
 
 

 
 

 

 
 

 
 

 

FACTORIAL PLANNING AND RESPONSE SURFACE FOR THE DEFINITION OF EXPERIMENTAL 
PARAMETERS IN SCIENTIFIC RESEARCH, A REVIEW

Claudiany S. Leite Lima, Danielle C. Barros, Davi T. Reis, 
G. B. Bonfim, Vanessa M. Mattje, Gessiel Newton Sheidt and 

Bioprocess	Engineering	and	Biotechnology

ARTICLE INFO  ABSTRACT
 

 

 

In order to obtain the 
full or fractional factorial planning. These are statistical procedures that seek to minimize the work 
required. This eliminates the variables called factors, which are not sig
Factorial planning basically consists of carrying out a survey of the factors of the proposed experiment 
and evaluating the effects they exert on each other and on the final result. The Response Surface 
Methodology (RSM) consist
fit of a polynomial equation to the experimental data, which should describe the behavior of a dataset 
in order to make statistical predictions. The objective of the present work is 
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INTRODUCTION 
 
As a result of the needs of modern society, scientific research 
has made great strides in all spheres of science, promoting a 
growing range of data and information, however, for the 
proper exploitation and understanding of information, it is of 
great value to use Of statistical tools (Cunico 
Usually, the optimization of experimental variables is 
performed through procedures that analyze the effect of one 
variable at a time, called univariate, having a disadvantage in 
time spent for optimization and the lack of evaluation about the 
interactions among the variables that affect the process being 
studied. These disadvantages result in an inefficient 
optimization, preventing the rapid establishment of true 
optimums, which are achieved by the applic
multivariate procedures (Rodrigues and Iemma, 2005).
the various options of statistical evaluation methodologies, the 
Response Surface Methodology (RSM) and Factorial Planning 
are highlighted. Considering the varieties of experimental 
planning, experimental systems delineated in factorial schemes 
are the ones that provide more information about the system 
with a smaller number of experiments, and may involve 
combinations between levels of two or more 
factors, remembering Which are the independent variables or 
 
*Corresponding author: Augustus Caeser Franke Portella,
Bioprocess Engineering and Biotechnology Division, Federal 
University of Tocantins (UFT), Gurupi, TO, Brazil.

ISSN: 0975-833X 

Article History: 
 

Received 26th April, 2017 
Received in revised form  
30th May, 2017 
Accepted 06th June, 2017 
Published online 22nd July, 2017 
 

Citation: Claudiany S. Leite Lima, Danielle C. Barros, Davi T. Reis 
parameters in scientific research, A review”, International Journal of Current Research
 

Available online at http://www.journal

Key words: 
 
Trials, Experiments, Optimization. 
 

 

 

 
RESEARCH ARTICLE 

 
FACTORIAL PLANNING AND RESPONSE SURFACE FOR THE DEFINITION OF EXPERIMENTAL 

PARAMETERS IN SCIENTIFIC RESEARCH, A REVIEW
 

Claudiany S. Leite Lima, Danielle C. Barros, Davi T. Reis, Denis S. Passos, Naiane G. Silva, Pedro 
. Mattje, Gessiel Newton Sheidt and *Augustus Caeser

 

Biotechnology	Division,	Federal	University	of	Tocantins	(UFT),	Gurupi,	TO,	Brazil
 
	

 

ABSTRACT 

In order to obtain the optimization of a given experiment, we need to carry out a triage, using either 
full or fractional factorial planning. These are statistical procedures that seek to minimize the work 
required. This eliminates the variables called factors, which are not sig
Factorial planning basically consists of carrying out a survey of the factors of the proposed experiment 
and evaluating the effects they exert on each other and on the final result. The Response Surface 
Methodology (RSM) consists of a collection of mathematical and statistical techniques based on the 
fit of a polynomial equation to the experimental data, which should describe the behavior of a dataset 
in order to make statistical predictions. The objective of the present work is 
theoretical and practical knowledge of the methodology of Factorial Planning and RSM as statistical 
tools for evaluation and optimization of parameters involved in an experimental scientific research 
project. 

This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

As a result of the needs of modern society, scientific research 
has made great strides in all spheres of science, promoting a 
growing range of data and information, however, for the 
proper exploitation and understanding of information, it is of 

to use Of statistical tools (Cunico et al., 2008). 
Usually, the optimization of experimental variables is 
performed through procedures that analyze the effect of one 
variable at a time, called univariate, having a disadvantage in 

on and the lack of evaluation about the 
interactions among the variables that affect the process being 
studied. These disadvantages result in an inefficient 
optimization, preventing the rapid establishment of true 
optimums, which are achieved by the application of 
multivariate procedures (Rodrigues and Iemma, 2005). Among 
the various options of statistical evaluation methodologies, the 
Response Surface Methodology (RSM) and Factorial Planning 

Considering the varieties of experimental 
ng, experimental systems delineated in factorial schemes 
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predictors, which had their levels fix
the interest of the researcher (Bezerra 
advantage of Factorial Planning is that all variables are studied 
simultaneously. In addition, many scientists do not have an 
experimental planning methodology that is
useful, and most of the time, they have difficulties choosing a 
physico-mathematical model that effectively represents the 
phenomena to be analyzed (Calado, 2003).
(2012), the Response Surface Methodology is a compilation
mathematical and statistical methods suitable for optimizing, 
developing and improving processes.
Methodology is a collection of mathematical and statistical 
techniques based on the fit of a polynomial equation to the 
experimental data, which should describe the behavior of a 
dataset in order to make statistical predictions. It can be well 
applied when a response or set of responses of interest are 
influenced by several variables. The objective is to 
simultaneously optimize the leve
the best performance of the system (Bezerra 
Before applying the RSM methodology, it is necessary to first 
choose an experimental design that defines the experiments 
that must be performed in the experimental r
There are some experimental matrices for this purpose. 
Experimental designs for first
designs) can be used when the data set has no curvature 
(Hanrahan; Lu, 2006). However, in order to approximate a 
response function to experimental data that cannot be 

International Journal of Current Research 
Vol. 9, Issue, 07, pp.53495-53502, July, 2017 

 

Claudiany S. Leite Lima, Danielle C. Barros, Davi T. Reis et al. 2017. “Factorial planning and response surface for the definition of experimental 
International Journal of Current Research, 9, (07), 53495-53502. 

Available online at http://www.journalcra.com 
 z 

FACTORIAL PLANNING AND RESPONSE SURFACE FOR THE DEFINITION OF EXPERIMENTAL 
PARAMETERS IN SCIENTIFIC RESEARCH, A REVIEW 

Denis S. Passos, Naiane G. Silva, Pedro 
Augustus Caeser Franke Portella 

of	Tocantins	(UFT),	Gurupi,	TO,	Brazil	

 
 

optimization of a given experiment, we need to carry out a triage, using either 
full or fractional factorial planning. These are statistical procedures that seek to minimize the work 
required. This eliminates the variables called factors, which are not significant in the experiment. 
Factorial planning basically consists of carrying out a survey of the factors of the proposed experiment 
and evaluating the effects they exert on each other and on the final result. The Response Surface 

s of a collection of mathematical and statistical techniques based on the 
fit of a polynomial equation to the experimental data, which should describe the behavior of a dataset 
in order to make statistical predictions. The objective of the present work is to synthesize the 
theoretical and practical knowledge of the methodology of Factorial Planning and RSM as statistical 
tools for evaluation and optimization of parameters involved in an experimental scientific research 
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predictors, which had their levels fixed a priori, according to 
the interest of the researcher (Bezerra et al., 2008). Another 
advantage of Factorial Planning is that all variables are studied 
simultaneously. In addition, many scientists do not have an 
experimental planning methodology that is both simple and 
useful, and most of the time, they have difficulties choosing a 

mathematical model that effectively represents the 
phenomena to be analyzed (Calado, 2003). For Bingöl et al. 
(2012), the Response Surface Methodology is a compilation of 
mathematical and statistical methods suitable for optimizing, 
developing and improving processes. The Response Surface 
Methodology is a collection of mathematical and statistical 
techniques based on the fit of a polynomial equation to the 

data, which should describe the behavior of a 
dataset in order to make statistical predictions. It can be well 
applied when a response or set of responses of interest are 
influenced by several variables. The objective is to 
simultaneously optimize the levels of these variables to obtain 
the best performance of the system (Bezerra et al., 2008). 
Before applying the RSM methodology, it is necessary to first 
choose an experimental design that defines the experiments 
that must be performed in the experimental region under study. 
There are some experimental matrices for this purpose. 
Experimental designs for first-order models (eg, factorial 
designs) can be used when the data set has no curvature 
(Hanrahan; Lu, 2006). However, in order to approximate a 

unction to experimental data that cannot be 
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described by linear functions, experimental designs should be 
used for quadratic response surfaces, such as three-factorial, 
Box-Behnken, central compound and Doehlert designs 
(Bezerra et al., 2008). The response surface is a methodology 
widely used for analysis and fermentation processes, modeling 
and optimization of heterogeneous photo-hay processes (Desai 
et al., 2008) and little used as statistical methods of 
experiments using adsorption (Ranjan; Mishra; Hasan, 2011; 
Geyikçi et al., 2012). In view of the above, the objective of the 
present work is to synthesize the theoretical and practical 
knowledge of the methodology of Factorial Planning and RSM 
as statistical tools for the evaluation and optimization of 
parameters involved in an experimental scientific research 
project. 
 
Factorial Planning 
 
Experiment planning was initiated by Ronald A. Fisher 
between the 1920s and 1930s, where he performed data 
analysis and statistics at the Experimental Agricultural Station 
in London. In addition, Fisher and other authors contributed 
for the first time to the development and use of the ANOVA 
technique, which means Analysis of Variance, since it was 
considered as a primitive tool for statistical analysis of 
experimental design (Cochran, 1947). Its importance is in 
developing new processes and improving those in use. Thus, 
proper planning in addition to improving processes, reduces 
variability of results, as well as reduces analysis time and 
costs. Experiment analyzes and planning techniques are used 
to improve the properties of manufacturing processes, to 
reduce testing, to optimize the use of company resources, such 
as materials, availability of equipment, Employees, among 
others (Montgomery, 2005). 
 
Factorial Planning Detail  
 
Factorial Planning basically consists of carrying out a survey 
of the factors of the proposed experiment and evaluating the 
effects they exert on each other and on the final result. This is 
done so that the factors vary with at least two different levels 
(n), that is, for k factors and n> = 2 levels, we will have: Nk 
experiments, for two levels we have 2k. Exemplifying; We 
have an experiment that we wish to optimize containing 4 
factors we will have the following number of experiments: 24 
or 16 experiments. This result will be the number of tests 
performed and to evaluate the uncertainties involved, these 
will be done in duplicate, that is, twice each test, totaling 32 
experiments, always performed in a random way to avoid 
systematic errors in the experimental procedures (Filho et al., 
2000). Factorial planning has different properties used 
(Martinez; Calil, 2003): 
 

•  Direct the research; 
•  Specify the size of the sample to be selected; 
•  Allow multiple comparisons, and thus facilitate the 

development and critique f models;  
 
Provide highly efficient parameter estimators (parameter 
estimators with small variance).When planning an experiment 
it is necessary to stipulate a sequence of experimental data 
collections to later achieve a possible objective. Within the 
experimental methodologies available in the literature, 
Factorial Planning is the most feasible when it is sought to 
study the effects of two or more influencing variables, where 
all possible combinations of levels of each variable are 

investigated in each attempt or replicate (Button, 2005). This 
type of planning is represented by 2k, k means the number of 
factors evaluated in 2 levels. In case of having 5 variables, 25 
= 32, it means that 32 experiments should automatically be 
performed. This type of planning is particularly useful in the 
early stages of an experimental work when many variables 
have to be investigated. When it comes to planning with k>4, 
the effects of high orders are almost always not significant, 
with which it is possible to obtain information of the most 
important effects with a smaller number of experiments, and to 
obtain, in most cases, the same conclusions that would be 
obtained with a complete factorial. The models that have these 
characteristics are known as fractional factorial planning, 
having as an example, 25-1, which would only result in 16 
experiments (Rodrigues and Iemma, 2005). In this type of 
Factorial Planning, in which levels are usually coded with the 
(+) and (-) signals, the assignment to the upper or lower levels 
occurs arbitrarily and does not interfere with the realization of 
the experiments or interpretation of the results. These signals 
also allow the schematization of these variables in the form of 
planning matrices, as well as determining, through 
calculations, their influence and their interactions in the system 
(Calado, 2003). In the specialized databases, the factorial 
schemes are not considered experimental designs, but the 
design of treatments. Faced with this, each combination is a 
treatment. In this context we can have factorial treatment 
schemes in completely randomized experimental designs, in 
Latin squares, in randomized blocks among others (Cunico et 
al., 2008). The factorial scheme is considered complete when 
all possible combinations, among all levels of each factor, are 
present. However, in other cases we have an incomplete 
factorial scheme (Rodrigues and Iemma, 2005).Performing 
complete factorial experiments means estimating the effects of 
the factors and the effects of the interactions between them 
with equal precision. According to Montgomery, Runger and 
Calado (2000), interaction is the failure of one factor to 
produce the same effect on response, under different levels of 
the other factor. These authors also state that there is 
interaction when the difference in response between levels of 
one factor is not the same at all levels of the other factors. It is 
recommended to use full factorials when investigating a small 
number of factors, say up to five, since the larger the number 
of factors, the greater the number of treatments. 
 
In a completely randomized design with two factors, each with 
two levels, example factor A = Temperature, with levels '1' and 
'2' and B = pH, with levels '1' and '2', we have the following 
combinations, Tests or treatments: 
 

A1B1 A1B2 

A2B1 A2B2 
 

Advantages and Disadvantages of Using Factorial Planning 
of Experiments 
 
Factorial assays allow time and resource savings but, in 
particular, allow broader conclusions about the factors 
including the study of the interaction between them and greater 
precision for the estimates of the main effects of the factors. 
The disadvantage is related to the rapid increase in the number 
of treatment as the number of factors or the number of factor 
levels increases. In the case of the randomized block design, 
increasing block size entails a loss of efficiency if there is an 
increase in heterogeneity within the block (Lima; Abreu, 
2001). 
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Among the several advantages of using Factorial Planning, the 
following stand out (Button, 2005): 
 

• Reduction of the number of tests without prejudice to 
the quality of information; 

• Simultaneous study of several variables, separating 
their effects; 

• determining the reliability of results; 
• Conducting the research in stages, in an interactive 

process of adding new essays; 
• Selection of variables that influence a process with a 

reduced number of tests; 
• Representation of the process studied through 

mathematical expressions; 
• Elaboration of conclusions based on qualitative results. 

 
Response Surface Models  
 
When working with scientific research for product 
development or improvement in the laboratory, we are faced 
with diverse numbers, that is, experiments with several 
parameters that need to be analyzed and organized for 
verification of significance. The scientific methodology 
adapted to the industry by Shewhart (1931) in its PDCA cycle 
better defines the way in which planning and experimental 
analysis is performed (Schissatti et al., 1998).  In this famous 
cycle the variability of information is analyzed in four aspects 
to inquire, to plan, to do and to act. Planning and 
experimenting, ascertaining the results and conducting the new 
knowledge to the production line should be regular steps 
applied in the company, demonstrating living and constant 
activity in continuous movement (Duncan, 1986). When we 
speak of response surface, we are referring to very useful 
mathematical tools when we are interested in optimizing a 
process in which we have the influence of several factors on a 
response variable. Therefore, response surface models can be 
explored to determine optimal working conditions or the 
sensitivity of the response variable to changes in the levels of 
the factors of interest (Action, 2016). 
 
To work with a response surface model we follow three 
guidelines: 
 

1. Sampling: where you have defined the number of tests 
that will be executed, already thinking about the model 
that will be programmed.  

2. Modeling and Hypothesis Testing: here we fit the 
models and analyze.  

3. Optimization: in this phase the optimum configuration 
of the levels of the factors of interest are obtained, in 
the intervals considered, and where the need to perform 
the experiment again considering newlevels for the 
factors is verified. 

 
For surface response tasks the experimental design models are 
of the second order type, among them we have a central 
composite design, Box-Behnken designs and optimum designs. 
Once the sampling phase is followed, the following techniques 
can be used: regression models, parameter estimation (MQ), 
statistical inference techniques, ANOVA and lack of fit. 
Finally, the optimization of the now adjusted model follows 
some of the following techniques, calculating maximum or 
minimum or minimum of functions, contours, graphical 
visualization, numerical methods, steepest ascent or descent 
and Monte Carlo simulation (Action, 2016). 

Model of Second Order of Response Surface  
 
To sum up, when it comes to response surface the primitive 
idea of the techniques is to consider that there is always a 
relationship between the variables x1, x2, ..., xn and y, a relation 
that is unknown but we can approximate the function by a 
polynomial relation, so that: 
 

I. � = �(��, ��, … , ��, �) 
II. � = 	 �� + ���� + ���� + ⋯ + ���� + �����

� + ⋯ +
�����

� + ������� + ������� + ⋯ + �(���)������� + � 

 
To simplify, we will define the equation below as the response 
surface of the given curve: 
 
III. �(�) = �(��, … , ��, �) 
 
The second-order response surface model is represented by 
equation 2, where s means the random error involved in the 
model and β are coefficients of the regression model. This 
model is suitable for experimental data systems with abundant 
curvature, which does not mean that this model fits well in all 
cases that contain curvature. In some cases it becomes 
necessary to use a more complex model, in rarer cases it may 
be necessary to use cubic terms until, to fit correctly. 
 
When we design a response surface experiment, we must be 
able to provide estimates of the "p" parameters in the model, so 
that: 
 

� = 	
(� + 1)(� + 2)

2
 

 
For example, for k = 2 we have p = 6, so: 
 

� = 	 �� + ���� + ���� + �����
� + �����

� + ������� 
 
It is desired that a response surface experiment has 
characteristics such as, good fit to the data, provide enough 
information to perform a lack of fit test and to estimate the 
pure error, allow for easy data amplification, be robust To the 
presence of outliers in the data and in the control of factor 
levels, has a reasonable cost, allows the experiments to be 
performed in blocks and has constant prediction variance. 
 

Table 1. Gain in a set of pistons at different emission and 
collection levels. Where T is the emission time DI is the  

dose of ions and G is the gain 
 

Observation T DI G 
1 195 4.0 1004 

2 255 4.0 1636 

3 195 4.6 852 
4 255 4.6 1506 
5 225 4.2 1272 

6 225 4.1 1270 

7 225 4.6 1269 

8 195 4.3 903 

9 255 4.3 1555 

10 225 4.0 1260 

11 225 4.7 1146 

12 225 4.0 1276 

13 225 4.7 1225 

14 230 4.3 1321 
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Example of Second Order Model Application  
 

The gain of a transistor consists of the difference between the 
emitter and the collector. The variable Gain (in hFE) can be 
controlled in the ion deposition process by means of the 
variables Time of emission (in minutes) and Dose of ions 
(x10

14). The data are shown in Table 1. Our objective is to 
evaluate the linear relationship between Gain of the transistors 
and the covariates Emission time and Dose of ions. 
 

The linear regression presented the following results: 
 

Table 2. ANOVA analysis 
 

Factors 
Degrees 

of 
freedom 

Sum 
of 

Squares 

Mean 
of 

Square 
F ratio p-value 

T 1 630967.864 630967.864 517.143 1.342E-10 
DI 1 20998.234 20998.234 17.210 0.00162 
Error 11 13421.115 1220.101   

 

Analyzing Table 2 we observed that the variables T (time) and 
DI (Dose of ions) are significant for the model since the p-
value for the two coefficients were smaller than α = 5%. Table 
3 presents a descriptive analysis of the residuals of the model, 
showing quartiles, maximum and minimum, mean and median 
values. 
 

Table 3. Exploratory analysis (residues) 
 

Minimum  1Q   Median  Average   3Q   Maximum 

-44.58 -26.35 -3.266 1.27E-16 26 63.2 

 

In Table 4 we have the estimates of the coefficients related to 
the input and intercept variables. We observed that the 
coefficient of the time variable is positive, we conclude that in 
the interval of the analysis, increasing the time also increases 
the gain of the transistor. In contrast, the dose variable has a 
negative coefficient, that is, an increase in it causes a decrease 
in the gain of the transistor. The table also presents the p-
values for each coefficient, in which the null hypothesis where 
the coefficient is not significant. The null hypothesis, because 
the calculated values were smaller than α = 5%, which shows 
that the intercept and the input variables are important for the 
model. 
 

Table 4. Coefficients 
 

Predict Estimate Standard desviation T-Stat. P-Value 

Intercept -520.0766 192.107 -2.707 0.0203 

T 10.781 0.474 22.729 1.349E-10 
DI -152.148 36.675 -4.148 0.00162 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The quality of the adjustment is shown in Table 5, where we 
can observe the adjusted R2 value. In this case, we have that 
about 97% of the variability of the data is explained by the 
adjusted regression model. The Table 6 shows the confidence 
intervals for each parameter. 
 

Table 5. Descriptive measurement of fit quality 
 

Standard Desviation  Degreesoffreedon R² R Adjusted 

34.929 11 0.979 0.9761 

 
Table 6. Confidenceinterval 

 

  2.50% 97.50% 

(Intercept) -942.901 -97.251 
T 9.737 11.825 
DI -232.870 -71.426 

 
The Table 7 shows the predicted or adjusted values and the 
respective confidence intervals and standard deviations for 
each observation. In Table 8 we have the expected value, the 
confidence interval and the standard deviation for the level 200 
of the explanatory variable time. 
 

Table 7. Prediction interval 
 

T DI G 
Adjusted 
Values 

Lower 
Limit 

Upper 
Limit 

Standard 
Deviation 

195 4.0 1004 973.653 927.051 1020.255 21.173 
255 4.0 1636 1620.523 1574.522 1666.523 20.899 
195 4.6 852 882.364 839.083 925.645 19.664 
255 4.6 1506 1529.233 1486.413 1572.053 19.454 
225 4.2 1272 1266.658 1243.315 1290.001 10.605 
225 4.1 1270 1281.873 1253.787 1309.959 12.760 
225 4.6 1269 1205.799 1176.260 1235.337 13.420 
195 4.3 903 928.008 890.113 965.904 17.217 
255 4.3 1555 1574.878 1537.617 1612.139 16.929 
225 4.0 1260 1297.088 1262.985 1331.191 15.494 
225 4.7 1146 1190.584 1154.804 1226.364 16.256 
225 4.3 1276 1251.443 1230.675 1272.211 9.435 
225 4.7 1225 1187.541 1150.428 1224.654 16.862 
230 4.3 1321 1305.349 1284.028 1326.670 9.687 

 
Table 8. Forecastinterval 

 

T DI 
Adjusted 
Values 

Lower 
Limit 

Upper 
Limit 

Standard 
Deviation 

200 4.3 981.914 897.992 1065.837 34.9299 

 
In Tables 9 and 10 we have the residue analysis. The 
Diagnostic Analysis, we find the analysis of some types of 
residues beyond the points of influence, DFf its, DFbetas and 
Cook distance. Table 10 shows the calculations used to obtain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9. Diagnostic analysis, summary table 
 

Obs T DI Waste Studentizad Waste Standard Waste Leverage DFFITS DFBETA D-COOK 

1 195 4.0 30.346 1.103 1.092 0.367 0.840 -0.573 0.480 
2 255 4.0 15.476 0.534 0.552 0.358 0.399 0.268 0.238 
3 195 4.6 -30.364 -1.057 -1.051 0.316 -0.720 0.526 0.413 
4 255 4.6 -23.233 -0.786 -0.800 0.310 -0.527 -0.382 0.310 
5 225 4.2 5.3414 0.153 0.160 0.092 0.0488 -0.0008 0.029 
6 225 4.1 -11.873 -0.350 -0.365 0.133 -0.137 0.0020 0.082 
7 225 4.6 63.200 2.316 1.959 0.147 0.963 -0.0103 0.470 
8 195 4.3 -25.009 -0.809 -0.822 0.242 -0.458 0.3838 0.269 
9 255 4.3 -19.878 -0.632 -0.650 0.234 -0.350 -0.2910 0.208 
10 225 4.0 -37.088 -1.209 -1.184 0.196 -0.598 0.0078 0.338 
11 225 4.7 -44.584 -1.526 -1.442 0.215 -0.802 0.0068 0.437 
12 225 4.3 24.556 0.713 0.730 0.072 0.200 -0.0036 0.118 
13 225 4.7 37.458 1.256 1.224 0.2331 0.6928 -0.0054 0.389 
14 230 4.3 15.650 0.449 0.466 0.0769 0.129 0.0294 0.077 
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the results of Table 9. Table 11 is the results obtained from the 
application of the Bonferroni test for the verification of 
atypical points.  
 

Table 10. Criterion 
 

Diagnosis Formula Value 

hii (Leverage) (2*(p+1))/n 0.43 
DFFITS 2* raíz (p/n) 0.93 
DCOOK 1 1.00 
DFBETA 2/raíz(n) 0.53 
Standard Waste (-2,2) 2.00 
StudentizadWaste (-2,2) 2.00 

 
Table 11. Outliers 

 
Observation T-value p-Value Bonferroni index 

7 2.3161 0.04305 0.602713 

 
In Table 12, we have the Anderson-Darling, Shapiro-Wilk, 
Kolmogorov Smirnov, Ryan-Joiner tests to verify if the 
residues have a normal distribution, as observed p-values are 
all higher than 0.05, so we do not reject the Hypothesis of data 
normality. 
 

Table 12. Normalitytest 
 

Test Statistics p-Value 

Anderson-Darling 0.307 0.518 
Shapiro-Wilk 0.951 0.584 
Kolmogorov-Smirnov 0.160 0.423 
Ryan-Joiner 0.979 0.619 

 
In Tables 13 and 14 we have the homoscedasticity tests with a 
confidence level of 0.05, all the tests have p-values higher than 
the level of significance, so we do not reject the hypothesis of 
homoscedasticity of the residues. We note that by adopting a 
significance level of 5% we have that by the Durbin-Watson 
test in Table 16 that the residues are independent. 
 

Table 14. Homoscedasticity test of Goldfeld Quandt 
 

Variable Statistic DF1  DF2 P-Value 

T 10.781 0.474 22.729 1.34912E-10 

DI -152.148 36.675 -4.148 0.001620499 

 

The Figure 1 shows the dispersion of outliers at x and the 
results of the graphs shown in Figure 2, we know that no 
DFFIT S and D - COOK is in module greater than 1, so we 
have no observation of the example is an influential point. 
 

 
 

Figure 1. Outliers(x) 

Table 13. Homoscedasticity test of Breusch Pagan 
 

Statistic DF p-Value 

0.432972 1 0.510 

 

 
 

Figure 2. Point of influence 
 
The Figures 4, 5, 6 and 7 show graphs with the response 
surface analysis. Where DI is the dose of ions, T is the 
emission time and G is the gain. 
 

 
 

Figure 4. Graph of the feasible region, in this case shown in white 
above 

 
 

Figure 5. Line outline 
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Figure 6. Contour of areas 
 

 
 

Figure 7. 3D representation of the response surface 

 
Response Surface Methods 
 
The response surface method is based on the simultaneous 
variation of several factors that are independent variables 
previously selected for their influence on process properties 
(dependent variables or responses). By using mathematical and 
statistical techniques, experimental results indicate a 
combination of factor levels within an optimal region (Grizotto 
et al., 2005). It is a technique that aims at the optimization of a 
variable response that is influenced by several factors, based 
on factorial planning. It has two distinct stages that are 
characterized as modeling and displacement, and are repeated 
as many times as necessary, aiming to reach an optimal region 
of the surface investigated (Comparini et al., 2009). According 
to Santiago (2016), this experimental strategy allows reducing 
the number of trials, ensuring statistical support for discussion 
of the results. This statistical method is recommended for 
experiments with high costs and difficult to stabilize treatments 
to reduce experimental error. 
 

Method of Maximum Ascending Slope (Descending) 
 
Initially the problem is interpreted so that the objective is 
clearly defined, as well as the factors that influence it. First, 

only a first order model is necessary in most cases, the 
relationship between objective and factors identified as 
important is established by a multiple regression (Mondim, 
2014). Typically, the starting point of the experiment is far 
from the optimal process operating condition which is 
desirable. In this case, the goal will be to approach the 
optimum as quickly and economically as possible. When the 
hypothesis of applying the model and the linearity of the 
process are verified, one must walk towards the response 
surface that supposedly has the optimum (maximum or 
minimum). In order to do this, one must look for the maximum 
improvement in the response: by the maximum ascending 
slope method if we look for a maximum point, or by the 
maximum slope method if we look for a minimum (Action, 
2016, Mondim, 2014). The maximum ascending (descending) 
method is used when the goal is to maximize (minimize) the 
response. In this method, one walks in sequence along the 
direction of maximum ascending slope, that is, in the direction 
and direction in which the maximum increase of the response 
variable occurs. If the response minimization goal moves 
sequentially along the direction of maximum downward slope, 
that is, in the direction and direction in which the maximum 
response variable occurs (Action, 2016). 
 
Optimization Method  
 
Optimizing a response means finding the best set of solutions 
for the independent variables x1, x2, ...,xk satisfying a given 
condition of y. The first derivative of this function is null if a 
function has a maximum or a minimum point. When the 
function is composed of a set of non-dependent variables, the 
partial derivatives of the function with respect to each of the 
non-dependent variables must also be null, so that there is a 
maximum or minimum point (Mondim, 2014). Most of the 
time, the form of the relationship between the response 
variable and the process factors is not known. Therefore, the 
first step of the response surface method consists of 
determining an equation that roughly represents the 
relationship between the response y and the process factors x1, 
x2, ...,xk (Action, 2016). When considering a small region of 
the response surface, away from the optimum point, there is 
almost no curvature on the surface. In this situation, the first 
order model is used. In the vicinity of the optimum, even for 
small regions of the surface, the curvature is generally more 
pronounced, and it is necessary to use a higher-order 
polynomial to represent the relationship between the response 
and the process factors x1, x2, ...,xk . Usually, a second-order 
model is employed (Action, 2016). 
 
Example of Practical Application of Factorial Planning 
 
In order to provide a better understanding of the application of 
the Factorial Planning methodology, an example of factorial 22 
will be addressed, where the effect of pH and temperature on 
the activity of the inulinases enzyme was evaluated. Twelve 
trials were performed (4 factorials + 4 axial points + 4 
repetitions at the central point). 
 
Results and Discussion of the Example 
 
The scheme used was a complete factorial 22, including the 4 
axial points and 4 central points for evaluation of the pure 
error. Table 17 presents the planning with the 12 tests carried 
out, the coded values, the originals and the results of the 
enzymatic activities obtained. 
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Table 17. Factorial Planning, coded and original values of the 
study variables (pH and temperature) and enzymatic activity 

 
Assays pH Temperature pH Temperature ° C Activity 

(U / mL) 

1 -1.0 -1.0 3.6 36 272 
2 1.0 -1.0 6.4 36 83 
3 -1.0 1.0 3.6 64 457 
4 1.0 1.0 6.4 64 16 
5 -1.4 0.0 3.0 50 360 
6 1.4 0.0 7.0 50 83 
7 0.0 -1.4 5.0 30 132 
8 0.0 1.4 5.0 70 328 
9 0.0 0.0 5.0 50 396 

10 0.0 0.0 5.0 50 412 

 
Note that depending on pH and temperature conditions, 
enzymatic activities may range from 16 to 457 U / mL. With 
these results it is possible to elaborate the 2nd order coded 
model that relates the enzymatic activity as a function of pH 
and temperature through software. 
 

Table 18. Variance Analysis Regression 
 

Variable Coefficient Standard error T calculated p-value 

Average 393.00 22.19 17.71 0.00000 
X1 -127.72 15.69 -8.14 0.0002 
X12 -90.44 17.55 -4.91 0.0021 
X2 49.40 15.69 3.15 0.0199 
X2

2 -86.19 17.55 -4.91 0.0027 
X1.x2 63.00 22.19 2.84 0.0296 
Y1=393-127.72x1-90.44x1

2+49.40x2-86.19x2
2-63x1x2 

 
Table 18 shows the analysis of variance (ANOVA) of the 
results obtained, with the coefficient of determination equal to 
0.96 and the value of FCALC 5.9 times greater than the value 
of FT AB. It is then possible to construct the response surface 
and contour curves, which are respectively shown in Figure 9. 
 

Table 19. Analysis of variance for the activity of inulinases 
 

Factors 
Degrees of 

freedom 
Sum of 
Squares 

Mean of 
Square 

F 
ratio 

p-value 

Regression 5 249153.5 49830.7 25.3 0.00058 
Residues 6 11820.8 1970.1   
Lack of 
Adjustment 

3 10966.8 3655.6 12.8 0.03224 

Error 3 854 284.7   
Total 11 260974.3    

*R2=95.52%         F5,6;0.05=4.4 

 

 
 

Figure 9. (a) Response surface (X1 = Temperature and X2 = pH) 
and (b) contour curves for inulinases activity 

 
By analyzing the response surface and contour curves, we can 
verify the existence of an optimal region for enzymatic activity 
where a combination range of pH (3 to 5) and temperature (50 
to 70 °C) is found. This methodology provides an adequate 
information for the number of tests performed. Evidencing a 

temperature and pH condition will be fixed for the reaction, 
however this optimal range range of the variables is much 
more interesting than just a point value since it provides 
information on the "robustness" of the process. That is, what is 
the temperature variation (+/- 10 ºC) that can be admitted 
around 60 ºC (optimal value) and pH 4 (+/- 1) that keeps the 
process in optimized condition. 

 
Conclusion 
 
The use of tools that allow the development of more accurate 
and viable data and thus to determine which variables 
influence the system can be useful in experiments. In general, 
we are only asked to do the propagation of uncertainties and to 
evaluate how reliable they obtained result is or to only make a 
mathematical analysis of the equations involved, obtaining 
importance of each greatness. In order to obtain the 
optimization of a given experiment, we need to carry out a 
triage, using either full or fractional factorial planning. These 
are statistical procedures that seek to minimize the work 
required. This eliminates the variables called factors, which are 
not significant in the experiment. The Factorial Planning 
determines what factors have significant effects on the 
response and also as the effect of one factor varies with the 
levels of other factors. In addition, it allows establishing and 
quantifying the correlations between the different factors. In 
view of the above, it is verified that without the use of factorial 
planning of experiments, important interactions between 
factors cannot be detected and the maximum optimization of 
the system may take longer to reach. This was evidenced in 
this work, confirming that multivariate systems, based on 
Factorial Planning of Experiments, allow the recognition of 
true optimal conditions from a small number of experiments. 
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