

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 10, pp.59279-59284, October, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

EVALUATION OF THE CHANGES IN THE UPPER CENTRAL INCISORS AFTER RAPID MAXILLARY EXPANSION

¹Roberta Lopes Gomes Cesário, ²FauzeRamez Badreddine, ³Eduardo Guimarães Moreira Mangolin, ³Marcio da Rocha Carvalho, ⁴Lucia Hatsue Yamamoto Nagai, ⁵Mario Cappellette Jr

¹MDS. Faculdade São Leopoldo Mandic, ORCID: 0000-0001-7437-4759
²MDS, Universidade Federal de São Paulo, São Paulo, Brazil
³MDS, Faculdade São Leopoldo Mandic
⁴Dr Orthodontist, Universidade Federal de São Paulo, São Paulo, Brazil
⁵D.D.S., Ph.D., Universidade Federal de São Paulo, São Paulo, Brazil

ARTICLE INFO

Article History:

Key words:

Maxillary Deficiency;

Maxillary Expansion;

Computed Tomography.

Received 10th July, 2017

Received in revised form 04th August, 2017

Accepted 14th September, 2017

Published online 31st October, 2017

ABSTRACT

Objective: Short-term evaluation of the changes in the position of permanent upper central incisors after rapid maxillary expansion.

Method: This researchstudy comprised 33 mouth-breather patients with maxillary atresia, 9.51yearold average age, 2.32 standard deviation and age ranging from 6.5 to 14.7years of age. Patients underwent computed tomography in twostages: (T1) before rapid maxillary expansion and (T2) three months after rapidmaxillary expansion. Five linear variables (1-NA, 1-N, 1-Cli, 1-ENP, (ENA-N)-1) and five angular variables (SN.1, N-S.Cli-1, SN.(axis)1, N.ENA.ENP, Rhi-1.ENA-ENP) were analyzed, all of them coming out from the incisal edge of thebuccal inclined upper central incisor. With the data collected through the OsirixMD imaging program, the evaluations of individual changes, before and afterrapid maxillary expansion procedures, were performed accordingly. **Results**: Significant increase was found in the 1-N (+0.96mm, +1.3%, p=0.003) and inthe 1-Clinoid

Results: Significant increase was found in the 1-N (± 0.96 mm, $\pm 1.3\%$, p=0.003) and inthe 1-Clinoid (± 1.26 mm, $\pm 1.3\%$, p<0.001) linear variables and a decrease wasfound in the SN.1 (± 1.61 mm, $\pm 1.5\%$, p=0.034) angular variable. The remainingvariables have not shown significant variables between stages T1 and T2.

Conclusion: It can be concluded that there is significant protrusion and lingualinclination of the permanent upper central incisor teeth after rapid maxillaryexpansion in a short-term evaluation analysis.

Copyright©2017, *Roberta Lopes Gomes Cesário et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Roberta Lopes Gomes Cesário, FauzeRamez Badreddine, Eduardo Guimarães Moreira Mangolin, Marcio da Rocha Carvalho, Lucia Hatsue Yamamoto Nagai, Mario Cappellette Jr. 2017. "Evaluation of the changes in the upper central incisors after rapid maxillary expansion", *International Journal of Current Research*, 9, (10), 59279-59284.

INTRODUCTION

Maxillary atresia is a very common early established malocclusion that does not present self-correction (Angell, 1860; Angell et al., 1860 and Wertz, 1970) which justifies thein dication of rapid maxillary expansion (RME) by several orthodontists (Haas, 1959; Haas, 1961; Haas, 1970 and Lagravere, 2005). There are several dental-skeletal effects caused by RME, in which the main ones are the increase of the transverse dimension of the maxilla and buccal inclination of the upper dentoalveolar region (Haas, 1959; Haas, 1961; Cappellette Jr., 2008; Kartalian, 2010), the opening of themidpalatal suture (Garrett, 2008; Ballanti, 2010); alterations

*Corresponding author: Roberta Lopes Gomes Cesário, MDS. Associação Brasileira de Odontologia, ORCID: 0000-0001-7437-4759 in the nose size (Cappellette, 2008), and clockwise rotation of the maxilla with a consequent increase of the facial height (Kartalian, 2010). However, one of the main changes occur in the position of the permanent upper incisors in relation to the bone bases and surrounding soft tissues. These changes should be taken in consideration during the diagnosis, planning and treatment progress, aiming at achieving facial balance andharmony with long-term stable results (Ballanti, 2010; Silva, 2010; Canuto, 2010; Habeeb, 2013; Cabrera, 2004). The method of analysis most commonly used to evaluate the transversal effects caused by rapid maxillary expansion was the posteroanterior cephalometric radiographs (PA) and. toevaluate the upper central incisors, lateral cephalograms were used for suchpurpose bidimensional images were used to evaluate the tridimensionalstructures (Wertz, 1970; Lagravere, 2005; Chung, 2004), making it difficult, in some opportunities,

to identify and properlylocate the craniofacial structures (Ballanti, 2010). Currently, computed tomographies (CT scans) have become a moreaccurate tool to obtain a correct diagnosis, being considered a reliable method providing high precision information and data accuracy, producing real sizeanatomical images 1:17,10,17. This research study aimed at evaluating the changes in the position ofpermanent upper central incisors after rapid maxillary expansion by computed tomography in mouth-breather patients with maxillary atresia.

MATERIALS AND METHODS

A retrospective study was conducted andapproved by the Research Ethics Committee under number 1.076.724, with thesample comprised 33 patients (18 male subjects and 15 female subjects), 9.51year-old average age, 2.32 standard deviation and age ranging from 6.5 to 14.7years of age. Patients were mouth breathers, showing maxillary atresia, with clinical evaluation of the RME. All of them were clinically evaluated by anotolaryngologist (mouth breathing evaluation) and by an orthodontist (maxillaryatresia evaluation).

in relation to the Frankfurtplane, and, vertically in relation to the median sagittal plane (Cevidanes, 2009; Hassan, 2013) correcting any deviations of the head position that could interfere in the measurements of interest. The craniometric points used in this research study (Hassan, 2013; Rhine, 1981; Mutinelli, 2008; Tedeshi-Oliveira, 2009 and Cavanagh, 2011), already consecrated and widely used in world literatura are described in Table 1 and were marked based on the buccal inclined permanent upper central incisor. The evaluated linear variables are described in Table 2(Figure 2) and the angular variables in Table 3 (Figure 3).

Statistical Analysis

The statistical analysis was performed using the *Statistical Packag for the Social Sciences* (SPSS) program, version 22 for *Windows*. A 5% significance level was considered for the statistical tests. Linear (mm) and angular (degrees) measurements are characterized by the minimum (Min), maximum (Max), mean (M) and standard deviation (SD). For the analysis of the method of error, all variables were

Figure 1. 3D reconstruction window of multiplanar secctions (sagittal, axial andcoronal) with the head properly repositioned in relation to the Frankfurt planeand the median sagittal plane

During CT scan procedures, the device was properlyadjusted according to the skull size, with the KVp dose and the m As respecting the ALARA principle. CT scans were taken in two stages: (T1) before RME and (T2) three months after RME. The activation protocol of the expansion appliances (Hyrax -Morelli® Brand) was 6/4 initial activation, with 2/4 activations daily, until achieving the necessary amount of expansion observed clinically by the position of the upper buccal bone plate in relation to the lower portion of the Wala board, allowing the control of the upper arch overcorrection when compared to the lower arch.Comparisons between T1 and T2 were carried out with the aid of the OsiriX MD image manipulation program (FDA approved, version 1.4.2; Pixmeo, Geneva, Switzerland). With the tools provided by the program, images of multiplanar windows were generated (sagittal, axial and coronal) and used forthe desired measurements (Figure 1). In order to standardize the head between T1 and T2, the CT images were aligned horizontally

measured twice by two observers, at 30-day intervals between the first and the second measurement. The Student's T Test was applied for paired samples as well as the Intraclass Correlation Coefficient (ICC). The test results have shown no significant differences (p > 0.05) when comparing the initial measurements to the repetitions, neither on the repetitions made by the same evaluator (intraevaluator), nor on the ones made by the second evaluator (inter-evaluator). ICC values were all above 0.90, indicating excellent consistency when comparing the intra-evaluator measurements to the interevaluator measurements. Therefore, the Student's T Test and the ICC results indicate excellent consistency and reliability of the measurements, ensuring that there is no error neither on the intra-evaluator measurements, nor on the inter-evaluator measurements. In order to verify the sample size, the Student's T test was applied for paired samples, allowing to identify the differences of small/median dimension (d = 0.44) no GE (n =33) as significant ones, with 80% test power and 5%

Figure 2. Linear Variables – (A) 1-ENA; (B) 1-N; (C) 1-Cli;(D) 1-ENP; (E) (ENA-N)-1

Figure 3. Angular variables – (A) SN.1; (B) N-S.Cli-1; (C) SN. (EIXO)1(D)N.ENA.ENP;(E)Rhi-1.ENA-ENP

significance level, confirming that this sample is enough to validate the results obtained by this research study. The results of the Shapiro-Wilk test have shown that for the studied variables the significance levels were higher than 0.05 (p> 0.05) in all measurements (1st measurement, intra-evaluator repetition and inter-evaluatorrepetition), both before RME and after RME, indicating that the data studied presents a normal distribution.

RESULTS

Pre and post-RME measurement results are described in Table 4. As for the linear variables, 1-ENA mean values have increased from 26.89 to 27.32 (+1.6%), however, such differences have not shown to be significant ones (p = 0.095). Significant changes have been seen in 1-N (p = 0.003, +0.96mm, +1.3%) and in the 1-Clinoid (p < 0.001, +1.25mm

+1.3%). As for the 1-ENP (p = 0.624) and the (ENA-N)-1(p = 0.369), there were nostatistically significant differences between the pre and post-RME measurements. Considering the (ENA-N)-1, there was a 14.7% change in the mean values between the pre and post-RME procedures.

DISCUSSION

When conducting this research study, a major concern was to besure that the sample used was reliable and adequate, so as not to camouflageor change the interpretation of results.

Table 1. Cephalometric points based on the most buccaly inclined upper central incisor

POINT	DEFINITION
1	Incisal edge of the permanent upper central incisor
ENA	Anterior nasal spine
ENP	Posterior nasal spine
Ν	Nasion
Cli	Posterior clinoid process
Axis 1	Long axis of the permanent upper central incisor
Rhi	Rhinio

Table 2. Linear variable

Figure	Variable	Definition
2A	<u>1</u> -ENA	In the sagittal window, it is located the ENA points and the incisal edge of the upper central incisor (1). The linear distance
		between the points corresponds to the 1-ENA value.
2B	<u>1</u> -N	In the sagittal window, it is located the incisal edge of the upper central incisor (1) and the Nasion point. The linear distance
		between the points corresponds to the 1-Nvalue.
2C	1-Clinóide	In the sagittal window, it is located the points of the incisal edge of the upper central incisors (1) and the sella turcica most
		posterior, which is called Posterior Clinoid Process. The linear distance between the points corresponds to the 1-Cli value.
2D	<u>1</u> -ENP	In the sagittal window, it is located the incisal edge points of the upper central incisor (1) and the most posterior point of
		maxilla nasal spine, which is called Posterior Nasal Spine. The linear distance between the points corresponds to the linear
		distance between the points corresponds to the 1-ENP value,
2E	(ENA-N)-1	Firstly, a line is drawn connecting the Anterior Nasal Spine (ENA) and the Nasion Point (N). Then, the distance between the
	· / _	incisal edge of the upper central incisor ($\underline{1}$) to the extension of such line is linear measured.

Table 3. Angular Variable

Figure	Variable	Definition
3a	SN. <u>1</u>	Angle formed between the incisal edge of the Upper Central Incisor (1), the Nasion point (N) and the Sella (S)
3b	N-S.Cli- <u>1</u>	Angle formed by the lines passing through the N point (Nasion) the S (Sella turcica) and the incisal edge of the upper central incisor (1) and the Posterior Clinoid Process(Cli)
3c	SN.(axis) <u>1</u>	Angle formed by the lines passing through the N point (Nasion), S point (Sella turcica) and upper central incisor long axis (axis1)
3d	N.ENA.ENP	Angle formed by points Posterior Nasal Spine (ENP), Anterior Nasal Spine (ENA) and Nasion (N)
3e	Rhi-1.ENA-	Angle formed by lines passing through the ENA (Anterior Nasal Spine), ENP (Posterior Nasal Spine), incisal
	ENP	edge of the upper centralincisor
		(1) and Rhinio point (Rhi)

Table 4. Characterization and comparison of pre-and post-RME (n=33)

Variables	Pre-rme	Post-rme						Diference		$P^{(1)}$	
Linear	Min	Max	М	Dp	Min	Max	М	Dp	М	%	
1-ena	21.68	35.49	26.89	3.01	20.26	36.53	27.32	3.22	0.43	1.60%	0.095
1-n	60.29	86.44	72.72	5.82	60.14	87.22	73.68	5.9	0.96	1.30%	0.003
1-cli	78.28	109.61	94.79	6.88	79.61	110.01	96.04	6.65	1.25	1.30%	< 0.001
1-pne	42.73	63.87	52.31	5.2	39.02	63.91	52.13	5.3	-0.18	-0.40%	0.624
(ane-n)-1	-8.25	5.2	-3.7	3.12	-8.17	6.27	-3.16	4.17	0.54	14.70%	0.369
Angular											
S.n.1	66.73	94.41	84.91	5.34	65.87	92.53	85.18	5.66	0.27	0.30%	0.423
N-s.cli-1	45.89	59.09	52.37	3.48	47.14	60.67	52.89	3.69	0.52	1.00%	0.14
Sn.(eixo)1	93.6	119.29	106.7	6.79	90.12	118.33	105	7.2	-1.61	-1.50%	0.034
N.ane.pne	81.19	93.23	86.63	3.03	80.84	93.75	86.42	3.14	-0.21	-0.20%	0.478
Rhi-1.ane-pne	71.77	91.9	82.37	4.52	74.14	94.65	82.12	4.6	-0.26	-0.30%	0.539

 $^{(l)}p$ – Significant values of the t Student test for paired samples

Regarding the angular variables, significant differences were only seenwhen comparing the pre and post-RME procedures in the SN variable.(axis)1 (p= 0.034). For such variable, the mean value has decreased from 106.65 to105.03 (-1.61mm, -1.5%). In the S.N.1 (p = 0.423), N-S.CLI-1 (p = 0.140), N.ENA.ENP (p = 0.478) and Rhi-1.ENA-ENP (p = 0.539), the pre and post-RME differences were not significant.

By applying the inclusion and exclusioncriteria, it was possible to obtain a sample of 33 subjects, which was larger thanany of the samples analyzed by Bazargani et.al.24 The analysis of the samplecalculation for the sample size showed 80% power at 5% significance level, showing that this sample was adequate to validate this study. Another concern was with the reproducibility of the method, attempting to conduct a simple and reproducible methodology. The method oferror analysis to

59282

check the intra and inter-observer reliability has shown that theresults have indicated excellent reliability and consistency for both the intra and inter-observer measurements, ensuring that there is no error, with p>0.05 and ICC above 0.90. In conducting the data normality tests, it was noted that all measures evaluated present normal distribution (p>0.05). All intra and interobserverevaluations were performed using the same program (Osirix- Dias et al., 2013) and with computers from the same brand, specification and with the same screen configuration to avoid differences in images as advised by Baratieri, et. al. 25 With the great variety of displays available in the market, asuggestion is to have new studies on screen standardization, because in ananalysis of image quality and sharpness, this would be very important to avoid possible bias in the works. The selected cephalometric points were taken from relevant scientificarticles (Lagravere, 2005; Habeeb, 2013; Hassan, 2013; Rhine, 1980; Mutinelli, 2008 and Tedeshi-Oliveira, 2009). In order to properly mark the selected points on the CTscans to avoid errors or distortions during the interpretation of results, the headwas repositioned in all CT scans before marking the cephalometric points. According to Cevidanes et al. and Hassan et al. the standardization of thehead position before the analysis is very important to confirm the accuracy and reliability of results, as small changes in the head positioning can causedistortions. Once we were sure that we had an adequate sample and a reliable methodology, then, we decided to conduct a research study that would evaluate he changes in the inclination of permanent central incisors after RME, by CTscans, in mouthbreather patients with maxillary atresia. This research study was motivated by the lack of data in the literature on the subject in terms of values accuracy. Therefore, a great approach was needed on the measurements of the topics in question.

The indication of undergoing a patient to CT scan examinations should bemade with great care, only when the benefits of the diagnosis and treatmentoutweigh the risks of a higher dose of radiation 27. All patients who haveparticipated in this research study have undergone CT scan examination bymedical indication, respecting the ALARA principle. Therefore, no human beingwas exposed to ionizing radiation for the sole purpose of the study. In this research study, the evaluation of the linear dental changes showedthat there was a protrusion of the permanent upper central incisors by the increase in the 1-N = +0.96 mm measurement (+1.3%), comparing T1 to T2, and in the 1-Cli measurement, that has increased by +1.25mm (+1.3%). Both 8 results have shown to be significant with p=0.003 and <0.001 respectively. Considering the angular analysis, the SN. (axis 1) measurement has decreased by 1.62° (-1.5%) with p=0.034, showing a simultaneous lingual inclination of theincisor teeth. Similar results were observed by several authors (Haas, 1959; Haas, 1961; Silva, 2010; Habeeb, 2013; Gurel, 2010; Miner, 2012) and Silva Filho et al. (2010), relating the behavior of the central incisors with RME. This was reported in a study conducted with 20 children, observing the spacingof the crowns with the greatest separation in the anterior region, in which thebuccal inclination of the incisors has not shown clinical significance. Gurel et al. (2010), reported that the RME significantly decreases the overbite, increasingthe overjet, showing statistically significant decrease of both the overjet and theoverbite during the post-retention evaluation. However, Kartalian et al. (2010), reportedan increase in all dimensions but showed no significant amount of dental inclination postRME. Regarding the alveolar inclination, it was observed some significance when comparing the studied group to the control group. The fact that justifies the simultaneous protrusion and lingual inclination of the incisor teeth is that the RME promotes a shift of the maxilla forwards and down wards (Wertz, 1970; Cappellette, 2008; Habeeb, 2013; Moss, 1968; Moss, 1968; Beaini, 2013 and Leri, 2015) and, consequently, the upper lip exerts pressure overthe incisors causing lingual inclination (Haas, 1959; Haas; Haas, 1961; Silva Filho, 2010; Habeeb, 2013). Miner et al. (Miner, 2012) have investigated the relationship in the transverse dimension in 241 patients, carrying out dental and skeletal evaluation and, in one of their conclusions, have admitted that there are dental compensations both in the maxilla and in the mandible. Short-term results lead us to believe that the changes in the position of the permanent upper central incisors are minor, occurring solely by the RME procedure that moves the maxilla forward and downward, with greater participation of the labial muscles over these teeth. These data corroborate tothe findings of further authors regarding the effect of the maxillary expansion (Kartalian, 2010; Cabrera, 2013; Baratieri, 2010; Miner, 2012; Phatouros, 2008 and Toklu, 2015). Long-term studies should be conducted to verify the stability of the incisorteeth over the time, remembering that these changes should be taken intoconsideration during the diagnosis, planning and treatment progress stages, aiming at achieving the maximum balance and facial harmony with themaximum possible stability.

Conclusion

According to the results achieved in this research study, the comparisonsbetween the pre and post-RME for the studied variables allow us toconclude that there was a slight protrusion and lingual inclination of the permanent upper central incisor after RME.

REFERENCES

- Angell, E.H. 1860. Treatment of irregularity of the permanent or adult teeth. PartI. *Dental Cosmos.*, 1:540-544.
- Angell, E.H. 1860. Treatment of irregularity of the permanent or adult teeth. Part II. *Dental Cosmos.*, 1: 599-601.
- Ballanti, F., Lione, R., Baccett, T., Franchi, L. and Cozza, P. 2010. Treatment andposttreatment skeletal effects of rapid maxillary expansion investigated with low-dose computed tomography ingrowing subjects. AMJ Orthod Dent Orthopsept., 138(3):311-7.
- Baratieri C, Nojima LI, Alves Jr M, Souza MMG, Nojima MG. Transverseeffects of rapid maxillary expansion in Class II malocclusion patients: ACone-Beam Tomgraphy study. Dental Press J Orthod. 2010. Sept-Oct,15(5):89-97.
- Bazargani F, Feldmann I, Bondemark L. Three-dimensional analysis ofeffects of rapid maxillary expansion on facial sutures and bones. Asystematicreview.AngleOrthod, 2013; 83(6):1074-1082
- Beaini TL. Espessura de tecidos moles nos diferentes tipos faciais:Estudo em tomografías computadorizadas conebeam [tese]. São Paulo:Universidade deSão Paulo; 2013.
- Cabrera LC, Retamoso, LB, Mei RMS, Tanaka O. Dental Press J Orthod.2013 Mar-Apr;18(2):30-5.
- Canuto, L.F.G., Freitas, M.R., Janson, G., Freitas, K.M.S., 2010. Martins PP. Influenceof rapid palatal expansion on maxillary incisor alignment stability. Am J Orthod Dento facial Orthop. 137:164.e1-164.e6.

- 59284
- Cappellette, Jr. M, Cruz, O.L., Carlini, D., Weckx, L.L., Pignatari, S.S. 2008. Evaluation of nasal capacity before and after rapid maxillary expansion. *Am J Rhinol.* Jan-Feb; 22(1):74-7.
- Cavanagh D, Steyn M. 2011. Facial reconstruction: Soft tissue thickness values for South African black females. Forensic Science International. 206:215.e1-215.e7.
- Cevidanes L, Oliveira AEF, Motta, Phillips C, Burke B, Tyndall D. 2009. Headorientation in CBCT-generated cephalograms. *Angle Orthodontist.*, 79(5):971-77.
- Chung CH, Font B. 2004. Skeletal and dental changes in the sagittal, vertical, and transverse dimensions after rapid palatal expansion. *Am J Orthod Dentofacial Orthop*. 126:569-75.
- Garib, D.G., Calil, L.R., Leal, C.R., GuilhermeJanson, G. 2014. Is there a consensus for CBCT use in Orthodontics? *Dental Press J Orthod.*, Sept-Oct;19(5):136-49
- Garrett, B.J., Caruso, J.M., Rungcharassaeng, K., Farrage, J.R., Kim, JS., Taylor, G.D. 2008. Skeletal effects to the maxilla after rapid maxillaryexpansion assessed with cone-beam computed tomography. *AmJOrthodDentofacOrthoped.m* jul.; 134(1):8e1-8e11.
- Gurel, Hg; Badel, M; Erkan, M; Sukurica, Y. Long-Term Effects of Rapid Maxillary Expansion Followed by Fixed Appliances. AngleOrthod. 2010. 80(1):5-9.
- Haas, A. J. 1959. Gross reactions to the widening of the maxillary dental archof the pig by aplitting the hard palate. *Am J Orthodontics*. 45(11):868-69.
- Haas, A. J. 1961. Rapid expansion of the maxillary dental arch ande nasalcavity by opening the midpalatalsuture. *Angle Orthod.*, 31(2):73-90.
- Haas, A.J. 1970. Palatal expansion: Just the beginning of dentofacialorthopedics. Am J Orthod. March; 57(3):219-255.
- Habeeb M, Boucher N and Chung C. 2013. Effects of rapid palatal expansionon the sagittal and vertical dimensions of the maxilla: A study oncephalograms derived from conebeam computed tomography. *Am J Orthod Dentofacial Orthop* 144(3):398-403.
- Hassan B, Nijkamp P, Verheij J, Taire J, Vink C, Van Der Stelt P, et.al. 2013. Precision identifying cephalometric landmarks with cone beam computedtomography in vivo. *Eur J Orthod.* Feb.;35(1):38-44.
- Kartalian, A., Gohl, E., Adamian, M., Reyes, E. 2010. Conebeam computerizedtomography evaluation of the maxillary dentoskeletal complex after rapidpalatal expansion. *Am J OrthodDentofOrthop*, Oct; 138(4):486-492.

- Lagravere, M.O., Major, P.W., Flores-Mir, C. 2005. Long-term skeletal changes withRapid Maxillary Expansion: A Systematic Review. Angle Orthod., 75:1046-1052.
- LLeri Z, Basciftci FA. 2015. Asymmetric rapidmaxillary expansion in trueunilateral crossbite malocclusion: A prospective controlled clinical study. *Angle Orthod.*, 85:245-253.
- Mah JK, Huang JC, Choo H. 2010. Practical applications of cone-beamcomputed tomography in orthodontics. *Journal* of the American DentalAssociation. 141(3):7S-13S.
- Miner, R. M., Qabandi, S. A., Rigali, P. H., and Will, L. A. 2012. Cone-beam computedtomography transverse analysis. Part I: Normative data. *Am J Orthod Dentofacial Orthop.*, 142(3):300-7.
- Moss JP. 1968. Rapid expansion of the maxillary arch. Part I. J PractOrthod. 2(5):165-71.
- Moss JP. 1968. Rapid expansion of the maxillary arch. Part II. J PractOrthod. 2. (5):215-223.
- Mutinelli S, Cozzani M, Manfredi M, Bee M, Siciliani G. Dental archchanges following rapid maxillary expansion. *European Journal ofOrthodontics*. 2008; 30:469-476.
- Phatouros A; 2008. Goonewardene MS. Morphologic changes of palate afterrapid maxillary expansion: A 3-dimensional computed tomographyevaluation. AmJ Orthod Dentofac Orthop. Jul.; 134(1):117-124.
- Rhine JS, Campbell HR. 1980. Journal of Forensic Sciences, JFSCA, Oct;25(4):847-858.
- Silva Filho, O.G., Silva, V.B., Lauris, R.C.M.C. 2010. Comportamento dos incisivoscentrais permanentes superiores frente à expansão rápida da maxila –estudo com tomografia computadorizada. Rev Ortodontia SPO., 43(4):377.
- Tedeshi-Oliveira SV, Melani RFH, Almeida NH, Paiva LAS. 2009. Forensic Scinece International. 193:127.e1-127.e7.
- Toklu MG, Germec-Cakan D, Tozlu M. Periodontal, dentoalveolar, andskeletal effects of tooth-borne and toothbone-borne expansionappliances. Am J Orthod Dentofacial Orthop. 2015;148(1):97-109.
- Wertz, R.A. 1970. Skeletal and dental changes accompanying rapid midpalatalsuture opening. *Am J Orthod. July* 58(1): 41-63.
