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INTRODUCTION

Eisenhart (1927) gave the theory of conformal structures arose in studying those properties of Riemannian and pseudo-Riemannian
manifolds that remain invariant under conformal transformations of the metric. The problem of conformal coordinates was studied
by Gauss, who proved their existence in the real-analytic case. Josh Guffin (2004) gave the Definition of Riemann surface as. A
complex manifold of complex dimension 1 is called a Riemann surface or 1-Dimensiona Riemannian manifold and introduce a
Complex structure as: Suppose that M is a 2n-dimensional manifold, having one atlas {44, Fy}; Uaedy = M, Fy: A, — C". If the
functions F, o F;*: €" — €. are holomorphic on their DOD (domains of definition), the atlas is known as complex-anaytic. Two
atlases {A,, Fa} & {Ba, %} are called compatible if their union is again an atlas. Clearly this defines an equivalence relation on the
set of atlases, an equivalence class of which is known as a complex structure. A manifold together with complex structure is
known as complex manifold. Its complex dimension is defined to be n; dimC™ = n .Other way to define a complex structure isto
complexify the tangent bundle and introduce an almost-complex structure J. An almost-complex structure on M is atensor of type
(1, 1) which squaresto —1. In local coordinatesthisis

:'rg}c = _6?'
An almost complex structure J is called to be integrable if the Nijenhuis tensor
NX,Y) =[X, Y] +]J[X, Y]+ ]J[X,]JY] - [JX,]Y]

vanishes for all smooth vector fields X and Y.
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An integrable almost-complex structure defines a complex structure on a manifold. In one complex dimension, the Nijenhuis
tensor N(X,¥) = (X,Y) + JUX, V) + J(X,]Y) - (JX,]JY) vanishes identically, so that every almost-complex structure defines a
complex structure. Any complex structure has a unique associated almost-complex structure.

Almost Complex Structures. An amost complex structure on X isamap

J:Ayg — Ak

of Axz modules, suchthat J? = - 1.

We may B-linearly extend J to A%, and thus obtain decomposition

Ay = Ay O Ay’

where J acts as multiplication with i on 4", and as - i on A%". Moreover,

AL = A%

Remark 1.1 There is a one to one correspondence between almost complex structures on X and decompositions of differentiable
vector bundles

Ay = A’ D AY st

A% = AL°,

2. Almost complex structur e of a Riemann surface

If X isaRiemann surface it means there is a natural almost complex structure. For given coordinates x, y we define

J dx := - dy,]J(dy) = dx. )
In order to see that thisisindependent of the choice of the coordinates et
f=hxy +ifalxy)

be aholomorphic functionand f; x,y , f>(x, y) another choice of coordinates. We compute

Jdafi =] %d;u %dy By Partial Differentiation

= %}] dx + %;l] dy By Partial Differentiation property
= _ %}dy + %;ldx Using Expression (1) @)
- %;%dy - %’fdx (By Cauchy-Riemann Condition)

= —df,. By Partial Differentiation

and

Jdfs =7 %d;u ‘Z—fdy By Partial Differentiation

= %] dx + i—f] dy By Partial Differentiation property
- - %dy + z—fdx Using Expression (1)

= ‘3—';1 dy + %dx By Cauchy-Riemann Condition

= —df;. By Partial Differentiation

Thus 1 iswell-defined, and defines an almost complex structure on X.

Obviously, ] dz = idz,] dz = -idz, sothat Ay isthe eigenspace of J with eigenvalues i, and A% is the eigenspace of Jwith
eigenvalue - i. Notethat A" (resp.Ay") defines J uniquely.
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Remark 2.1 Let X, Y be Riemann surfaces, and f: X — ¥ a map of differentiable manifolds. Show that f is holomorphic iff f~
commutes with J, i.e. the following diagram commutes

-
A —— AL

b,

AL S AL

Theorem of Newlander-Nirenberg: Let Cl be the category of differentiable 1-complex-dimensional manifolds equipped with an
almost complex structure. The morphisms of Cl are differentiable maps which commute with J. Remark 2.1 Yields a conclusion:

{Riemann surfaces} — ClI 3
Remark 2.1, shows that these conclusions for two Riemann surfaces X, Y the map

Hompgg X,Y — Homg; X, Y isbijective.

Theorem 2.1 The conclusion (3) is an equivalence of categories.

Proof: We will show that every object in CI comes from a Riemann surface. If X is a Riemann surface and z alocal coordinate
then dz € Ay and therefore the (0, 1) -part of dz vanishes.

Suppose X is a 2-D differentiable manifold and J an almost complex structure on X. For every function f € A% we may

decomposedf = w'® + w®' . The Theorem of Newlander-Nirenberg asserts that locally (say at x € X) we can find a function f
such that w®! = 0, and w™°(x) # 0. Such afunction f defines a diffeomorphism

[l =4,

for a suitable neighbourhood U ¢ of x, and A, the open disc with radiusr ( for suitable r). Moreover, the map f commutes with
the almost complex multiplication. Jf* = f*JA,.

Let y € X be another point and g afunction around y with (dg) ®* = 0. The induced map

fUyg NUyxy - g(U(y,g)nU xf )
is holomorphic, because it commutes with J. Therefore we obtain a complex atlas for X.
Metric and Curvature on Riemann Surface

Suppose X isamanifold. We write Ay for the sheaf of real functions, and rﬂ}l , for the sheaf of real 1-forms.
A Riemann metric g on rﬂ}, isasymmetric pairing of Ay -modules

g: J-I}_ x dq}(, — Axp,

with the following property. For al local sections € ﬂ}, defined at a point

x€EX:gss x =20andg(s,s)(x)=0e5s(x)=0.

For the existence of a Riemann metric we note that the sum of two metrics and the multiple of a metric by a positive function is
aggjn a metric. Since locally (i.e. for open sets in ) there is a metric we can patch the local metrics together by using partition of
unity.

Remark 3.1 Usually a metric on the tangent bundle T 5 which is dual to the differential one form T,‘;f = rﬂ}l,

- Thereisacanonica correspondence between the metrics of avector space and its dual.
- The same appliesto our situation.

Proposition 3.1 Suppose X isa 2-D oriented manifold with a Riemann metric g. There is aunique almost complex structure J on X
suchthat g(/s, Jt) = g(s,t) for al sectionss, t, and J preserves the orientation.
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Proof: Unigueness; We check the uniqueness locally (since J is a map of sheaves). Say we choose coordinates x, y such that
dx A dy is positively oriented. By the Gram-Schmidt process we find an orthonormal base s,t of rﬂ},. Furthermore we may
suppose that s A t ispositively oriented, i.e. s At = fdx A dy with f > 0. WriteJ(s) = as + ct, J(t) = bs + dt, then

a’*+ ¢*>=1= b*>+ d’andab + cd = 0, and thus

a by_[a -c a ¢
([- d]_(c ﬂ]or {.{' —u)
Since ] preservesthe orientation we get J(s) A J(t) = (ad - bc)s At withad - bc > 0 and thus
a by_fa -rc
(r dj E ({' a }
Now, /2 = -1 impliesa=0,c= 1.
Remark 3.2 It is sufficient to define J locally. By uniqueness J will glue. Let s, t be as above. We set J(s) = - t,J(t) = s. It has
all the required properties. From Theorem 2.1 we have a complex structure associated to g, obviously multiplying the metric g by a
positive global function f doesn’t change the induced complex structure. For a manifold X a conformal structure isametric g up to

multiplication with a positive function.

Proposition 3.2 If X is a Riemann surface with almost complex structure J then there is a unique conformal structure g on X with
g(Js,Jt) = g(s,t) for all sectionss, t.

Proof: Locally, say around x € X in aholomorphic coordinate z = x + iy, the metric
gx(dx,dx) = 1 = gx(dy,dy), gx(dx,dy) = 0,

has the required properties. By partition of unity we get a global metric g withg(J.,J.)=9(.,.).
Giveng J.,]. = g .,. computinglocaly:

g dx,dx = f=gdydy,gdxdy =0(g(dx,dy)= g(-dy dx) = - g(dx,dy))
with f > 0. Therefore g is unique up to multiplication with a positive function

Associated hermitian form: Suppose X be a Riemann surface and g a metric which iswith
g(..].) = g(.,.).

We introduce a hermitian metric

h: AY®AY — Ay,

whichfor a, b, c,d, s, t € A% isdefined by

kla + ib,c + id) := h(a.c) + h(b.d) + i(h(b,c) — h(a.d)),
= his.t) = g(s.t) + ig(s.]Jt)

Curvature: Suppose X is a Riemann surface with Riemann metric g compatible with the ailmost complex structure, and h the
associated hermitian metric.

The Gaussian curvature is the function

_ hidzds) (u*
K= 2 “\as

1) ot ) (G2 422

LAY
= 2h(dz.dz) (5 ) (1og(h(dz. d2)))
We are to prove that this function is well-defined. We obtain a global 2—form by setting

+ ﬁ) (Iog{h {dz,dz]'})

4

=—yz
2hidz.dz)

Vol AdZ
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In order to see that this is independent of the choice of the coordinate z and therefore defines a global form, let z' = f(z) be a
coordinate change (f holomorphic). We get

i ' = _ i92(5)92(f) s i .
TR dz Ndz = I3, f 420,132 dzAdz = T YTY dzAdz.

d=(3.7) 1 d=dsd

The decomposition into (@ 1) and (1. 0)-formsimplies a decomposition of the derivative d, 1z —— o1y @Ay —— oAj
With

a(f) = 8,(f)dz. 3(f) = 3,(fldz,
d(fdz) = 8.(f)dz ndz 8(fdz) = .(Hdzndz

We get 4 (iﬂg (1 {d:'dﬂ}] = 0,0, log(h(dz,dz))dz A dZ. defines aglobal 2-form, becauseif = = f(2) then

93 (log(n(dz', d21)) = 85 (log (h(dz.d=)) + 1og (8:(F)3 7).
and 8dlog( 3.(N3.(H) = 0.

The curvature function is obtained by comparing this 2 -form with VVol:
93 (1og (h(dz,d2))) = —iK - Vol
Now, we have the following results

Theorem 3.1 There is unique metric (up to multiplication with a constant) on the upper half plane H that is invariant under the
action of SL,(@).

Theorem 3.2 Suppose X is a Riemann surface, and choose metric g with §UJ-.J.) = g{...). Show that on the fundamental cover
p: X — X we get an induced metric 4 with §0J-.1.0 = &(...), which isinvariant under the action of 71 ),

Conformal Structure

Let @ beaRiemannian manifold and metrics be in equivalence relation
B:~ B2 if B1= €™ g we C* (M),
It is Weyl equivalence, and an eguivalence class of metrics is called a conformal structure on @ . Diffeomorphisms of @ which

preserve the conformal structure are called conformal transformations, A Riemannian manifold B with a metric g is called locally
conformally flat if every point p € B has a coordinate neighbourhood U such that

g|u

i=1 (4)
It turns out that every Riemann surface islocally conformally flat.

Theorem 4.1 The set of conformal classes of metrics and the set of complex structures are in one-to-one canonical correspondence
for Riemann surfaces.

Complex structure generated by Metric

Specifying a complex structure completely specifies the conformal structure, and vice-versa. One consequence of this theorem is
that the notion of a biholomorphism and a conformal transformation are equivalent.
Let M,g beal-Complex dimensional differentiable manifold with ametric g. Inlocal coordinate x,y :U € M — B2 one has

g = adx® + 2bdxdy + cci_}-':, a=>0.c>0.ac—5*=10 (5)

Definition: Two metrics g and g are called conformally equivalent if they differ by afunction on M
g~g=g=f4§,f:M—=R, (6)
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Therelation (6) defines the classes of conformally equivalent metrics.

Remark 4.1 The angles between tangent vectors are the same for conformally equivalent metrics.
We show that there is one to one correspondence between the conformal equivalence classes of metrics on an orientable two-

manifold M and the complex structure on M. In terms of the complex variable Z = * + ¥ one rewrites the metric as

g = Adz* 4+ 2Bdzd? + AdZ* AeCBeR.B > |4l ©)
With
a=2B+A+A b=iA-4) c=2B-A-4 (8)

A coordinate W * ¥ = Ciscalled conformal if the metric in this coordinate is of the form

g = e¥dwdw ©
i.e. it isconformally equivalent to the standard metric of R*=¢

dwdw = du’® + dv:, W =u+iv

Remark 4.2 If F:U = B* = R* j5 an immersed surface in & then the first fundamental form {@F.dF} induces a metric on U.
When the standard coordinate (.3 of E* = U js conformal, the parameter lines

F(x.am) Flan.y) x,y e RnmeZA—0
Comprise an infinitesimal square net on the surface.

Theorem 4.2 Every compact Riemann surface admits a conformal Riemannian metric.

Proof: Each point 2 € M possesses a local parameter Z= * Up =Dy =€ where 25 isasmal open disc. Since M is compact
Ui Up, = mi:D, =R

there exists a finite covering M For each i choose a smooth function with
my > 1:IOI’] 'DI, my = ':'on C “-.DJ
m;(zp;)dzpdZp; isaconformal metric on U7:. The sum of these metrics over = Lo woum yields a conformal metric on M.

Let us show how one finds conformal coordinates. The metric (7) can be written as follows (we suppose # # 0)
g = sldz + pdz)(dz + fidz).s > 0 (10)

Where

15

R =
u=0 + lul?), s =

1+ul?,

Here lulisa solution of the quadratic equation

1 ik
ol + 2 =2
; ul Al,

which can be chosen ¢! =1

ul = (8 - yBT=141F) (11)

Comparing (10) and (9) we get
dw = A{dz + pd )

or

dw = A(dZ + ddz).

In the first case the map W(=. Z) satisfies the equation
Wy =Wy (12)
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and preserves the orientation W: ¥ = € — V < Cgince || < 1: for themap £ — W written in terms of the real coordinates
Z=x+iyi w = u+ i¥onehas

du Adv = lw*(1 - lul*)dx A dy,
Inthe second case ¥ * U = V' inverses the orientation

Definition: Equation (12) is called the Beltrami equation and #(2-Z) is called the Beltrami coefficient.

Let us postpone for a moment the discussion of the proof of existence of solutions to the Beltrami equation and let us assume that
this equation can be solved in a small neighbourhood of any point of .

Theorem 4.3 Let M be a 1-complex-dimensional orientable manifold with a metric 8 and an oriented atlas
((reda) U =Boes on M. Let (3):UcM—=R pe one of these coordinate charts with a point
PelUz=x+iy.u(z2) the Beltrami coefficient (11) and "#(# Z] pe a solution to the Beltrami equation (12) in a
neighbourhood Vs =V = z(U) yjth Pels == “4(2). Then the coordinate Ws is conformal and the atlas Ws: Us — Caes
defines a complex structure on .

Proof: To prove the holomorphicity of the transition function let us consider two local parameters w:U — C.w: 0 — € with a
non-empty intersection U NI = 0. Both coordinates are conformal

b5 ya P

g = e¥dwdiW = E"EH'EI'I::"

which happensin one of the two cases

L8 w _

am " Of 3w (13)

Only. The transition function wiw) s holomorphic and not antiholomorphic since the map * —* W preserves orientation.
Repeating the arguments of the proof of Theorem 4.3 one immediately observes that conformally equivalent metrics generate the
same complex structure. Finally, we obtain the following:

Theorem 4.4 Conformal equivalence classes of metrics on an orientable 1-complex-manifold # are in one to one correspondence
with the complex structures on .

On Solution to the Beltrami Equation

For the real-analytic case & € "the existence of the solution to the Beltrami equation was known aready to Gauss. It can be
proven using the Cauchy-K owalewski theorem.

Theorem 4.5 (Cauchy-K owalewski)

Let

8™y F( g+ +mn )
=Elxpxiui—s—u

xg by a :’3 wilx ™

i=1l..k xeR"

n

E m;Em, my <m, mez1

be asystem of ¥ partial differential equationsfor ¥ functions %0 xg). . up b xq.,

The Cauchy problem
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where @ = {(x,x).x, = 0,x € Qp, Qpis a domain in "} ith redl-analytic data (al Fi @i are real-analytic functions of all

their arguments), has a unique real-analytic solution %% X¢. in some domain £ = B of variables (. xo) with 2o © .
In terms of real variables

z=x+iy. w=su+iv.u=p+ig

the Beltrami equation reads as follows:

2 +q° =1\ u
O, =gl 2 PO, 14

If #isred-analytic and lul = 1 4| the coefficientsin (14) are real-analytic, which implies the existence of areal-anaytic solution
to the equation. Solutions to the Beltrami equation exist in much more general case but the proof is much more involved.

Recall that a function is of H 8lder class of order @0 < a < 1) on W.f € C*(W) if there exists a constant K such that
Ife) —flg)l =Klp—gl®. ¥ p.geW
If all mixed n-th order derivatives of f exist and are € © then f € C™**(W)

Theorem 4.6 Let 2 U =V = & pe a coordinate chart at some point € U and # € C*(V) pe the Beltrami coefficient. There is
asolution w(z.2) to the Beltrami equation of the class * € € “**(WJ in some neighbourhood W of the point &) e W =V,

Sketch of the proof of Theorem 4.6

The Beltrami equation can be rewritten as an integral equation using
Lemma4.1( I'f§—Lemma)

Given g € C*WV) theformula

@ -2— ?(—ﬂdfﬂaf

definesa € “** (V) solution to the equation
fz{:} = .g[:.'}

Incase 8 € €% or § € C* thislemmais a standard result in complex analysis.
The @-Lemmaimplies that the solution of

B 45 ndE

il i L “-
w(z) =h@) + i, o (15)

where " is holomorph, satisfies the Beltrami equation. The proof of the existence of the solution to the integral equation (15) is
standard: it is solved by iterations. Let us rewrite the equation to be solved as

W= Tu.', (16)
where T isthe right-hand side of (15). Let us suppose that there complete metric space # such that

iy THCH
i) Tisacontractionin H, i.e ITw —Tw'll < cllw —w'l for any w.w' € H with somec < 1.

Then there exists a unique solution " € H of (16) and this solution can be obtained from any starting point *= € # by iteration

w” = limg, . TMwy (17)

The theorem above holds true also after replacing & =+ @ + n.n € N,
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Classification of Riemann Surfaces

Mathematicians like to classify everything, up to isomorphism, and Riemann surfaces are no exception. Their classification is
given by the Uniformization theorem. Before we begin to define the concepts we will need to state the Uniformization theorem let
us state a specia case;

Theorem 5.1 Unifor mization theorem for simply-connected (3 (M) = {e}) Riemann surfaces Up to conformal equivalence,
there exist three simply-connected Riemann surfaces;

1) €=cul=lthe Riemann sphere
2) tthecomplex plane
3) 4={ed|zl <1 theunit disk.

In order to state the Uniformization theorem for arbitrary Riemann surfaces, we must first discuss covering maps, automorphism
groups, and freely discontinuous group actions.

Automor phisms: An automorphism of a manifold #*f is an biholomorphism f : ¥ = M. The set of automorphisms is denoted
Aut (M) and forms a group under composition.

Universal cover: Let ' be any connected Riemann surface. The universal cover of * is asimply-connected Riemann surface <

, equipped with a surjective map ®X = M |n addition, every point P € M has a neighbourhood U where @~ *(U) (the pre-
image, not the inverse) is a countable disjoint union of sheets

=) =| v

@&l
Each ¥z (asheet) is homeomorphicto ¥ via 7.

Covering groups: If #:Z — M jsa covering map, then thereisagroup & of homeomorphisms of £ such that the quotient space
L/G isisomorphic to - G s called the covering group, and isisomorphic to 1 (M},

One may also inquire as to when a group G of homeomorphisms gives rise to a surface =/ with projection map equal to the
quotient map. The condition is that of free discontinuous action.

Figure 51 A catoon of two spaces, 5 and T with their universd covers Band € and projection map
mR <5 and m:C - T¢

A group & actsfreely discontinuously at apoint # € £ if 3 aneighbourhood U of pst. gV NU =@ vg € 6 — (e},

If the action is freely discontinuous at every point, the quotient space S/G isamanifold.
If M is a Riemann surface and £ is its universal cover, the complex structure pulls back via the projection map ™ and the
covering group consists of conformal automorphisms; it is a subgroup of Aut &),

Uniformization Theorem for an arbitrary Riemann surfaces

Theorem 5.2 Every Riemann surface *f is conformally equivalent to =/C, where



37057 Kulveer Singh Rana and Petwal, Review of complex conformal structures of 1-dimensional Riemannian manifold

-

is the universal cover of #, and € is a subgroup of Aut () admitting a freely discontinuous action on M . In addition,
G =~ x, (M)

™ ™

Automor phisms: Subgroups of the group of automorphisms of the three Riemann surfaces play an important role in Theorem 5.2.,
so it isagood ideato know what Aut isfor each surface.

Aut ':3: We use
CxCpl=pt

with the isomorphism given in homogeneous coordinates on P by

([z.2.]) = 3—1 ([1,0]) = {=) (18)

The action of GL{2.€) on C* projects to an action of PL(2.C) ={6L(2.€)/4.2 € T} on P* Then, PL(2.C) js the group Aut

(€)whose action on € is
()=(e HE)-r-22

by virtue of equation (18). Such a transformation (the RHS of (19)) is called a M @bius transformation.

(19)

Aut (€)= PL(2.0)

Aut (©): The conformal automorphisms of £ will be those automorphisms of € which fix the point =, Clearly a M ®bius
transformation which fixes * must have ¢ = 0:

'=az+b aclC.bel

This group is known as Aff (1. ':], the affine transformations of the plane. It isisomorphic to the group of matricies of the form

G 7

Thus,
Aut (C) = Aff(1.C)

Aut(8): The automorphisms of & do not have such a straightforward derivation. An overview is presented: The unit disk is
conformally equivalent to the upper-half plane U = {z € €|7(2) = 0] (4 and U will be used interchangeably).

The group of automorphisms of U js PL{2.R) <o
Aut(8) = PL(Z.R)

Theorem 5.3 With three classes of exceptions, the fundamental group 1 of a Riemann surface is non-abelian.

The only surfaces up to conformal equivalence with trivial fundamental group are CCana b,
The only surfaces (ut.c.e) with #t = Zgre €8 gng & ={z € Clr < |z] < 1]

The only surfaces (ut.c.e) with 2 = 2 B Z getorj S/M@m) | A gjaticein €

These conformal classes of surfaces are known as exceptional .
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M odule of Riemann surfaces

Two Riemann surfaces can have the same underlying topological space, and yet be conformally-inequivalent. The set of
conformally-inequivalent surfaces over the same topological space is known as a moduli space. Is there structure on moduli
spaces? The answer to this question is yes, generically, and the structure can be very interesting. The general solution is
complicated, so we will be content with examining a few important examples.

To aid our study, we shall make use of the following theorem.

Theorem 6.1 Two Riemann surfaces have the same universal cover S and covering groups conjugate in Aut =) if and only if they
are conformally equivalent. That is, for G162 © Aut(Z) thereexists & € Aut(Z) gt G187 = G,

o~

Surfaceswith universal cover €: AsAut (€) isthe Lie group PL (2.€) 1f € =C U=, then Aut (€)isam dbius transformation,
from (2).

Proposition 6.1 The only Riemann surface with universal cover Cis Citsalf.

Proof: First we show that M €bius transformations fix at least one point of €.

a b 0 — 12+b

Let & ) EPL@O 1o sfived point satisfies 2 = ~=a, which simplifies to
a-d 1 ——

g = ?ﬁ: iﬂ\.'td—ﬂ-—--}cb c=0

z= c=0az=d

= d
z=xmc=0a=db=0

These equations clearly have solutions for any element of £L(2.€). Thus, we see that every element of Aut (€)fixes at least one
point of £, and since no proper subgroup of PL (2. <] can act freely discontinuously on €, we have the desired result.

An obvious consequence of this proposition is that the moduli space of genus zero surfaces is a one-point set. In fact, all three of
the simply-connected surfaces have one-point moduli spaces.

Surfaceswith universal cover <: Recall that Aut (€) = Aff (1.€) with z — @z + b. We will make use of the fact that
Theorem 6.2 If the universal covering space of M is €, then # is conformally equivalent to <€, or T*, atorus,

The respective covering groups are {8}, Zand 2@ Z,
Examine first the case & = Z. We can take 2 2+ 1 as a generator, so that the covering map 7€ = £ s just the exponential
map %(z) = exp(2av =12z} The moduli spacefor £ isagaintrivial.

G = Z & Z jsabit more complicated. We shall make use of Theorem 6.1. Consider alatticein &;
Af(o,n) = {mo + o |mn € Z;w,n € C* linearly independent}.

Clearly it is a discrete group, isomorphic to Z & Z, and the quotient /-%(«.M) is a torus (see figure 5.1). When two lattices do
are give conformally equivalent tori? By Theorem 6.1, the two lattices must be conjugate in Aut(C). Before we establish conditions

for the conjugacy of two lattices, we elucidate one further complication. Two lattices -“{m‘-"‘h] and “*(®2:M3) may be identical;
that is, they are composed of the same set of pointsin C.

Lemma 6.1 The two lattices define the same set of paints if the two basis elements of one lattice are linear combinations of the
other two (with integer coefficients);

()-8 o

a b
with (: dJ in GL(Z.Z). Furthermore, multiplying the entire matrix by any integer will yield the same lattice; we want PL(2.Z)
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Figure 6.1 Two bases defining identical latticesin <

Proposition 6.2 The conjugacy class of (@.1) in Aut () isthe set of lattices of the form (2. an) with 3 € €7

Proof: An element (2b) € Aut(C) acts on a generator Hai2 = 2+ @ of the covering group as (2b) - hy(2) = a(z + @) + b,
and thus

(a.b)hy(a.b) *(Z) =z + am

Now, we define T = n/w and without loss of generality, choose J(t) = 0 (i.e. since any two pointsin the lattice define it, choose
them appropriately: see figure 6.1). Furthermore, we choosea = é so that every lattice is conjugate to one of the form A(1, T).

Combining this result and that of Lemma 6.1, we see that two lattices are equivalent if they are related by the Mobius
transformation

n+h a b
(2 (2 Denen

Theorem 6.3 The moduli space of the torusis ¥ /PL{2. Z).

Surfaces with universal cover U: Except for the four surfaces mentioned previously (€.€.C.and T2), 4 Riemann surfaces

have U astheir universal coveri ng space. There are many subgroups of Aut(U) \which act freely discontinuoudly, the fixed-point-
free Fuchsian groups. Rather than beginning a long discourse, we shall leave them for another time. For now, we will find the

moduli spaces of the rest of the exceptional Riemann surfaces & 4% and 4,

Surface m Moduli Space

r {s) -1}

=

C =} ot}

c |2 ot}
T2 21 yreo
A, {e} {pt}

A o)

A 1,0
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