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1. INTRODUCTION 
 
The Mittag-Leffler function has gained importance  and
during the last one decade due mainly  to its applications in the 
solution of  fractional-order differential, integral and difference 
equations arising in certain problems of mathematical, physical, 
biological and engineering sciences. This function is introduced and 
studied by Mittag-Leffler[3] in terms of the power series
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A generalization of (1.1)  in the following form  

                     

 
has been studied by several authors notably by Wiman[2]
  
In 2009, Sharma and Jain [8] introduced the M-series defined as
 

where 0)(,,   RC  and ()(a ni

njb )( ),...,2,1( qj  are the Pochhammer symbols. Further 

details of this series are given by [8]. The Riemann
operators of  fractional calculus are defined in the books  by Miller
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ABSTRACT 

The principal object of this paper is  to prove  three  theorems based on integral representations of the generalized 
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Leffler function has gained importance  and popularity 
during the last one decade due mainly  to its applications in the 

order differential, integral and difference 
equations arising in certain problems of mathematical, physical, 

ction is introduced and 
] in terms of the power series 
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has been studied by several authors notably by Wiman[2] 

series defined as 

 
 3.1  

),...,2,1( pi  and 

are the Pochhammer symbols. Further 

The Riemann-Liouville 
operators of  fractional calculus are defined in the books  by Miller 

drkishan010770@yahoo.com,  
viroo4u@gmail.com, 

and Ross[7], Oldham and Spanier[
and Trujillo[1] as  

By virtue of above definition, it is not difficult to show that 
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Also from Podlubny[5], we have 
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If we take 1 in (1.6) , it reduces to 
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which is a remarkable result in the theory of fractional calculus and 
indicates that the fractional derivative  of 
Liouville sense  is not zero. 
   

For 0a , (1.4) reduces to 
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is a remarkable result in the theory of fractional calculus and 
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2. THE INTEGRAL REPRESENTATION OF THE 
GENERALIZED M-SERIES 
 

In this section, we derive formulae based on integral representations 
of the generalized M-series. The results are presented in the form of 
the theorems given below: 
 

Theorem 2.1  If  
 

0,0)Re(,0)Re(,,   C   then  
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where )(
,

zMqp



is the generalized M-sersies given by (1.3). 

Proof: On taking the term 
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Now interchanging the order of summation and integrssation which is 

permissible under the stated conditions and putting ,u
zk
tk  we get 
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Therefore 
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This completes the proof. 
 

Theorem 2.2  If 
 

 0,0)Re(,0)Re(,,   C  then  
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where )(
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is the generalized M-series given by (1.3). 
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On interchanging the order of summation and integration which is 
permissible under the stated conditions, using (1.3) and substituting 
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On evaluating the inner integral with the help of Beta function, we 
arrive at 
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Again using(1.3), it reduces to 
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This proves  theorem(2.2). 
 

Theorem 2.3  If 
 

 0,0)Re(,0)Re(,,   C  then  

 

dttzMttzM qpqp ])1([)1(
)(

1
)(

,
11

1

0

,


















                12.2  

                                                                             

where )(
,

zMqp



is the generalized M-series given by (1.3). 

Proof: Same as above theorem. 
 

3. Special Cases 
 

Theorems (2.1) to (2.3) leads to the integral representation of  M-
series[9], generalized Mittag-Leffler functions[2], Mittag-Leffler 
function[3] and exponential function[4] after implementing the 

necessary changes in the  values of ,, qp  and 
.
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