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The principal object of this paper is to prove three theorems based on integral representations of the generalized
M-series which is introduced recently by Sharma and Jain[8].
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1. INTRODUCTION

The Mittag-Leffler function has gained importance and popularity
during the last one decade due mainly to its applications in the
solution of fractional-order differential, integral and difference
equations arising in certain problems of mathematical, physical,
biological and engineering sciences. This function is introduced and
studied by Mittag-Leffler[3] in terms of the power series
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A generalization of (1.1) in the following form

Eop(x)= Zf(afnJrﬁ) (a,p>0) (12)

has been studied by several authors notably by Wiman[2]
In 2009, Sharma and Jain [8] introduced the M-series defined as
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where Ol,ﬂ eC,R(@)>0 and (ai)(i=12,...,p)and

(bj)n (] = 1,2,...,(]) are the Pochhammer Further

details of this series are given by [8]. The Riemann-Liouville
operators of fractional calculus are defined in the books by Miller

symbols.
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and Ross[7], Oldham and Spanier{6], Podlubny[5], Kilbas, Srivastava
and Trujillo[1] as
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By virtue of above definition, it is not difficult to show that
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Also from Podlubny[5], we have
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If we take O = lin (1.6), it reduces to
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which is a remarkable result in the theory of fractional calculus and
indicates that the fractional derivative of a constant in the Riemann-
Liouville sense is not zero.

For a =0, (1.4) reduces to

D f(0)= m [t ="'/ (x)dx, Re(v) > 0.

(1.8)
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2. THE INTEGRAL REPRESENTATION OF THE
GENERALIZED M-SERIES

In this section, we derive formulae based on integral representations
of the generalized M-series. The results are presented in the form of
the theorems given below:

Theorem 2.1 If

a,feC,Re(e)>0,Re(f)>0,8>a >0 then

dt
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where M, (Z ) is the generalized M-sersies given by (1.3).

Proof: On taking the term
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Now interchanging the order of summation and integrssation which is

k
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On applying(1.3), it redsuces to
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= M (2) (2.4)
Therefore
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This completes the proof.

Theorem 2.2 If

a, peC,Re(x)>0,Re(f)>0,>a >0 then
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where My (Z ) is the generalized M-series given by (1.3).

Proof: Consider
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On interchanging the order of summation and integration which is

permissible under the stated conditions, using (1.3) and substituting
1

ta =U , we obtain
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On evaluating the inner integral with the help of Beta function, we
arrive at
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Again using(1.3), it reduces to
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Therefore
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This proves theorem(2.2).
Theorem 2.3 If

a,peC,Re(a) >0,Re(f)>0,8>a>0 then

a.p a.p
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where My (Z ) is the generalized M-series given by (1.3).

Proof: Same as above theorem.
3. Special Cases

Theorems (2.1) to (2.3) leads to the integral representation of M-
series[9], generalized Mittag-Leffler functions[2], Mittag-Leffler
function[3] and exponential function[4] after implementing the

necessary changes in the values of p,q, and ﬂ
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