                | (m2)            |               | 2811.99       | Layou       |          | ()             | Staggered    |      |
| Bare area                    | (m2)            |               | 123.118       | Trans       |          | (mm)           |              |      |
| Bundle width                 | (mm)            |               | 1276.         | Long        | •        | (mm)           |              |      |
| Nozzle                       | ( )             | Inlet         | Outlet        | U U         | er of p  | · · ·          |              |      |
| Number                       | ()              | 1             | 1             |             | er of ro |                |              |      |
| Diameter                     | (mm)            | 131.750       | 131.750       | Tubeo       |          | ()             |              | )    |
| Velocity                     | (m/s)           | 0.96          | 0.95          |             |          | )dd/Even ()    |              | 16   |
| R-V-SQ                       | (kg/m-s2)       | 925.32        | 916.81        |             | materia  | ()             | Carbon steel |      |
| Pressure drop                | (kgf/cm2)       | 5.190e-3      | 3.273e-3      | 1000        | matom    | Fin Geome      |              |      |
|                              | Fan Geo         |               | 0.27000       | Туре        |          |                | Plain round  |      |
| No/bay                       | ()              | ,             | 2             | Fins/l      | enath    | fin/meter      |              |      |
| Fan ring type                |                 |               | 30 deg        | Fin ro      |          | mm             |              |      |
| Diameter                     | (mm)            |               | 2286.         | Heigh       |          | mm             |              |      |
| Ratio, Fan/bundle face area  | ( )             |               | 0.40          | - 5         | thickne  |                |              |      |
| Driver power                 | . (kW)          |               | 10.42         | Over        |          | mm             |              |      |
| Tip clearance                | (mm)            |               | 11.430        | Efficie     |          | (%)            |              |      |
| Efficiency                   | (%)             |               | 65            |             | -        | n/bare) ()     |              |      |
| Airside Velocities           |                 | Actual        | Standard      | Mater       | ial      | Aluminum       | 1060 - H14   |      |
| Face                         | (m/s)           | 3.61          | 3.40          |             |          | Thermal Resist | ance, %      |      |
| Maximum                      | (m/s)           | 6.69          | 6.31          | Air         |          |                | 54.39        | )    |
| Flow (                       | 100 m3/min)     | 44.192        | 41.654        | Tube        |          |                | 13.25        | i    |
| Velocity pressure            | (mmH2O)         | 4.658         |               | Foulir      | ıg       |                | 29.89        |      |
| Bundle pressure drop         | (mmH2O)         | 12.306        |               | Metal       |          |                | 2.47         |      |
| Bundle flow fraction         | ()              | 1.000         |               | Bond        |          |                | 0.00         |      |
| Bundle                       | 87.02           |               | Airside Pres  |             |          |                |              | 4.63 |
| Ground clearance             | 0.00            | Fan guard     |               | 0.53        |          | ail screen     |              | 0.00 |
| Fan ring                     | 1.97            | Fan area b    | lockage       | 5.8         | 5 St     | eam coil       |              | 0.00 |

|                                                                     |                        | F            | Final Resu                 | llts         | 5                                                        |         |              |                 |
|---------------------------------------------------------------------|------------------------|--------------|----------------------------|--------------|----------------------------------------------------------|---------|--------------|-----------------|
|                                                                     |                        | due ft e e u |                            |              |                                                          |         |              | MKH Unit        |
| Rating-Horizontal air-cooled heat exch                              | anger forced<br>Proces |              |                            | cros<br>rsic |                                                          |         | Tubeside     |                 |
| Fluid name                                                          | FICCES                 | S Dala       | AI                         | 1510         | 1e                                                       | Lean    |              |                 |
| Fluid condition                                                     |                        |              |                            |              | Sens. Gas                                                | Loan    | DER          | Sens. Liqui     |
| Total flow rate                                                     | (10)                   | 00-kg/hr)    |                            |              | 300.262                                                  |         |              | 94.52           |
| Weight fraction vapor, In/Out                                       | (10)                   | ()           | 1.000                      |              | 1.000                                                    |         | 0.000        | 0.00            |
| Temperature, In/Out                                                 |                        | (Deg C)      | 38.00                      |              | 55.31                                                    |         | 74.50        | 60.0            |
| Skin temperature, Min/Max                                           |                        | (Deg C)      | 50.49                      |              | 65.43                                                    |         | 57.16        | 71.8            |
| Wall temperature, Min/Max                                           |                        | (Deg C)      | 50.49                      |              | 65.43                                                    |         | 56.94        | 71.6            |
| Pressure, In/Out                                                    | (k                     | gf/cm2A)     | 1.031                      |              | 1.030                                                    |         | 2.133        | 1.55            |
|                                                                     | - · ·                  | kgf/cm2)     | 14.141                     |              | 0.000                                                    |         | 0.575        | 0.71            |
| Pressure Drop, A-frame reflux section                               |                        | kgf/cm2)     |                            |              |                                                          |         |              | 0.11            |
| Velocity - Midpoint                                                 | (                      | (m/s)        | 6.85                       |              |                                                          |         | 1.48         |                 |
| - In/Out                                                            |                        | (m/s)        | 0.00                       |              |                                                          |         | 1.49         | 1.5             |
| Film coefficient, Bare/Extended                                     | (kcal/i                | m2-hr-C)     | 916.06                     |              | 40.11                                                    | 4       | 1508.25      |                 |
| Mole fraction inert                                                 | (                      | ()           |                            |              |                                                          |         | · · · · · ·  |                 |
| Heat transfer safety factor                                         |                        | ()           |                            |              | 1                                                        |         |              |                 |
| Fouling resistance                                                  | (m2-h                  | r-C/kcal)    |                            |              | 0.000000                                                 |         |              | 0.00050         |
| •                                                                   | `                      | ,            | Overall Perf               | forn         | nance Data                                               |         |              |                 |
| Overall coef, Design/Clean/Actual                                   | (kcal/i                | m2-hr-C)     | 21.768                     | 1            | 31.113 /                                                 |         | 21.814       |                 |
| Heat duty, Calculated/Specified                                     | •                      | 1 kcal/hr)   | 1.2492                     | 1            | 1.2500                                                   |         |              |                 |
| Effective mean temperature difference                               |                        | (Deg C)      | 20.41                      |              |                                                          |         |              |                 |
| Bays in parallel/unit<br>Extended area/unit<br>Extended area/bundle | ()<br>(m2)<br>(m2)     |              | 2811.99<br>1405.99         |              | Bundles in paralle<br>Bare area/unit<br>Bare area/bundle | 5       | (m2)<br>(m2) | 123.11<br>61.55 |
| Tubepasses/Tuberows                                                 | (112)                  | 4 /          | 6                          |              | Number of tubes/                                         | hundle  | (1112)       | 9               |
| Tubecount, Odd rows/Even rows                                       | ()                     | 17 /         | 16                         |              | Edge seals                                               |         | ()           | Ye              |
| Bundle width                                                        | (mm)                   |              | 1276.                      |              | Fan guard                                                |         | ()           | Ye              |
| Clearance                                                           | (mm)                   |              | 9.525                      |              | Louvers                                                  |         | ()           | Ye              |
| Header depth                                                        | (mm)                   |              | 101.600                    |              | Steam coil                                               |         | ()           | N               |
| Header Box                                                          | ( )                    |              |                            |              | Hail screen                                              |         | ()           | N               |
| - Plate thickness                                                   | (mm)                   |              | 25.400                     |              | Tube support info                                        | rmation |              |                 |
| - Tubesheet thickness                                               | (mm)                   |              | 34.925                     |              | - Number                                                 |         | ()           |                 |
| Plenum type                                                         | ( )                    |              | Tapered                    |              | - Width                                                  |         | (mm)         | 25.40           |
| Weight/Bundle                                                       | (kg)                   |              | 3640                       |              | Orientation (from                                        | horiz.) | (deg)        | 0.0             |
| Structure weight                                                    | (kg)                   |              | 3438                       |              | Tubeside volume                                          | ,       | (L)          | 386.            |
| Total weight, Dry / Wet                                             | (kg)                   |              | 13238                      | /            | 14011                                                    |         |              |                 |
| _adder/walkway weight                                               | (kg)                   |              | 2520                       |              | Cost Factor                                              |         | ()           | 47.356          |
|                                                                     |                        |              | Tube In                    | for          | mation                                                   |         |              |                 |
| Straight length                                                     | (mm)                   |              | 8000.                      |              | Tube type                                                |         |              | High-finne      |
| Unfinned length                                                     | (mm)                   |              | 36.000                     |              | Unheated length                                          |         | (mm)         | 171.45          |
| Layout                                                              | ()                     |              | Staggered                  |              | Area ratio (fin/bar                                      |         | ()           | 22.839          |
| Transverse pitch                                                    | (mm)                   |              | 75.000                     |              | Fins per unit leng                                       | th      | (fin/meter)  | 433.            |
| ₋ongitudinal pitch                                                  | (mm)                   |              | 64.950                     |              | Fin root diameter                                        |         | (mm)         | 27.00           |
| Tube form                                                           | ()                     |              | Straight                   |              | Fin height                                               |         | (mm)         | 15.07           |
| Dutside diameter                                                    | (mm)                   |              | 25.400                     |              | Fin thickness at b                                       |         | (mm)         | 0.40            |
| nside diameter                                                      | (mm)                   |              | 21.184                     |              | Fin thickness at ti                                      | р       | (mm)         | 0.18            |
| Area ratio (out/in)                                                 | ()                     |              | 27.3853                    |              | Fin type                                                 |         | ()           | Plain roun      |
| Over fin dienseter                                                  | (mm)                   |              | 57.150                     |              | Fin efficiency                                           |         | (%)          | 79.             |
| Over fin diameter                                                   |                        |              |                            |              |                                                          |         |              |                 |
| Tube material<br>Fin material                                       |                        |              | Carbon steel<br>1060 - H14 |              | Internal tube type                                       |         |              | Non             |

|                               |                      | Final Res                | ults                                    |              |                  |
|-------------------------------|----------------------|--------------------------|-----------------------------------------|--------------|------------------|
| Rating-Horizontal air-cooled  | heat exchanger force | d draft countercurrent t | o crossflow                             |              | MKH Units        |
| ¥                             | Airside Velocities   |                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Actual       | Standard         |
|                               | Anside velocities    | 1.                       | m/n)                                    |              | Standard<br>3.40 |
| Face velocity                 |                      | •                        | n/s)<br>n/s)                            | 3.61<br>6.69 | 3.40<br>6.31     |
| Maximum velocity              |                      | •                        | ,                                       |              |                  |
| Volumetric flow               |                      | (100 m3/r                | ,                                       | 44.192       | 41.654           |
| Maximum mass velocity         |                      | (kg/s-                   |                                         | 7.575        |                  |
| Air humidity                  |                      |                          | (%)                                     |              |                  |
| Volumetric flow per fan at fa | n inlet              | (100 m3/r                |                                         | 22.096       |                  |
| Velocity at fan inlet         |                      | ()<br>(1                 | n/s)                                    | 8.97         |                  |
|                               |                      | Fan Description          | and Fan Power                           |              |                  |
| Number of fans per bay        |                      |                          | ()                                      |              | 2                |
| Diameter                      |                      |                          | (mm)                                    |              | 2286.            |
| Tip clearance                 |                      |                          | (mm)                                    |              | 11.430           |
| Ratio, fan area to bay face a | rea                  |                          | ()                                      |              | 0.40             |
| Fan ring type                 |                      |                          | ()                                      |              | 30 deg           |
|                               | an guard             |                          | (%)                                     |              | 95               |
|                               | nail screen          |                          | (%)                                     |              | 0                |
| Ratio, ground clearance to fa | an diameter          |                          | ()                                      |              |                  |
| Percent blockage, other obs   |                      |                          | (%)                                     |              | 5                |
| Bundle pressure drop/ Veloc   |                      |                          | (mmH2O)                                 | 12.306 /     | 4.658            |
| Fan and drive efficiency      | .,                   |                          | (%)                                     |              | 65               |
| Motor power per fan-design    | air temperature      |                          | (kW)                                    |              | 10.42            |
| Motor power per fan-minimu    |                      |                          | (kW)                                    |              | 0.00             |
| Ambient temperature, maxin    |                      |                          | (Deg C)                                 | -17.78 /     | -17.78           |
|                               |                      | Two-Phase F              |                                         |              |                  |
| Method                        | Inlet                | Center                   | Outlet                                  | Mix F        |                  |
| Method                        | lillet               | Center                   | Outlet                                  |              |                  |
| Bundle flow fraction          | ()                   | 1.000                    |                                         |              |                  |
| Heat Transfer an              | d Pressure Drop Pa   | rameters                 |                                         | Tubeside     | Outside          |
| Midpoint j-factor             |                      |                          | ()                                      |              | 0.0062           |
| Heat transfer                 |                      | Wall Correction          | ()                                      | 0.9912       | 0.9865           |
|                               |                      | Row Correction           | ()                                      |              | 1.0000           |
| Midpoint f-factor             |                      |                          | ()                                      | 0.0068       | 0.1973           |
| Pressure drop                 |                      | Wall Correction          | ()                                      | 1.0079       | 1.0091           |
|                               |                      | Row Correction           | ()                                      |              | 1.0012           |
| Reynolds number               |                      | Inlet                    | ()                                      | 41514        | 10787            |
|                               |                      | Midpoint                 | ()                                      | 34313        | 10591            |
|                               |                      | Outlet                   | ()                                      | 31602        | 9749             |
| Fouling layer thickness       |                      |                          | (mm)                                    | 0.000        | 0.000            |
| Input minimum velocity        |                      |                          | (m/s)                                   | 0.000        | 0.000            |
| Input maximum velocity        |                      |                          | (m/s)                                   |              |                  |
| Input minimum wall tempera    | iture                |                          | (III/S)<br>(Deg C)                      |              |                  |
| Input maximum wall tempera    |                      |                          | (Deg C)                                 |              |                  |
|                               | Thermal R            | esistance (Pe            | ercent)                                 |              | Over             |
| Air                           | Tube                 | Fouling                  | Metal                                   | Bond         | Design           |
| 54.39                         | 13.25                | 29.89                    | 2.47                                    | 0.00         | 0.21             |
|                               |                      | Airside P                | ressure Drop                            | Percent)     |                  |
| Across bundle                 |                      | 87.02                    | Other obstruction                       |              | 5.85             |
| Fan ring                      |                      | 1.97                     | Steam coil                              |              | 0.00             |
| Fan guard                     |                      | 0.53                     | Louvers                                 |              | 4.63             |
| Ground clearance              |                      | 0.00                     | 2001010                                 |              | 4.00             |
|                               | zzle (Perpendicular) |                          | Inlet                                   | Outlet       |                  |
| Number of nozzles             | reipenuicular)       | ()                       | 1                                       | 1            |                  |
| Diameter                      |                      | (mm)                     | 131.750                                 | 131.750      |                  |
| Velocity                      |                      |                          |                                         | 0.95         |                  |
|                               |                      | (m/s)                    | 0.96                                    |              |                  |
| Nozzle R-V-SQ                 |                      | (kg/m-s2)                | 925.32                                  | 916.81       |                  |
| Pressure drop                 |                      | (kgf/cm2)                | 5.190e-3                                | 3.273e-3     |                  |

#### **Conclusion and Outcome**

The most important parameter, while taking into consideration for designing the Forced Draft Counter to cross flow Air Cooled Heat Exchanger is tube skin temperature. In this Forced Draft Counter to cross flow Air Cooled Heat Exchanger, the process fluid is lean dea Here, the air acts as a cold fluid & lean dea acts as a hot fluid. The hot fluid lea dea loses its heat from 74.5°C to 60°C& cold fluid air gains the heat from 38°Cto 58.31°C, during heat exchanging process. By studying the various properties of lean dea, we come to know that, the pour point of lean dea is 8°C & by studying API 661 guidelines for designing of Air Cooled Heat Exchanger, the minimum tube skin temperature is equal to the pour pint of fluid +9°C API Margin. i.e. Permissible/ minimum tube skin temperature = pour point of fluid (lean dea) +9 °C (API Margin) = 8°C +9°C = 17 °C By studying the properties of lean dea we come to know that the tube skin temperature at 38

 $^{\circ}$ C is 57.16  $^{\circ}$ C. At 38  $^{\circ}$ C the permissible tube skin temperature is 57.16  $^{\circ}$ C, which is far greater than the permissible tube skin temperature (17 $^{\circ}$ C), So, the design & performance of Forced Draft Counter to Cross Flow Air Cooled Heat Exchanger is safe. In this ambient conditions, there is no need of steam coil because at this temperature, the fluid in the heat exchanger does not freeze, hence there is not a problem.

### REFERENCES

- Affan Badar, M., Syed M. Zubair, Anwar K. Sheikh, 1993. Uncertainty analysis of heat-exchanger thermal designs using the Monte Carlo simulation technique, *Energy* Volume 18, Issue 8, August 1993, Pages 859-866
- Alireza Vali, Gaoming Ge, Robert W. Besant, Carey J. Simonson 2015. Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger, *International Journal of Heat and Mass Transfer*, Volume 89, October 2015, Pages 1258–1276
- American Society of Mechanical Engineers, "Performance Test Code 30."
- ASME code, Section VIII, Division 1
- Constructal design of finned tubes used in air-cooled heat exchangers, Hossein Shokouhmand, Shoeib Mahjoub, Mohammad Reza Salimpour, *Journal of Mechanical Science and Technology*, Volume 28, Issue, Jun 2014, page 2385-2391.
- Duvenhage, K. and Kröger, D.G. 1996. The influence of wind on the performance of forced draught air-cooled heat exchangers, *Journal of Wind Engineering and Industrial Aerodynamics*, Volume -62 September, page 259-277.
- Haitao Hu, Xiaomin Weng, Dawei Zhuang, Guoliang Ding<sup>°</sup>, Zhancheng Lai, Xudong Xu, 2016. Heat transfer and pressure drop characteristics of wet air flow in metal foam under dehumidifying conditions, *Applied Thermal Engineering*, Volume 93, January, Pages 1124–1134
- Hooman, K.Guan, Z. 2013. Advances in air-cooled heat exchangers.
- HTRI (Heat Transfer Research Institute) American Petroleum Institute, "Air-Cooled Heat Exchangers for General Refinery Service," API Standard 661, Fifth Edition, March 2002.
- Ian J. Kennedya, Stephen W.T. Spencea, Gordon R. Sprattb, Juliana M. Earlya-May, 2013. Investigation of heat exchanger inclination in forced-draught air-cooled heat exchangers, *Applied Thermal Engineering*, Volume 54, Issue 2, 30 May, Pages 413–421
- Jeffrey P. Koplow, 2013. Heat exchanger device and method for heat removal or transfer Dec.
- Juan I. Manassaldia, Nicolás J. Scennaa, Sergio F. Mussatia, 2014. Optimization mathematical model for the detailed design of air cooled heat exchangers, *Journal of Energy Elsevier*, Volume 64, Jan Pages 734–746
- Khaled Saleha, Omar Abdelazizb Vikrant Autea Reinhard Radermachera, Shapour Azarma, 2013. Approximation assisted optimization of headers for new generation of aircooled heat exchangers, *Applied Thermal Engineering* Volume 61, Issue 2, November, Pages 817–824
- Kuppan, T. 2003. Heat Exchanger Desing Handbook by, edition

- Li Li, Xiaoze Du, Lijun Yang Yan Xu, Yongping Yan 2013. Numerical simulation on flow and heat transfer of fin structure in air-cooled heat exchanger *Journal of Applied Thermal Engineering* Volume 59, Sep2013 page 77–86.
- Parag Mishra and Dr Manoj Arya, 2015. Review of Literature on Air Cooled Steam Condenser (A Heat Exchanger Used in Steam Power Plant), *International Journal of Research in Aeronautical & Mechanical Engineering (IJRAME)*, Vol-3, Issue 10, Oct-2015, page 1-8.
- Parag Mishra and Dr Manoj Arya, 2015. A Review of Literature on Air Cooled Heat Exchanger- International Journal of Latest Trends in Engineering & Technology (IJLTET), Vol -5, Issue 4, Jul 2015, page 418-424.
- Parag Mishra and Dr Manoj Arya, 2015. Auxiliary Power Saving In Air Cooled Steam Condenser by Pumps Condenser (A Heat Exchanger Used in Steam Power Plant), International Journal of Enhanced Research In Science Technology & Engineering (IJRASET), Vol-3, Issue 11, Nov. Page 483-489.
- Parag Mishra, Dr Manoj Arya . 2015. Auxiliary Power Saving In Air Cooled Heat Exchanger by Fans, *International Journal of Enhanced Research In Science Technology & Engineering (IJERSTE)*, Vol-4, Issue 11, NovPage 41-48.
- Parag Mishra, Dr manoj Arya, 2016. A Review of Literature on Steam Coil for Air Cooled Heat Exchanger, *International Journal of Innovations in Engineering and Technology (IJIET)* Vol -7 Issue-1, june 2016, page695-701
- Parag Mishra, Dr Manoj Arya, 2016. A Review of Literature on Thermal Design of Forced Draft Counter to Cross flow Air Cooled heat exchanger, *International Journal of Engineering Sciences & Research Technology*, Vol-5 Issue-4, 2016, April 2016 page 777-785.
- Rafat AL-Waked, Mohammad Shakir Nasif, Graham Morrison, Masud Behnia, 2015. CFD simulation of air to air enthalpy heat exchanger: Variable membrane moisture resistance, *Journal Applied Thermal Engineering*, Volume 84, June, Pages 301–309
- Ramesh K. Shah, P. Sekulic, 2007. Fundamentals of heat exchanger Design-Edition
- Rohit S. Andhare, Amir Shooshtari, Serguei V. Dessiatoun, Michael M. Ohadi. 2016. Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration, *Journal ofApplied Thermal Engineering*, Volume 96, 5 March 2016, Pages 178–189
- Shell and Tube, 1998. Heat Exchanger Design Software for Educational Applications\* K. C. LEONG and K. C. TOH International Journal of Engineering Education Volume – 14, Issue-3 page 217-224.
- Theodore L. Bergman, Frank P. Incropera, David P. DeWitt, Adrienne S. Lavine, Fundamentals of Heat and Mass Transfer 7th Edition
- Weifeng He, Dong Han, Chen Yue, Wenhao Pu, Yiping Dai, 2014. Mechanism of the air temperature rise at the forced draught fan inlets in an air-cooled steam condenser *Journal of Applied Thermal Engineering* Volume 71, Issue 1, 5 October 2014, Pages 355–363

\*\*\*\*\*\*