

DEBUNKING OF COMMON ATTACKS IN WEB APPLICATIONS

*Vamsi Mohan, V. and

Department of Computer Science,

ARTICLE INFO ABSTRACT

Cyber-
connected.
and legacy network based attacks have been replaced by more sophisticated web application based
attacks. It is vitally important to di
happened in the recent years. In this paper, we define each of them in detail an
differences.
comprehensive overview about Web attacks.

Copyright©2017, Vamsi Mohan and Sandeep Malik.
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The rapid and tremendous growth of Information and
Communication Technology has increased access to web
applications. The increased usage of the Internet and network
technology has changed the focus in assessing computers.
Increased access has paved the way for security and vulnerable
threats in the form of attacks in web applications. Web based
attacks are considered by security experts to be the greatest and
frequent times the least understood of all risks related to
confidentiality, stability, availability, and integrity.
purpose of a web based attack is significantly different than any
other attacks. Web based attacks focus on an application itself
and functions on layer 7 of the OSI. John Pescatore of the
Gartner group claims that nearly 70% of all attacks occur at the
application layer (Desmond, Paul, 2004). J. Fonseca, M. Vieira,
and H. Madeirastated in their publication, vulnerabilities are
viewed as sensible on the grounds that they are gotten from the
broad field study on genuine web application vulnerabilities
introduced in (Fonseca et al., 2010), and are infused by set of
delegate limitations and tenets characterized in
2005). According to the OWASP, there are top 10 web
application attacks namely SQL Injection (SQLi), Broken
Authentication and Session Management, Cross
(XSS), Insecure Direct Object References, Security Miscon
figuration, Sensitive Data Exposure, Missing

*Corresponding author: Vamsi Mohan, V.
Department of Computer Science, School of Engineering and
Technology, Raffles University, Neemrana

ISSN: 0975-833X

Article History:

Received 19th December, 2016
Received in revised form
10th January, 2017
Accepted 15th February, 2017
Published online 31st March, 2017

Key words:

Web Attacks, SQL injections,
Cross Site Scripting (XSS).

Citation: Vamsi Mohan, V. and Dr. Sandeep Malik
Research, 9, (03), 47370-47373.

RESEARCH ARTICLE

DEBUNKING OF COMMON ATTACKS IN WEB APPLICATIONS

Vamsi Mohan, V. and Dr. Sandeep Malik

, School of Engineering and Technology, Raffles University, Neemrana

ABSTRACT

-attacks are becoming commonplace in our society these days as the
connected. Security attacks on information security infrastructure have continued to evolve steadily
and legacy network based attacks have been replaced by more sophisticated web application based
attacks. It is vitally important to discuss web application attacks considering the number of attacks
happened in the recent years. In this paper, we define each of them in detail an
differences. We also conclude our studies in this area with providing a diagram which gives a
comprehensive overview about Web attacks.

 This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid and tremendous growth of Information and
Communication Technology has increased access to web
applications. The increased usage of the Internet and network
technology has changed the focus in assessing computers.
Increased access has paved the way for security and vulnerable
threats in the form of attacks in web applications. Web based
attacks are considered by security experts to be the greatest and

uent times the least understood of all risks related to
ability, and integrity. The

purpose of a web based attack is significantly different than any
other attacks. Web based attacks focus on an application itself

tions on layer 7 of the OSI. John Pescatore of the
Gartner group claims that nearly 70% of all attacks occur at the

J. Fonseca, M. Vieira,
their publication, vulnerabilities are

sible on the grounds that they are gotten from the
broad field study on genuine web application vulnerabilities

, and are infused by set of
delegate limitations and tenets characterized in (Buehrer et al.,

ng to the OWASP, there are top 10 web
application attacks namely SQL Injection (SQLi), Broken
Authentication and Session Management, Cross-Site Scripting

Object References, Security Miscon
figuration, Sensitive Data Exposure, Missing Function Level

Department of Computer Science, School of Engineering and

Access Control, Cross-Site Request Forgery, Using
Components With Known Vulnerabilities and
Redirects and Forwards (OWASP top 10 security flaws

1.OWASP Top 10 Web Application Attacks

According to the TechTarget, the OWASP Top Ten is a list of
the 10 most dangerous current Web application security flaws,
along with effective methods of dealing with those flaws.
OWASP (Open Web Application Security Project) is an
organization that provides unbiased and practical,
effective information about computer and Internet applications
(TechTarget OWASP top ten, 2013

SQL Injection (SQLi)

SQL Injection (SQLi) refers to an attack where an attacker can
inject malicious SQL statements (r
payload) that control a web application’s database server. SQL
Injection vulnerabilities could affect any web application that
usesthe SQL-based database. SQLi is the olde
vulnerability. It is most prevalent and dangerous for web
applications. By leveraging SQL injection vulnerability, an
attacker can bypass a web application's authentication and
authorization mechanism and retrieve the contents of an entire
database. SQL Injection can be used to add, modify and delete
records in a database and it affects the data integrity.
Injection can provide attackers with unauthorized access to
sensitive data including, bank account details, trade secrets,
intellectual property rights and other sensitive information.

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 9, Issue, 03, pp.47370-47373, March, 2017

 INTERNATIONAL
 OF CURRENT RESEARCH

Vamsi Mohan, V. and Dr. Sandeep Malik, 2017. “Debunking of common attacks in web applications

 z

DEBUNKING OF COMMON ATTACKS IN WEB APPLICATIONS

School of Engineering and Technology, Raffles University, Neemrana

attacks are becoming commonplace in our society these days as the world becomes more
Security attacks on information security infrastructure have continued to evolve steadily

and legacy network based attacks have been replaced by more sophisticated web application based
scuss web application attacks considering the number of attacks

happened in the recent years. In this paper, we define each of them in detail and emphasize their
We also conclude our studies in this area with providing a diagram which gives a

is an open access article distributed under the Creative Commons Attribution License, which permits

Site Request Forgery, Using
Components With Known Vulnerabilities and Unvalidated

OWASP top 10 security flaws, 2013).

OWASP Top 10 Web Application Attacks

, the OWASP Top Ten is a list of
the 10 most dangerous current Web application security flaws,
along with effective methods of dealing with those flaws.
OWASP (Open Web Application Security Project) is an
organization that provides unbiased and practical, cost-
effective information about computer and Internet applications

2013).

SQL Injection (SQLi) refers to an attack where an attacker can
inject malicious SQL statements (referred as a malicious

that control a web application’s database server. SQL
Injection vulnerabilities could affect any web application that

based database. SQLi is the oldest and critical
It is most prevalent and dangerous for web

everaging SQL injection vulnerability, an
attacker can bypass a web application's authentication and
authorization mechanism and retrieve the contents of an entire
database. SQL Injection can be used to add, modify and delete

affects the data integrity. SQL
Injection can provide attackers with unauthorized access to
sensitive data including, bank account details, trade secrets,
intellectual property rights and other sensitive information.

INTERNATIONAL JOURNAL
OF CURRENT RESEARCH

Debunking of common attacks in web applications”, International Journal of Current

How SQL Injection (SQLI) works?

To run malicious SQL queries against a database server, first
an attacker must find an input within the web application that
is included inside of an SQL query. For attacking the web
application, the vulnerable website needs to directly include
user input within an SQL statement. Then, an attacker can
insert a payload that will be included as part of the SQL query
and run against the database server. The following server-side
pseudo-code is used to authenticate users to the web
application.

The above code is a simple example of authenticating a user
with a username and a password against a database table. The
written code is vulnerable to SQL Injection because an attacker
could submit malicious input in a way that would alter the
SQL statement being executed by the database server. A
simple example of an SQL Injection payload could be as
simple as setting the password field to password’ OR 1=1. The
result would be in the following SQL query being run against
the database server.

An attacker can also comment out the rest of the SQL
statement to control the execution of the SQL query further.
Once the query executes, the result is returned to the
application to be processed, resulting in an authentication
bypass.

Broken Authentication and Session Management

An attacker (an anonymous attacker, a user with own account
who may attempt to steal data from other accounts, or an
insider malicious actions) uses leaks or flaws in the
authentication or session management functions to impersonate
other users. The applications which is poorly coded related to
authentication and session management are often allow
attackers to compromise passwords, keys, or session tokens, or
to exploit implementation flaws. Developers build custom
authentication and session management techniques while
developing web site.

According to CodeDx enterprise, there are seven reasons an
application may be vulnerable (Code, 2004).

1) User authentication credentials aren’t protected, when
stored using hashing or encryption techniques.

2) Credentials can be guessed in case of weak account
management functions.

3) Session IDs are exposed in the URL.
4) Session IDs are vulnerable to session fixation attacks.
5) Sessions don’t timeout or SSO is not invalidated during

logout.
6) Session IDs aren’t rotated after a successful login.
7) Passwords, session IDs and other credentials are sent

over unencrypted channels.

Cross-Site Scripting (XSS)

Cross-site Scripting (XSS) refers to the client-side code
injection attack where an attacker can execute malicious scripts
(referred as malicious payload) into a legitimate website or web
application. XSS is the most rampant of web application
vulnerabilities and occurs when a web application makes use of
unvalidated user input within the output it generates. According
to Incapsula security blog, Cross site scripting (XSS) is a
common attack vector that injects malicious code into a
vulnerable web application. XSS differs from other web attacks
(e.g., SQL injections), in that it does not directly target the
application itself. Instead, the users of the web application are
the ones at risk (Incapsula security blog, 2016). There are
primarily three types of XSS attacks (Vikas K. Malviya et al.,
2013; https://www.owasp.org/index.php/Top_10_2013-A3-
Cross-Site_Scripting_(XSS); http://excess-xss.com/#xss-
attacks) i.e., Persistence XSS, Non- Persistence XSS and DOM
based XSS. XSS will take advantage of VBScript, ActiveX
code, and Flash files. However, it will impact majorly on
Javascript, which is widely used in the web applications and
portals.

How Cross site scripting (XSS) works?

To run malicious javascript code in the victim's web browser,
the attacker must first find a way to inject a payload into a web
page. Generally, attackers use social engineering techniques to
convince user to visit a vulnerable page with an injected
JavaScript payload. An XSS attack to take place the vulnerable
website needs to directly include user input or malicious code
in its pages. The following server-side pseudo-code is used to
display the comments on a web page. The above web page is
vulnerable to Cross Site scripting (XSS) because an attacker
could submit a comment that contains a malicious payload. Eg:
<script>executeMaliciousCode();</script>. Users visiting the
web page will get served the following HTML page.

When the page loads in the victim’s browser, the attacker’s
malicious script will execute, without the user permission or
realization.

 # Define variables

txtUserName = getRequestString("username");

txtPasswd = getRequestString("password");

SQL query vulnerable to SQLi

sql = “SELECT id FROM users WHERE username=’” + txtUserName+ “’ AND password=’” +

txtPasswd + “’”;

 SELECT id FROM users WHERE username=’username’ AND password=’password’ OR 1=1’

 -- MySQL, MSSQL, Oracle, PostgreSQL, SQLite

' OR '1'='1' --

' OR '1'='1' /*

-- MySQL

' OR '1'='1' #

-- Access (using null characters)

' OR '1'='1' %00

' OR '1'='1' %16

 print "<html>"

print "<h1>User Comment</h1>"

print database.userComment

print "</html>"

 <html>

<h1>User Comment</h1>

<script>executeMaliciousCode();</script>

</html>

47371 Vamsi Mohan and Dr. Sandeep Malik, Debunking of common attacks in web applications

Insecure Direct Object References

The threat of insecure direct object reference flaws has become
common with the increased complexity of web applications
that provide varying levels of access to enable users to gain
entry to some components. When a developer exposes a
reference to an internal implementation object such as a file,
directory or key a direct object reference will be created.
Without an access control check, attackers can manipulate
these references to access the unauthorized data. These
vulnerabilities result from a name or key of an object being
used during web site development. Potential threats will be
introduced from an authorized user of the system who alters a
parameter value that directly points to an object that the user
doesn’t authorized to access. The user may be an authorized
user to the system. However, he or she may not have access to
specific objects or sections depends on the user role such as
database records and reports. If the application won’t verify
the user for that specific object, it can result in an insecure
direct object reference flaw. It is easy to detect these flaws.
Each location that a user can supply input and points directly to
reference objects needs to be tested. There are many tools
available to track the flows. By manipulating parameter
values, testers can identify the flaw and analyze the code to
determine whether a user is able to bypass authorization and
retrieve objects that are not intended for them. To prevent these
vulnerabilities, it is important to have a strong access control
policies are in place in the organizations. Developers need to
ensure that users have proper authorization to gain access to the
direct references and restricted access where they are not
entitled to access the confidential modules or information.

Security Misconfiguration

Application Misconfiguration attacks exploit many
configuration weaknesses found in web applications. Strong
application security configurations are vital for any
organization. Security misconfiguration is simply that
incorrectly assembling the safeguards such as parameters,
firewalls for a web application. These mis-configurations
typically occur when faults in the system configuration by
systems administrators, DBAs or developers. These can occur
at any level in the application stack including the platform, web
server, application server, database, framework and custom
code modules. These security mis-configurations can lead an
attacker right into the system and result in a partially or even
totally compromised the system. Attackers find these mis-
configurations in the system by trying through unauthorized
access to accounts, unused web pages, flaws, unprotected files
and directories. If the system is not robust respect to security
configurations, data can be stolen or modified over time and
can be a time consuming and costly affair to recover back.

Sensitive Data Exposure

Portswigger web security online portal states, Sensitive data
exposure vulnerabilities can occur, when an application does

not adequately protect the sensitive information from being
disclosed to attackers (Portswigger web security portal, 2016).
For many applications this may be limited to information such
as passwords, health records, credit card data, session tokens,
or other authentication credentials. This is not a vulnerability
that you can investigate same as other vulnerabilities. Most
vulnerabilities within this category cannot be scanned.

The usage of cryptography, SSL usage and data protection are
recommended for security sensitive data.

To Prevent 'Sensitive Data Exposure':

1. Consider using encryption techniques both at rest and in
transit (https) requests.

2. Don’t store sensitive data unnecessarily until it is vitally
required. Discard it as soon as possible.

3. Ensure standard algorithms and strong keys are used,
and proper key management is in place to store the data.

4. Ensure passwords are stored with an algorithm
specifically designed for password protection.

5. Disable autocomplete form features collecting sensitive
data and disable caching for pages that contain sensitive
data.

Missing Function Level Access Control

According to GitHub Security (2013), Function level access
control vulnerabilities could result from insufficient protection
of sensitive request handlers within an application. An
application may hide access to sensitive actions, unable to
enforce sufficient authorization for certain actions, or
accidentally expose an action through a user controlled request
parameter. These vulnerabilities could be much more complex
and be the result of delicate edge-cases in the underlying
application logic. Developers ignores to remove the input
controls from the code, when it is not necessary. They hide or
disable the input controls from UI (frontend). Attackers take
this as an advantage and use various tools to access it and
enable the form controls to perform for bad operations.

To Prevent Missing Function Level Access Controls':

1. Proper authentication and authorization should be
performed on both front end and backend

2. Critical validations need to be conducted at both client
side and server side instead of client side validations.

3. Do not hard code the values in the application code.

Cross-Site Request Forgery

OWASP states that Cross-Site Request Forgery (CSRF or
XSRF) is an attack that forces an end user to execute unwanted
actions on a web application in which they're currently
authenticated. Since the attacker has no way to see the response
to the forged request, XSRF attacks specifically target state-
changing requests. With a little help of social engineering
(through sending phishing mails), an attacker may trick the
users of a web application into executing actions of the
attacker's choosing. If the victim is a normal user, a successful
CSRF attack can force the user to perform state changing
requests like transferring funds, changing credentials, doing
transactions forcefully, changing email address, and so forth. If
the victim is an administrative account, even XSRF can
compromise the entire web application (OWASP Cross-Site

47372 International Journal of Current Research, Vol. 9, Issue, 03, pp.47370-47373, March, 2017

Request Forgery (CSRF), 2016). An attacker will use XSRF to
trap the victim to access a website or to click a URL that
contains malicious, unauthorized requests. XSRF attack will
use the identity and privileges of the victim and impersonate
them in order to perform any actions desired by the attackers.
For performing a XSRF attack, the user should be authenticated
with the website initially. Assuming the victim is authenticated,
the attacker can include a link or script in a third-party website
that victim visits. Then, when the victim visits that website or
link, the rogue script will be executed without the victim being
noticed of it.

Difference between Cross Site Scripting (CSS) and Cross-
Site Request Forgery (XSRF)

According to Acunetix a website security audit organization,
CSRF attack includes a malicious exploit of a website in which
a user will transmit malicious requests that the target website
trusts without the user’s permission. In Cross-Site Scripting
(XSS), the attacker exploits the trust a user has for a website,
on the other hand with XSRF, the attacker exploits the trust a
website has against a user’s browser.

Using Components With Known Vulnerabilities

It is extremely common existing vulnerabilities in the third
party libraries, APIs and software, which could be used to
compromise the security of the systems using the software.
Over the period of several years approximately 4500 Common
Vulnerabilities and Exposures have been published per year.
Speaking at the recent RSA Conference Europe 2012 in
London, Don Smith, technology director at Dell Secure Works,
says that "Organizations fails to deal with known
vulnerabilities stems from the vast increase in IT complexity
over the past couple of decades" (RSA Conference, 2012).
According to Outpost24, "Components with known
vulnerabilities are often, but not always, the first vulnerabilities
that are detected during a penetration testing assignment"
(https://www.outpost24.com/using-components-known-vulnera
bilities-owasp10).

Unvalidated Redirects and Forwards

Web applications generally redirect and forward users to other
web pages and websites, and use un-trusted data to determine
the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to
access unauthorized pages.

Preventing Unvalidated Redirects and Forwards

1. Avoid using redirects and forwards.
2. In case of redirects or forwards, avoid allowing the

URL as user input for the destination. If redirection is
necessary, validate the URL before redirection.

3. It is recommended any destination input should be
mapped to a value, rather than the actual URL or partial
URL.

4. Sanitize input by creating a list of trusted URL's before
developing the applications.

5. Introduce intermediate pages to notify the users that the
control redirects to external website.

Conclusion

Web application attacks are increasing proportional to the
increasing of digital transactions. As users have moved more
towards web for their daily transactions, fraudsters and
attackers have followed, targeting to creating security threats
based on Web applications. In this paper, we explained
OWASP top 10 vulnerabilities and preventions. Because the
most serious threat which occurs commonly in today’s web
attacks are SQL injections (SQLI) and Cross Site Scripting
(CSS), we tried to concentrate more on them and tried
explaining with detailed examples.

REFERENCES

Acunetix Cross Site Request Forgeryhttp://www.acunetix.
com/websitesecurity/csrf-attacks/

Buehrer, G., B. Weide, and P. Sivilotti, “Using Parse Tree
Validation to Prevent SQLi Attacks,” Proc. Int‟l Workshop
Software Eng. and Middleware, 2005

Code Dx enterprisehttps://codedx.com/broken-authentication-
session-management/

Desmond, Paul 2004, May 17. All-out blitz against Web app
Attacks Retrieved December 30, 2006, from
networkworld.com Web site: http://www.networkworld.
com/techinsider/2004/0517techinsidermain.html

Fonseca, J., M. Vieira, and H. Madeira,“The Web Attacker
Perspective- A Field Study,” Proc. IEEE Intl. Symp.
Software Reliability Eng., Nov. 2010

GitHub Security portal https://bounty.github.com/
classifications/missing-function-level-access-control.html

http://excess-xss.com/#xss-attacks
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-

Site_Scripting_(XSS)
Incapsula security bloghttps://www.incapsula.com/web-

application-security/cross-site-scripting-xss-attacks.html
Outpost 24 journal https://www.outpost24.com/using-

components-known-vulnerabilities-owasp10
OWASP Cross-Site Request Forgery (CSRF)https://www.

owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
OWASP top 10 security flaws https://www.owasp.org/

index.php/Top_10_2013-Top_10
Portswigger web security portalhttps://support.portswigger.

net/customer/portal/articles/1965730-using-burp-to-test-
for-sensitive-data-exposure-issues

RSA Conference https://www.rsaconference.com/events/eu12/
agenda/sessions/610/breaking-the-failure-cycle-why-
breaches-from-known

TechTarget OWASP top ten http://searchsoftware
quality.techtarget.com/definition/OWASP-Top-Ten

Vikas K. Malviya, SaketSaurav, Atul Gupta, "On Security
Issues in Web Applications through Cross Site Scripting
(XSS)", APSEC-2013, pp 583-588.

 <% String redirectURL = "http://www.RedirectedPage.com/";

 response.sendRedirect(redirectURL);

 return;

%>

47373 Vamsi Mohan and Dr. Sandeep Malik, Debunking of common attacks in web applications
