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INTRODUCTION 
 
Multiple linear regression (MLR) analyses are commonly 
employed in science and non-science fields. The multiple 
linear regression is given as follows 
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The best-fitting for the regression linear model is   by using 
method of least squares. Least square is the standard approach. 

The least-squares estimates 0 , 1 ,..., 

computed by statistical software. The least square criterion  is 
generalized as follows for general linear regression model
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Multiple linear regression (MLR) analyses are commonly 
science fields. The multiple 

fitting for the regression linear model is   by using 
. Least square is the standard approach. 

 n  are usually 

computed by statistical software. The least square criterion  is 
generalized as follows for general linear regression model 
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The least square estimator are those values of 

that minimize Q. let us denote  the vector of the least square 

estimate regression coefficient 
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The least square normal equations for the general linear 
regression model are given as follow 
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And the least square estimator are:
 

   
1ppp

1

1p

YXXX







 

 
The method of maximum likelihood leads to the same 

estimators for normal error regression model 
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The least square estimator are those values of 0 , 1 ,..., 1 p  

. let us denote  the vector of the least square 

estimate regression coefficient 0 , 1 ,..., 1 p  as b:  

The least square normal equations for the general linear 
regression model are given as follow  

And the least square estimator are: 

The method of maximum likelihood leads to the same 

estimators for normal error regression model 
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as those obtained by the method of least square
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The bootstrap method starts with an original sample which is 
taken from the considered specific population. The next step is 
to duplicates the original sample in a number of times to create 
a new population regard to original population.  In that case, 
the bootstrap draws several samples with replacement by 
random sampling approach, and as a result it provides a 
different sample from the original sample. This technique 
stores the new set of data and creating a new distribution for 
further analysis. (Efron et al., 1993; Higgins, 2005).  The 
advantage of using bootstrap is its ability to develop a sample 
the same size of the original, which may include an 
observation several times while omitting other observations. 

Fuzzy regression be written as , 

with the explanation variables are assumed to be precise. 

Our aim is to estimate these parameters (Amir et. al, 2016). In 

this case, are assumed as symmetric fuzzy numbers which 

can be presented by intervals. In fuzzy regression 
methodology, parameters are estimated by minimising total 
vagueness in the model. 

.Using ,it can be written 

(Amir et. al, 2016).

represents radius and cannot be negative, therefore, on the 

right-hand side of equation , 

absolute values of are taken. Suppose there m data point, 

each comprising vector (Amir et. al, 2016). Then 

parameters are estimated by minimising the quantity, which 

is total vagueness of the model-data set combination, subject to 
the constraint that each data point must fall within estimated 
value of response variable. This can be visualized as the 
following linear programming problem, minimised 

and subject to  

 

and  

 

. 

 

and . Simple procedure is commonly used to solve the 

linear programming problem. (Kacprzyk and Fedrizzi, 1992). 
Data for this study is a sample which is composed of four 
variables(Amir et. al, 2016) 
 
Sample Size Determination  
 
Sample size for multiple regression analysis were calculated by 
using G*power with effect size = 0.35, 0.05, power of the 
study = 0.90 and number of predictor were 4. The minimum 
sample size requires is 50 respondents.  
 
Analysis: A priori: Compute required sample size  
Input: Effect size f²     = 0.35 
 α err prob     = 0.05 

 Power (1-β err prob)     = 0.90 
 Number of predictors  = 4 
 
Output: Noncentrality parameter λ=17.5000 
 Critical F    = 2.5787 
 Numerator, df.    = 4 
 Denominator, df.    = 45 
 Total sample size    = 50 
 Actual power    = 0.90 
  

Table 1.  Description of Cholesterol Data 
 

Num. Variables Explanation of user variables 

1. Choltot Total Cholesterol 
2. Hdl HDL Cholesterol 
3 Trig Triglycerides 
4 Waist Waist circumferences 

 
Algorithm and Flow Chart for Modified Bayesian Linear 
Regression Analysis Method  
 

 
 

Figure 1. Modified Bayesian Linear Regression Analysis 
 

/*ADDING BOOTSTRAPPING ALGORITHM TO THE 
METHOD */ 
 
%MACRO bootstrap(data=_last_, booted=booted, boots=2, 
seed=1234); 
 
DATA &booted; 
 
        ** randomly picks an integer from 1 to n; 
        pickobs = INT(RANUNI(&seed)*n)+1; 
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        ** POINT tells SAS to read value pickobs 
        ** NOBS sets n to number of obs in &Data; 
        ** when the point option is used SAS will loop through 
the data step forever; 
        SET &data POINT = pickobs NOBS = n; 
        ** saves number of current bootstrap; 
        REPLICATE=int(i/n)+1; 
        i+1; 
        ** stop will leave data set when n*&boots obs have been 
created; 
        IF i > n*&boots THEN STOP; 
        RUN; 
%MEND bootstrap; 
 
Data Cholesterol;                                                                                                                            
Input choltot Hdl Trig Waist;                                                                                       
Cards;  
1814676 98.0 
22039151 94.0 
22039151 94.0 
21345123 95.0 
17942139 81.0 
17942139 81.0 
1144262104.0 
1144262104.0 
26771122 91.5 
26771122 91.5 
2357391 96.5 
2475585 92.0 
19957126116.5 
19957126116.5 
16245100 88.0 
23770222 91.5 
2076681 85.0 
20249118106.5 
1844398 90.0 
29956207113.0 
18447118 95.0 
1819271 97.5 
22039151 94.0 
22039151 94.0 
1804758 97.0 
17942139 81.0 
17942139 81.0 
17942139 81.0 
17942139 81.0 
1144262104.0 
1144262104.0 
1144262104.0 
2475585 92.0 
19957126116.5 
19957126116.5 
16245100 88.0 
21032193 95.5 
23770222 91.5 
2076681 85.0 
20249118106.5 
29956207113.0 
18447118 95.0 
; 
ods rtf file='abc.rtf' style=journal;  
    
**generate bootstrap sample; 
%bootstrap(data=Cholesterol, boots=2); 
run; 
 

/*PRINT DATA */ 
proc print data=booted; 
run; 
ods rtf close; 
  
/* LINEAR REGRESSION  MODELING AND RESIDUAL 
NORMALITY CHECKING*/ 
Data Booted;                                                                                                                      
Input choltotbayes hdl trig waist;                                                                                      
Cards;  
207.5473.0091.00 96.50 
190.9445.00123.00 95.00 
193.4066.0081.00 85.00 
202.9942.00139.00 81.00 
207.5473.0091.00 96.50 
190.9445.00123.00 95.00 
203.4739.00151.00 94.00 
202.9942.00139.00 81.00 
170.8143.0098.00 90.00 
137.8642.0062.00104.00 
203.4739.00151.00 94.00 
264.4856.00207.00113.00 
190.9445.00123.00 95.00 
193.4066.0081.00 85.00 
264.4856.00207.00113.00 
137.8642.0062.00104.00 
193.4066.0081.00 85.00 
303.1270.00222.00 91.50 
204.0057.00126.00116.50 
220.1192.0071.00 97.50 
178.0355.0085.00 92.00 
175.8845.00100.00 88.00 
207.5473.0091.00 96.50 
170.8143.0098.00 90.00 
202.9942.00139.00 81.00 
137.8642.0062.00104.00 
156.1546.0076.00 98.00 
220.1192.0071.00 97.50 
193.4066.0081.00 85.00 
229.4871.00122.00 91.50 
204.0057.00126.00116.50 
137.8642.0062.00104.00 
202.9942.00139.00 81.00 
203.4739.00151.00 94.00 
202.9942.00139.00 81.00 
178.0355.0085.00 92.00 
203.4739.00151.00 94.00 
190.1247.00118.00 95.00 
203.4739.00151.00 94.00 
189.4149.00118.00106.50 
190.1247.00118.00 95.00 
189.4149.00118.00106.50 
137.8642.0062.00104.00 
175.8845.00100.00 88.00 
137.8642.0062.00104.00 
224.2632.00193.00 95.50 
202.9942.00139.00 81.00 
204.0057.00126.00116.50 
264.4856.00207.00113.00 
144.4247.0058.00 97.00 
204.0057.00126.00116.50 
202.9942.00139.00 81.00 
203.4739.00151.00 94.00 
137.8642.0062.00104.00 
202.9942.00139.00  81.00 
207.5473.0091.00 96.50 
175.8845.00100.00 88.00 
178.0355.0085.00 92.00 
137.8642.0062.00104.00 
193.4066.0081.00 85.00 
202.9942.00139.00 81.00 
137.8642.0062.00104.00 
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203.4739.00151.00 94.00 
137.8642.0062.00104.00 
175.8845.00100.00 88.00 
175.8845.00100.00 88.00 
220.1192.0071.00 97.50 
137.8642.0062.00104.00 
170.8143.0098.00 90.00 
137.8642.0062.00104.00 
204.0057.00126.00116.50 
137.8642.0062.00104.00 
137.8642.0062.00104.00 
220.1192.0071.00 97.50 
193.4066.0081.00 85.00 
193.4066.0081.00 85.00 
178.0355.0085.00 92.00 
144.4247.0058.00 97.00 
204.0057.00126.00116.50 
204.0057.00126.00116.50 
204.0057.00126.00116.50 
303.1270.00222.00 91.50 
203.4739.00151.00 94.00 
190.1247.00118.00 95.00 

run;     
Ods rtf file='abc.rtf'style=journal;  
 
ods graphics on;                                                                                                                        
proc reg data=Booted plots=all; 
model choltotbayes = hdl trig waist/p ; 
run; 
ods graphics off; 
ods rtf close;   
run; 
 
/* BAYESIAN REGRESSION MODEL*/ 
Data Booted;                                                                                                                            
Input choltotbayesian hdl trig waist;                                                                                       
Cards;  
207.5473.0091.00 96.50 
190.9445.00123.00 95.00 
193.4066.0081.00 85.00 
202.9942.00139.00 81.00 
207.5473.0091.00 96.50 
190.9445.00123.00 95.00 
203.4739.00151.00 94.00 
202.9942.00139.00 81.00 
170.8143.0098.00 90.00 
137.8642.0062.00104.00 
203.4739.00151.00 94.00 
264.4856.00207.00113.00 
190.9445.00123.00 95.00 
193.4066.0081.00 85.00 
264.4856.00207.00113.00 
137.8642.0062.00104.00 
193.4066.0081.00 85.00 
303.1270.00222.00 91.50 
204.0057.00126.00116.50 
220.1192.0071.00 97.50 
178.0355.0085.00 92.00 
175.8845.00100.00 88.00 
207.5473.0091.00 96.50 
170.8143.0098.00 90.00 
202.9942.00139.00 81.00 
137.8642.0062.00104.00 
156.1546.0076.00 98.00 
220.1192.0071.00 97.50 
193.4066.0081.00 85.00 
229.4871.00122.00 91.50 
204.0057.00126.00116.50 
137.8642.0062.00104.00 
202.9942.00139.00 81.00 
203.4739.00151.00 94.00 

202.9942.00139.00 81.00 
178.0355.0085.00 92.00 
203.4739.00151.00 94.00 
190.1247.00118.00 95.00 
203.4739.00151.00 94.00 
189.4149.00118.00106.50 
190.1247.00118.00 95.00 
189.4149.00118.00106.50 
137.8642.0062.00104.00 
175.8845.00100.00 88.00 
137.8642.0062.00104.00 
224.2632.00193.00 95.50 
202.9942.00139.00 81.00 
204.0057.00126.00116.50 
264.4856.00207.00113.00 
144.4247.0058.00 97.00 
204.0057.00126.00116.50 
202.9942.00139.00 81.00 
203.4739.00151.00 94.00 
137.8642.0062.00104.00 
202.9942.00139.00  81.00 
207.5473.0091.00 96.50 
175.8845.00100.00 88.00 
178.0355.0085.00 92.00 
137.8642.0062.00104.00 
193.4066.0081.00 85.00 
202.9942.00139.00 81.00 
137.8642.0062.00104.00 
203.4739.00151.00 94.00 
137.8642.0062.00104.00 
175.8845.00100.00 88.00 
175.8845.00100.00 88.00 
220.1192.0071.00 97.50 
137.8642.0062.00104.00 
170.8143.0098.00 90.00 
137.8642.0062.00104.00 
204.0057.00126.00116.50 
137.8642.0062.00104.00 
137.8642.0062.00104.00 
220.1192.0071.00 97.50 
193.4066.0081.00 85.00 
193.4066.0081.00 85.00 
178.0355.0085.00 92.00 
144.4247.0058.00 97.00 
204.0057.00126.00116.50 
204.0057.00126.00116.50 
204.0057.00126.00116.50 
303.1270.00222.00 91.50 
203.4739.00151.00 94.00 
190.1247.00118.00 95.00 

; 
run; 
ods rtf file='abc.rtf'style=journal;  
 
ods graphics on;                                                                                                                       
proc genmod data=Booted;     
model choltotbayesian = hdl trig waist / dist=normal 
link=identity;  
bayes seed=1 OutPost=Post diagnostics=all summary=all;;                                                                                                       
run;  
ods graphics off; 
 
ods rtf close;   
run; 
 
/* BAYESIAN FUZZY REGRESSION*/ 
 
Title ‘Linear programming’; 
data plant; 
input  choltotbayesian hdl trig waist; 
datalines; 

53091                 Wan Muhamad Amir W Ahmad et al. Bayesian regression algorithm and its modification with application to public health data 
 



207.5473.0091.00 96.50 
190.9445.00123.00 95.00 
193.4066.0081.00 85.00 
202.9942.00139.00 81.00 
207.5473.0091.00 96.50 
190.9445.00123.00 95.00 
203.4739.00151.00 94.00 
202.9942.00139.00 81.00 
170.8143.0098.00 90.00 
137.8642.0062.00104.00 
203.4739.00151.00 94.00 
264.4856.00207.00113.00 
190.9445.00123.00 95.00 
193.4066.0081.00 85.00 
264.4856.00207.00113.00 
137.8642.0062.00104.00 
193.4066.0081.00 85.00 
303.1270.00222.00 91.50 
204.0057.00126.00116.50 
220.1192.0071.00 97.50 
178.0355.0085.00 92.00 
175.8845.00100.00 88.00 
207.5473.0091.00 96.50 
170.8143.0098.00 90.00 
202.9942.00139.00 81.00 
137.8642.0062.00104.00 
156.1546.0076.00 98.00 
220.1192.0071.00 97.50 
193.4066.0081.00 85.00 
229.4871.00122.00 91.50 
204.0057.00126.00116.50 
137.8642.0062.00104.00 
202.9942.00139.00 81.00 
203.4739.00151.00 94.00 
202.9942.00139.00 81.00 
178.0355.0085.00 92.00 
203.4739.00151.00 94.00 
190.1247.00118.00 95.00 
203.4739.00151.00 94.00 
189.4149.00118.00106.50 
190.1247.00118.00 95.00 
189.4149.00118.00106.50 
137.8642.0062.00104.00 
175.8845.00100.00 88.00 
137.8642.0062.00104.00 
224.2632.00193.00 95.50 
202.9942.00139.00 81.00 
204.0057.00126.00116.50 
264.4856.00207.00113.00 
144.4247.0058.00 97.00 
204.0057.00126.00116.50 
202.9942.00139.00 81.00 
203.4739.00151.00 94.00 
137.8642.0062.00104.00 
202.9942.00139.00  81.00 
207.5473.0091.00 96.50 
175.8845.00100.00 88.00 
178.0355.0085.00 92.00 
137.8642.0062.00104.00 
193.4066.0081.00 85.00 
202.9942.00139.00 81.00 
137.8642.0062.00104.00 
203.4739.00151.00 94.00 
137.8642.0062.00104.00 
175.8845.00100.00 88.00 
175.8845.00100.00 88.00 
220.1192.0071.00 97.50 
137.8642.0062.00104.00 
170.8143.0098.00 90.00 
137.8642.0062.00104.00 
204.0057.00126.00116.50 
137.8642.0062.00104.00 
137.8642.0062.00104.00 

220.1192.0071.00 97.50 
193.4066.0081.00 85.00 
193.4066.0081.00 85.00 
178.0355.0085.00 92.00 
144.4247.0058.00 97.00 
204.0057.00126.00116.50 
204.0057.00126.00116.50 
204.0057.00126.00116.50 
303.1270.00222.00 91.50 
203.4739.00151.00 94.00 
190.1247.00118.00 95.00 

; 
run; 
ods rtf file='result_ex1.rtf' ; 
 

proc optmodel; 
   set j= 1..84; 
   number choltotbayesian{j}, hdl{j}, trig{j} waist{j}; 
   read data plant into [_n_]choltotbayesian hdl trig waist; 
 

/*Print choltotbayesian  hdl  trig waist*/ 
print choltotbayesian  hdl  trig waist; 
 
number n init 8;  
/*Total number of Observations*/ 
/*Decision Variables*/ 
var aw{1..4}>=0;      
 

/*Theses four variables are bounded*/ 
 

var ac{1..4};      
/* These four variables are not bounded*/ 
 

/* Objective function*/ 
min z1=  aw[1] * n + sum{i in j} hdl[i] * aw[2] + sum{i in j} 
trig[i] * aw[3]+ sum{i in j} waist[i] * aw[4]; 
 

/*Linear Constraints*/ 
con c{i in 1..n}:    
ac[1]+hdl[i]*ac[2]+trig[i]*ac[3]+waist[i]*ac[4]-aw[1]-
hdl[i]*aw[2]- trig[i]*aw[3]- waist[i]*aw[4] <= 
choltotbayesian[i]; 
 

con c1{i in 1..n}: 
ac[1]+hdl[i]*ac[2]+trig[i]*ac[3]+waist[i]*ac[4] +aw[1]+ 
hdl[i]*aw[2]+trig[i]*aw[3]+waist[i]*aw[4] >= 
choltotbayesian[i]; 
 

expand;   /* This provides all equations */ 
 

solve; 
print ac  aw; 
quit; 
ods  rtf  close; 
 

RESULTS 
 

Part I: Results from Bayesian Multiple linear Regression 
 

Table 3. Results from Bayesian Multiple linear Regression 
 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 
Error 

Wald 95% 
Confidence Limits 

Intercept 62.5793 0.0028 62.5739 62.5847 

Hdl )( 1X  1.4686 0.0000 1.4685 1.4686 

Trig )( 2X  0.7511 0.0000 0.7511 0.7511 

Waist )( 3X  -0.3170 0.0000 -0.3170 -0.3169 
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With Choltotbayesian )(Y  

 
Multiple Bayesian Linear Regression (MBLR) is given as 
follows: 
 

)(Y = 62.5793 + 1.4686 )( 1X  + 0.7511 )( 2X  

           -0.3170 )( 3X  

where  
 

   )( 1X is High Density Lipoprotein reading 

   )( 2X is a Triglycerides reading 

   )( 3X is Waist reading 

 

 
 

Figure 1. Trace Plots for HDL 
 

 
 

Figure 2. Trace Plots for TRIG 
 

 
 

Figure 3. Trace Plots for Intercept 
 

We also can assess convergence by visualization examination 
through trace plot. Trace plot consist of the plot sampled 
values of a parameter versus the sample number. Figure  1.1 
till Figure 1.3 summarize the result of trace plot of our finding. 
The Figure 1.1, 1.2 and 1.3 shows the behaviour of  the trace 
plots. From the plot, we can see that all parameters have 
relatively good mixing properties. Good mixing of the chain 
indicate that we can get the good results and the samples stay 
close to the high-density region of the target distribution. 
 
Fitted Bayesian Multiple Linear Regression with standard error 
is given as follows: 
 

)(Y = 62.5793 + 1.4686 )( 1X  + 0.7511 )( 2X  

 
Std. Error (0.0028)    (0.0000)  (0.0000) 
 

-0.3170 )( 3X  ……….…………..… (2.1) 

Std. error    (0.0000) 
 
Upper or lower limits of prediction interval are computed from 
the prediction equation (2.1) by taking the coefficient as their 
corresponding estimated values plus or minus standard error. 
 
Upper limits 
 

)(Y = 62.5821 + 1.4686 )( 1X  + 0.7511 )( 2X  

        -0.3170 )( 3x ….……………....……(2.2) 

    
Lowerlimits 
 

)(Y = 62.5765 + 1.4686 )( 1x  + 0.7511 )( 2x  

        -0.3170 )( 3x ….…………………....(2.3) 

 
Lower limit Upper limit Width 

207.544 
190.934 
193.398 
202.984 
207.544 
190.934 
203.470 

207.550 
190.939 
193.404 
202.989 
207.550 
190.939 
203.476 

.0056 

.0056 

.0056 

.0056 

.0056 

.0056 

.0056 

   

303.117 
203.470 
190.116 

303.123 
203.476 
190.121 

.0056 

.0056 

.0056 
             Average width       0.0056 

 

Part II: Results From Fitted Model For Fuzzy 
Regression 
 

Table 4.  Value of centre (AC) and radius (AW) 
 

[1]    ac     aw 

1 62.65633 0.0015848 
2 1.46796 0.0000000 
3 0.75085 0.0000000 
4 -0.31716 0.0000000 

 
Fitted model for fuzzy regression (FR)  for  
 

Choltotbayesian )(Y =   

<62.65633, 0.0015848> +  
< 1.46796, 0.0000000> Hdl + 
<0.75085, 0.0000000> Trig + 
<-0.31716, 0.0000000> Waist ………………….(2.4) 
 
Upper or lower limits of prediction intervals are computed 
from the prediction equation (2.4) by taking the coefficient as 
their corresponding estimated values plus or minus standard 
error. 
 
Upper limits 
 
Y= <62.6547452> + < 1.46796, 0> )( 1X  + 

<0.75085, 0> )( 2X  +< -0.31716, 0> )( 3X …….(2.5) 

  
Lowers limits 
 
Y= <62.6579148> + < 1.46796, 0> )( 1X  + 

<0.75085, 0> )( 2X  +<-0.31716, 0> )( 3X …….(2.6) 
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Lower limit Upper limit Width 

202.990 
207.540 
190.940 
203.474 
202.990 
170.819 
137.880 

202.987 
207.537 
190.937 
203.470 
202.987 
170.816 
137.877 

0.0032 
.0032 
.0032 
.0032 
.0032 
.0032 
.0032 

   

303.084 
203.474 
190.122 

303.081 
203.470 
190.119 

0032 
.0032 
.0032 

Average width 0.003170 

 
The width of prediction intervals with respect to bayesian 
multiple linear regression model and bayesian fuzzy regression 
model corresponding to each set of observed explanatory 
variables is computed in SPSS and the results are reported in 
Table 4. From this table, the average width for former was 
found to be 0.005600, while that of the latter was only 
0.003170, thereby indicating the superiority of fuzzy 
regression methodology. 
 

SUMMARY AND DISCUSSION 
 
This paper presents an algorithm and illustrated the procedure 
of modeling by using modified Bayesian linear regression 
through SAS language. Our aim is to share the algorithm and 
also provide the researcher with an alternative programming 
that suitable for a small sample size. This proposed method can 
be applied to small sample size data, especially when limited 
data is obtained for example in public health. 
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