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INTRODUCTION

Eisenhart (1927) gave the theory of conformal structures arose in studying those properties of Riemannian and pseudo-Riemannian
manifolds that remain invariant under conformal transformations of the metric. The problem of conformal coordinates was studied
by Gauss, who proved their existence in the real-analytic case. Josh Guffin (2004) gave the Definition of Riemann surface as: A
complex manifold of complex dimension 1 is called a Riemann surface or 1-Dimensional Riemannian manifold and introduce a
Complex structure as: Suppose that is a 2n-dimensional manifold, having one atlas	 , ; ⋃ , : ⟶ . If the
functions ∘ : ⟶ . are holomorphic on their DOD (domains of definition), the atlas is known as complex-analytic. Two
atlases , & , are called compatible if their union is again an atlas. Clearly this defines an equivalence relation on the
set of atlases, an equivalence class of which is known as a complex structure. A manifold together with complex structure is
known as complex manifold. Its complex dimension is defined to be n; 	 .Other way to define a complex structure is to
complexify the tangent bundle and introduce an almost-complex structure J. An almost-complex structure on is a tensor of type
(1, 1) which squares to −1. In local coordinates this is

.

An almost complex structure is called to be integrable if the Nijenhuis tensor, , , , ,
vanishes for all smooth vector fields X and Y.
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An integrable almost-complex structure defines a complex structure on a manifold. In one complex dimension, the Nijenhuis
tensor ( , ) = ( , ) + ( , ) + ( , ) − 	 ( , ) vanishes identically, so that every almost-complex structure defines a
complex structure. Any complex structure has a unique associated almost-complex structure.

Almost Complex Structures: An almost complex structure on X is a map∶ ,ℝ ⟶ ,ℝ
of ,ℝ modules, such that = − 1.

We may ℂ-linearly extend to	 , and thus obtain decomposition= , ⊕ ,
where acts as multiplication with 	on , , and as − 	 on , . Moreover,, = ,
Remark 1.1 There is a one to one correspondence between almost complex structures on X and decompositions of differentiable
vector bundles= , ⊕ , s.t.

, = , .

2. Almost complex structure of a Riemann surface

If X is a Riemann surface it means there is a natural almost complex structure. For given coordinates x, y we define	 : = − 	 , ( ) = . (1)

In order to see that this is independent of the choice of the coordinates let= , + ( , )
be a holomorphic function and	 , , ( , ) another choice of coordinates. We compute	 = + By Partial Differentiation= J dx + J dy By Partial Differentiation property= − + Using Expression (1) (2)= − − 	 (By Cauchy-Riemann Condition)= − . By Partial Differentiation

and 	 = + By Partial Differentiation= J dx + J dy By Partial Differentiation property= − + Using Expression (1)= + 	 By Cauchy-Riemann Condition= − . By Partial Differentiation

Thus 1 is well-defined, and defines an almost complex structure on X.

Obviously,	 = ,	 ̅ = − ,̅ so that , is the eigenspace of with eigenvalues ,	and , is the eigenspace of J with
eigenvalue − 	 . Note that , (resp. , ) defines uniquely.
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Remark 2.1 Let X, Y be Riemann surfaces, and : ⟶ a map of differentiable manifolds. Show that f is holomorphic iff ∗
commutes with	 , i.e. the following diagram commutes

Theorem of Newlander-Nirenberg: Let CI be the category of differentiable 1-complex-dimensional manifolds equipped with an
almost complex structure. The morphisms of CI are differentiable maps which commute with	 . Remark 2.1 Yields a conclusion:

{Riemann surfaces} → CI (3)

Remark 2.1, shows that these conclusions for two Riemann surfaces X, Y the mapHom X, Y ⟶ Hom X, Y 	is bijective.

Theorem 2.1 The conclusion (3) is an equivalence of categories.

Proof: We will show that every object in CI comes from a Riemann surface. If X is a Riemann surface and z a local coordinate
then ∈ , and therefore the (0, 1) -part of vanishes.

Suppose X is a 2-D differentiable manifold and an almost complex structure on X. For every function ∈ we may
decompose	 = , + , .  The Theorem of Newlander-Nirenberg asserts that locally (say at	 ∈ ) we can find a function f
such that	 , = 0, and	 , ( ) ≠ 0. Such a function defines a diffeomorphism∶ (	 , 	) ⟶ ∆
for a suitable neighbourhood (	 , 	) of x, and ∆ the open disc with radius r ( for suitable r). Moreover, the map f commutes with
the almost complex multiplication. ∗ = ∗ ∆ .

Let ∈ be another point and g a function around y with	( )	 , = 0. The induced map

, ∩ , ≅→ g(U( , )⋂U , )
is holomorphic, because it commutes with . Therefore we obtain a complex atlas for X.

Metric and Curvature on Riemann Surface

Suppose X is a manifold. We write ,ℝ for the sheaf of real functions, and	 ,ℝ, for the sheaf of real 1-forms.
A Riemann metric g on 	 ,ℝ is a symmetric pairing of ,ℝ -modules∶ ,ℝ× 	 ,ℝ ⟶ ,ℝ,

with the following property. For all local section s ∈ 	 ,ℝ defined at a point∈ :	 , ≥ 0	and	 ( , )( ) = 0 ⇔ ( ) = 0.
For the existence of a Riemann metric we note that the sum of two metrics and the multiple of a metric by a positive function is
again a metric. Since locally (i.e. for open sets in	ℂ) there is a metric we can patch the local metrics together by using partition of
unity.

Remark 3.1 Usually a metric on the tangent bundle ,ℝ which is dual to the differential one form	 ,ℝ = ,ℝ,

 There is a canonical correspondence between the metrics of a vector space and its dual.
 The same applies to our situation.

Proposition 3.1 Suppose X is a 2-D oriented manifold with a Riemann metric g. There is a unique almost complex structure on
such that ( , ) = ( , ) for all sections s, t, and J preserves the orientation.
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Proof: Uniqueness: We check the uniqueness locally (since is a map of sheaves). Say we choose coordinates , such that∧ is positively oriented. By the Gram-Schmidt process we find an orthonormal base , of	 ,ℝ. Furthermore we may
suppose that ∧ is positively oriented, i.e. ∧ = ∧ with	 > 0. Write	 ( ) = + , ( ) = + , then+ = 1 = + and	 + = 0, and thus

or
Since preserves the orientation we get ( ) ∧ ( ) = ( − ) ∧ 	with − > 0 and thus

Now, = − 1 implies a = 0, c = 1.

Remark 3.2 It is sufficient to define locally. By uniqueness will glue. Let , be as above. We set	 ( ) = − , ( ) = . It has
all the required properties. From Theorem 2.1 we have a complex structure associated to g, obviously multiplying the metric g by a
positive global function f doesn’t change the induced complex structure. For a manifold X a conformal structure is a metric up to
multiplication with a positive function.

Proposition 3.2 If	 is a Riemann surface with almost complex structure then there is a unique conformal structure on X with( , ) = ( , ) for all sections	 , .
Proof: Locally, say around ∈ in a holomorphic coordinate	 = + , the metric( , ) = 1 = ( , ), ( , ) = 0,
has the required properties. By partition of unity we get a global metric with g( J. , J. ) = g( . , . ).

Given . , . = . , . computing locally:, = = , , , = 0, ( ( , ) = (− , ) = − ( , ))
with f > 0. Therefore is unique up to multiplication with a positive function

Associated hermitian form: Suppose X be a Riemann surface and g a metric which is with( . , . ) = (. , . ).

We introduce a hermitian metric∶ ⨂ ⟶ ,

which for , , , , , ∈ is defined by

Curvature: Suppose X is a Riemann surface with Riemann metric g compatible with the almost complex structure, and h the
associated hermitian metric.

The Gaussian curvature is the function

We are to prove that this function is well-defined. We obtain a global 2–form by setting
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In order to see that this is independent of the choice of the coordinate z and therefore defines a global form, let ′ = ( ) be a
coordinate change (f holomorphic). We get

′, ′
′ ∧ ′ = ( ) ( )( , ( ) ) ∧ ̅ = , ∧ ̅.

The decomposition into and -forms implies a decomposition of the derivative d,
With

,

We get This defines a global 2-form, because if then

and

The curvature function is obtained by comparing this 2 -form with Vol:

Now, we have the following results

Theorem 3.1 There is unique metric (up to multiplication with a constant) on the upper half plane H that is invariant under the
action of	 (ℝ).

Theorem 3.2 Suppose X is a Riemann surface, and choose metric g with . Show that on the fundamental cover

we get an induced metric with , which is invariant under the action of .

Conformal Structure

Let ℳ 	be a Riemannian manifold and metrics be in equivalence relation

if

It is Weyl equivalence, and an equivalence class of metrics is called a conformal structure on	ℳ . Diffeomorphisms of ℳ which
preserve the conformal structure are called conformal transformations, A Riemannian manifold ℳ with a metric g is called locally
conformally flat if every point ∈ ℳ has a coordinate neighbourhood U such that

(4)

It turns out that every Riemann surface is locally conformally flat.

Theorem 4.1 The set of conformal classes of metrics and the set of complex structures are in one-to-one canonical correspondence
for Riemann surfaces.

Complex structure generated by Metric

Specifying a complex structure completely specifies the conformal structure, and vice-versa. One consequence of this theorem is
that the notion of a biholomorphism and a conformal transformation are equivalent.
Let , be a 1-Complex dimensional differentiable manifold with a metric	 .  In local coordinate , : ⊂ → ℝ one has

, (5)

Definition: Two metrics and ̅ are called conformally equivalent if they differ by a function on

, (6)
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The relation (6) defines the classes of conformally equivalent metrics.

Remark 4.1 The angles between tangent vectors are the same for conformally equivalent metrics.
We show that there is one to one correspondence between the conformal equivalence classes of metrics on an orientable two-

manifold and the complex structure on . In terms of the complex variable one rewrites the metric as

, (7)

With

, , (8)

A coordinate is called conformal if the metric in this coordinate is of the form

(9)

i.e. it is conformally equivalent to the standard metric of

, .

Remark 4.2 If is an immersed surface in then the first fundamental form induces a metric on .

When the standard coordinate of is conformal, the parameter lines

, , ,

Comprise an infinitesimal square net on the surface.

Theorem 4.2 Every compact Riemann surface admits a conformal Riemannian metric.

Proof: Each point possesses a local parameter , where is a small open disc. Since M is compact

there exists a finite covering . For each choose a smooth function with

on , on .

is a conformal metric on . The sum of these metrics over yields a conformal metric on M.

Let us show how one finds conformal coordinates. The metric (7) can be written as follows (we suppose )

, (10)

Where

.

Here is a solution of the quadratic equation

,

which can be chosen

. (11)

Comparing (10) and (9) we get

or

In the first case the map satisfies the equation

(12)
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and preserves the orientation since for the map written in terms of the real coordinates

one has

.

In the second case inverses the orientation

Definition: Equation (12) is called the Beltrami equation and is called the Beltrami coefficient.

Let us postpone for a moment the discussion of the proof of existence of solutions to the Beltrami equation and let us assume that

this equation can be solved in a small neighbourhood of any point of .

Theorem 4.3 Let be a 1-complex-dimensional orientable manifold with a metric and an oriented atlas

on . Let be one of these coordinate charts with a point

the Beltrami coefficient (11) and be a solution to the Beltrami equation (12) in a

neighbourhood with . Then the coordinate is conformal and the atlas

defines a complex structure on .

Proof: To prove the holomorphicity of the transition function let us consider two local parameters with a

non-empty intersection Both coordinates are conformal

,

which happens in one of the two cases

or (13)

Only. The transition function is holomorphic and not antiholomorphic since the map preserves orientation.
Repeating the arguments of the proof of Theorem 4.3 one immediately observes that conformally equivalent metrics generate the
same complex structure. Finally, we obtain the following:

Theorem 4.4 Conformal equivalence classes of metrics on an orientable 1-complex-manifold are in one to one correspondence

with the complex structures on .

On Solution to the Beltrami Equation

For the real-analytic case the existence of the solution to the Beltrami equation was known already to Gauss. It can be
proven using the Cauchy-Kowalewski theorem.

Theorem 4.5 (Cauchy-Kowalewski)

Let

be a system of partial differential equations for functions .

The Cauchy problem
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where with real-analytic data (all are real-analytic functions of all

their arguments), has a unique real-analytic solution in some domain of variables with .
In terms of real variables

the Beltrami equation reads as follows:

(14)

If is real-analytic and all the coefficients in (14) are real-analytic, which implies the existence of a real-analytic solution
to the equation. Solutions to the Beltrami equation exist in much more general case but the proof is much more involved.

Recall that a function is of H lder class of order on if there exists a constant K such that

If all mixed n-th order derivatives of f exist and are then

Theorem 4.6 Let be a coordinate chart at some point and be the Beltrami coefficient. There is

a solution to the Beltrami equation of the class in some neighbourhood of the point .

Sketch of the proof of Theorem 4.6

The Beltrami equation can be rewritten as an integral equation using

Lemma 4.1 ( -Lemma)

Given the formula

defines a solution to the equation

In case or this lemma is a standard result in complex analysis.

The -Lemma implies that the solution of

(15)

where is holomorph, satisfies the Beltrami equation. The proof of the existence of the solution to the integral equation (15) is
standard: it is solved by iterations. Let us rewrite the equation to be solved as

, (16)

where is the right-hand side of (15). Let us suppose that there complete metric space such that

i)

ii) T is a contraction in , i. e. for any with some c < 1.

Then there exists a unique solution of (16) and this solution can be obtained from any starting point by iteration

. (17)

The theorem above holds true also after replacing .
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Classification of Riemann Surfaces

Mathematicians like to classify everything, up to isomorphism, and Riemann surfaces are no exception. Their classification is
given by the Uniformization theorem. Before we begin to define the concepts we will need to state the Uniformization theorem let
us state a special case;

Theorem 5.1 Uniformization theorem for simply-connected Riemann surfaces Up to conformal equivalence,
there exist three simply-connected Riemann surfaces;1) the Riemann sphere

2) the complex plane
3) the unit disk.

In order to state the Uniformization theorem for arbitrary Riemann surfaces, we must first discuss covering maps, automorphism
groups, and freely discontinuous group actions.

Automorphisms: An automorphism of a manifold is an biholomorphism The set of automorphisms is denoted

and forms a group under composition.

Universal cover: Let be any connected Riemann surface. The universal cover of is a simply-connected Riemann surface

, equipped with a surjective map . In addition, every point has a neighbourhood where (the pre-
image, not the inverse) is a countable disjoint union of sheets

Each (a sheet) is homeomorphic to via .

Covering groups: If is a covering map, then there is a group of homeomorphisms of such that the quotient space

is isomorphic to is called the covering group, and is isomorphic to .

One may also inquire as to when a group G of homeomorphisms gives rise to a surface with projection map equal to the
quotient map. The condition is that of free discontinuous action.

Figure 5.1: A cartoon of two spaces, , with their universal covers and projection map

A group acts freely discontinuously at a point if a neighbourhood U of p s.t. .

If the action is freely discontinuous at every point, the quotient space S/G is a manifold.

If is a Riemann surface and is its universal cover, the complex structure pulls back via the projection map and the

covering group consists of conformal automorphisms; it is a subgroup of Aut .

Uniformization Theorem for an arbitrary Riemann surfaces

Theorem 5.2 Every Riemann surface is conformally equivalent to , where
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is the universal cover of , and is a subgroup of Aut admitting a freely discontinuous action on M . In addition,

Automorphisms: Subgroups of the group of automorphisms of the three Riemann surfaces play an important role in Theorem 5.2.,
so it is a good idea to know what Aut is for each surface.

Aut : We use

with the isomorphism given in homogeneous coordinates on by

, (18)

The action of on projects to an action of on . Then, is the group Aut

whose action on is

, (19)

by virtue of equation (18). Such a transformation (the RHS of (19)) is called a M bius transformation.

.

Aut The conformal automorphisms of will be those automorphisms of which fix the point . Clearly a M bius

transformation which fixes must have ;

This group is known as Aff , the affine transformations of the plane. It is isomorphic to the group of matricies of the form

Thus,

.

Aut : The automorphisms of do not have such a straightforward derivation. An overview is presented: The unit disk is

conformally equivalent to the upper-half plane ( and will be used interchangeably).

The group of automorphisms of is , so

.

Theorem 5.3 With three classes of exceptions, the fundamental group of a Riemann surface is non-abelian.

 The only surfaces up to conformal equivalence with trivial fundamental group are and .

 The only surfaces (u.t.c.e.) with are , and .

 The only surfaces (u.t.c.e.) with are tori , a lattice in .

These conformal classes of surfaces are known as exceptional.
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Module of Riemann surfaces

Two Riemann surfaces can have the same underlying topological space, and yet be conformally-inequivalent. The set of
conformally-inequivalent surfaces over the same topological space is known as a moduli space. Is there structure on moduli
spaces? The answer to this question is yes, generically, and the structure can be very interesting. The general solution is
complicated, so we will be content with examining a few important examples.

To aid our study, we shall make use of the following theorem.

Theorem 6.1 Two Riemann surfaces have the same universal cover S and covering groups conjugate in Aut if and only if they

are conformally equivalent. That is, for , there exists s.t. .

Surfaces with universal cover : As Aut is the Lie group PL . If then Aut is a M bius transformation,
from (2).

Proposition 6.1 The only Riemann surface with universal cover is itself.

Proof: First we show that M bius transformations fix at least one point of .

Let . Then, a fixed point satisfies , which simplifies to

These equations clearly have solutions for any element of . Thus, we see that every element of Aut fixes at least one

point of , and since no proper subgroup of PL can act freely discontinuously on , we have the desired result.

An obvious consequence of this proposition is that the moduli space of genus zero surfaces is a one-point set. In fact, all three of
the simply-connected surfaces have one-point moduli spaces.

Surfaces with universal cover : Recall that Aut = Aff , with We will make use of the fact that

Theorem 6.2 If the universal covering space of is , then is conformally equivalent to , or , a torus.

The respective covering groups are , and .

Examine first the case . We can take as a generator, so that the covering map is just the exponential

map . The moduli space for is again trivial.

is a bit more complicated. We shall make use of Theorem 6.1. Consider a lattice in ;

.

Clearly it is a discrete group, isomorphic to , and the quotient is a torus (see figure 5.1). When two lattices do
are give conformally equivalent tori? By Theorem 6.1, the two lattices must be conjugate in Aut(C). Before we establish conditions

for the conjugacy of two lattices, we elucidate one further complication. Two lattices and may be identical;
that is, they are composed of the same set of points in C.

Lemma 6.1 The two lattices define the same set of points if the two basis elements of one lattice are linear combinations of the
other two (with integer coefficients);

with in . Furthermore, multiplying the entire matrix by any integer will yield the same lattice; we want .
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Figure 6.1 Two bases defining identical lattices in

Proposition 6.2 The conjugacy class of in Aut is the set of lattices of the form , with .

Proof: An element acts on a generator of the covering group as
and thus

.

Now, we define τ = η ω⁄ and without loss of generality, choose (i.e. since any two points in the lattice define it, choose

them appropriately: see figure 6.1). Furthermore, we choose	a =
ω
, so that every lattice is conjugate to one of the form	Λ(1, τ).

Combining this result and that of Lemma 6.1, we see that two lattices are equivalent if they are related by the Mobius
transformation

with

Theorem 6.3 The moduli space of the torus is

Surfaces with universal cover : Except for the four surfaces mentioned previously all Riemann surfaces

have as their universal covering space. There are many subgroups of which act freely discontinuously, the fixed-point-
free Fuchsian groups. Rather than beginning a long discourse, we shall leave them for another time. For now, we will find the

moduli spaces of the rest of the exceptional Riemann surfaces .

Surface π1 Moduli Space

T2

ℤ
∆,∆∗∆r

{e}ℤℤ {pt}{pt}
1, ∞
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