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ARTICLE INFO ABSTRACT

The concept of bi-ideals for near- rings was introduced by T.Tamizh Chelvam and N.Ganesan [6].
Subsequently the notion of quasi ideals and bi-ideals in I'-near-rings was introduced by T.Tamizh
Chelvam and N.Meenakumari [7]. An interesting special case of bi-ideals is given by the quasi-ideals
of Steinfeld [5]. The concept of I'-seminear-rings was introduced by Kyung Ho Kim [3]. In this paper
we introduce the notion of semigamma quasi-ideals, semigamma bi-ideals and b-simple I'- seminear-
rings. Using the notion of semigamma bi-ideals, we show that the set of all semigamma bi-ideals of a
I'- seminear-ring form a moore system. Also we proved that the intersection of a semigamma bi-
ideals of I'- seminear-ring M and sub- I'- seminear-ring S is again a semigamma bi- ideal of S. We
define b-simple I'- seminear-ring and prove certain equivalent conditions of I'- seminear-field.
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Throughout this paper, by a I'- seminear-ring M we shall mean a zero symmetric I'- seminear-ring.
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INTRODUCTION

Preliminaries: An algebraic structure (N, +, .) is said to be a
seminear-ring if i) (N, +) is a semigroup ii)) (N, .) is a
semigroup. iii) (a + b)c = ac + bc for all a, b, c € N. Let M be
an additive semigroup and I' a nonempty set. Then M is called
a right I'-seminear-ring if there exists a mapping M X I' x M —
M satisfying the following conditions: i) (a + b)yc = ayc +
byc ii) (ayb)pc = ay(bpc) for alla,b,c e Mand vy, p €T. Let M
be a I'-seminear-ring under the mapping f: M xI' x M — M.
A Subsemigroup A of M is called a sub I'-seminear-ring of M
if A is a I['-seminear-ring under the restriction of fto A x I" x
A — A. Let S and I be two nonempty sets. Then S is called a
I'- Semigroup if there exists a mapping from S x I' x S — S
which maps (a, a, b)—aab satisfying the condition: (ayb)fc =
ay(bBc) for all a, b, c € S and y, B €. A nonempty subset A
of a I'-semigroup S is called a I"-subsemigroup of S if AT'A C
A. A right I'- seminear-ring M is said to have an absorbing
zero ‘0’ ifi)a+ 0 =0+ a=aii) ay0 = Oya = 0, hold for all
a€Mandy €. (M, +,.)is al-seminear-field ifi) (M, +)isa
semigroup ii) (M*, I') is a group (M* is M without addition
zero, if it has one) iii) (a + b)yc = ayc + byc foralla,b,c €
Mand y €T. My = {m € M/my0 = Oforally € '} is called
the zero-symmetric part of M. A I'-seminear-ring M is called
zero-symmetric, if M = M,,.
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In a I'-seminear-ring M if there exists an element ‘e’ such that
aye = eya = aforall a € M then M is called a I'-seminear-ring
with identity element. An element a€M is said to be
idempotent ifaya=aVy €.

Semigamma bi- ideals in I'-seminear-ring

In this section, we introduce the notion of semigamma bi-
ideals in I'-seminear-ring. Also we study the properties of
semigamma bi-ideals.

Definition 2.1

A T-subsemigroup Q of (M, +) is said to be a semigamma
quasi-ideal of M if

(QIrM) n (MI'Q) < Q.
Definition 2.2

A T'-subsemigroup B of (M, +) is said to be a semigamma bi-
ideal of M if BTMI'B € B.

Example 2.3
Consider the I'-seminear-ring defined by the Klien’s four group

{0,a,b,c} with T={y,,y,} where y;,y, are given by the
schemes 7: (0,7,11,1) and 12: (0,7,0,7) (see p.408, Pilz [4]).



59173

Meenakshi and Meenakumari, On semigamma bi- ideals in T'- seminear-rings

Y1 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b c
Y2 0 a b c
0|0 0 0 0
a 0 a 0 a
b |0 0 0 0
c 0 a 0 a

In this I'-seminear-ring, {0,a} and {0, b} are semigamma bi-
ideals.

Proposition 2.4

The set of all semigamma bi-ideals of a I'-seminear-ring M
form a Moore system on M.

Proof

Let {B;};c; be a set of semigamma bi-ideals in M. Let B =
N;e; B;. Then BIMI'B <€ B;I'MI'B;,Vi. Therefore B is a
semigamma bi-ideal of M.

Remark 2.5
Every semigamma quasi-ideal is a semigamma bi- ideal.
Proof

For, if Q is a semigamma quasi-ideal, then (QICM)NMI'Q) €
Q. Now, QIMI'Q = QIr(Mn M)I'Q = (Qrm) n (MrQ) < Q.
Therefore Q is a semigamma bi- ideal. But the converse is not
true.

Example 2.6

Consider the I'-seminear-ring M defined by the Klien’s four
group {0, a, b, ¢} with I'={y;,y,} where y,,y, are given by the
schemes 1: (0, 13,0,13) (see p.408, Pilz [4]) and (0,13,0,0)

Y 0 a b c
0 0 0 0 0
a 0 b 0 b
b 0 0 0 0
c 0 b 0 b
¥z 0 a b c
0 0 0 0 0
a 0 b 0 0
b 0 0 0 0
c 0 b 0 0

In this I'-seminear-ring M, {0,a} and {0, c} are semigamma bi-
ideal but not semigamma quasi-ideal.

Proposition 2.7

Let M be a I'-seminear-ring in which every semigamma quasi-
ideal is idempotent. Then for left I'-subsemigroup L and right
I'-subsemigroup R of N, RIL = RNL € LI'R is true.

Proof:
Let A and B be two semigamma quasi-ideals in M. Then by

proposition 2.4, ANB is also a semigamma quasi-ideal. By the
assumption on semigamma quasi-ideals we have ANB =

(ANnB)I'(ANB) € (AI'B) N (BI'A). On the other hand, we
have (AI'B) n (Br'A) <€ (ATM) n (MI'A) € A and
analogously, (AT'B) n (BI'A) € B. Hence (AI'B) n(BTA) ©
AN B. Hence AnB = (AI'B) N (BT'A). Since one sided I'-
subsemigroup are always semigamma quasi-ideals, we have
RN L= (RTL) n (L[R) € RT'L for a left I'-subsemigroup L
and right I'-subsemigroup of M. Trivially RIL € RN L and so
RIL=RNL= LR

Proposition 2.8

Let R and L be respectively right and left I'-subsemigroups of
M. Then any subsemigroup B of M such that RTL € B € RNL
is a semigamma bi- ideal of M.

Proof:

For a subsemigroup B of (M, +) with RTL € B € RNL, we
have BTMI'B € (RNL)IMI'(RNL) € RITMIL € RI' L € B
and so B is a semigamma bi- ideal of M.

Proposition 2.9

If B is a semigamma bi-ideal of M and S is a sub I'-seminear-
ring of M, then BNS is a semigamma bi- ideal of S.

Proof:

Since B is a semigamma bi- ideal of M, BTMI'B € B. Let C =
BNS. Now, CI'SI'C = (BNS)I'ST'(BNS) € (BI'STB)NS € BNS
= C. Hence C is a semigamma bi-ideal of S.

Proposition 2.10

Let M be a I'-seminear-ring. If B is a semigamma bi- ideal of
M, then Byn and n’yB for all y €T are semigamma bi- ideal of
M where n, n’€ M and n' is distributive.

Proof:

Clearly Byn is a subsemigroup of (M, +) Vy €l. Also
(Byn)I'MI'(Byn) € BI'MI'(Byn) S Byn and so we get that
Byn is a semigamma bi- ideal of M. Since n' is distributive,
n'yB is a subsemigroup of (M, +) for all y €I and hence n'yB
is a semigamma bi- ideal of M.

Corollary 2.11

If B is a semigamma bi- ideal of M and b is a distributive
element in M, then byByc is a semigamma bi- ideal of M for
c€EMandforally €T.

Proposition 2.12

If B is a semigamma bi- ideal and sub I'-seminear-ring of a I'-
seminear-ring M and C is a semigamma bi- ideal of the I'-
seminear-ring B such that C? = C, then C is a semigamma bi-
ideal of the I"-seminear-ring M.

Proof:

Since C is a semigamma bi- ideal of the I'-seminear-ring B we
have, CI'BIC <& C Now, CIMIC = C?*ITMIC*=Cr
(CTMI'O)I'C € CI'(BITMIB)I'C € CI'BI'C € C. Hence C is a
semigamma bi- ideal of the I'-seminear-ring M.
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Theorem 2.13
Let M be a I'-seminear-ring. Let B be a semigamma bi- ideal of
the I'-seminear-ring M and A be a non-empty subset of M, then

following are true.

e BTI'A is a semigamma bi- ideal of the I'-seminear-ring

M.
e AIB is a semigamma bi- ideal of the I'-seminear-ring
M.
Proof
e We see that (BTA)I'(BI'A) = (BI'AI'B)I'A and

(BTA)'MI'(BTA) = (BTATMI'B)['A. Since B is a
semigamma bi-ideal of the TI'-seminear-ring M,
(BrA)I'(BIA) = (BrAIB)IA & BI'A and
(BTA)'MI'(BT'A) = (BTATMIB)I'A & (BTMI'B)['A
€ BI'A. Therefore BI'A is a semigamma bi- ideal of the
I'-seminear-ring M.

e Similar to 1).

b-simple I'-seminear-ring
Definition 3.1

A T'-seminear-ring M is said to be b-simple, if it has no proper
semigamma bi- ideals.

Example 3.2
Consider the TI'-seminear-ring (Zs,+,/) under I' =

{v1, 72} where y4, y, are given by the schemes 2:(0,1,0,0,0) and
3:(0,1,1,0,0).(see p.408, Pilz [4])
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Since (Zs,+) has no proper I'-subsemigroup, the above I'-
seminear-ring is b-simple.

Lemma 3.3

Let M be a I'-seminear-ring. Then the following conditions are
equivalent.

e M is a I'-seminear-field
e My #{0} and for all m € M*, Mym =M for all y €I.

Proof:
i)=ii) Since M is a I'-seminear-field, it contains the identity

element, which is also distributive. Clearly Mym € M. For
m€E M, m=eym € Mym implies M € Mym. Thus M = Mym.

ii)=1) For all a, b € M*, there exists a', b' € M* such that b'y;b
= a and a'y,a = b' for all y;,y, of I'. Thus a'y,(ay;b) =
(a'y,a) y1b = b'y;b = a# 0 so ay;b # 0. Hence M contains no
zero divisors. Let d #0 € M be a distributive element. Then
there exists ¢ € M such that eyd =d V y €. Now (dye — d)yd
= 0= dye = d. Let n € M*. Then dy(eyn-n) = (dye)yn-dyn =
dyn-dyn = 0. This implies eyn = nVy €I'. Similarly nye =
nVy €l'. Therefore ‘e’ becomes two-sided identity in M.
Finally for all n € M*, there exists n' € M* such that n'yn = e.
Hence M is a I'-seminear-field.

Remark 3.4

It is clear that any I'-seminear-field is b-simple. However, any
b-simple I'-seminear-ring is not in general a I'-seminear-field
and in the following theorem we obtain the necessary and
sufficient condition for a b-simple I'-seminear-ring to a I'-
seminear-field.

Lemma 3.5

Let M be a I'-seminear-ring with more than one element and an
absorbing zero. Then the following conditions are equivalent.

e M is aI'-seminear-field
e Mis b-simple, M; #{0} and for 0 # n € M, there exists
n' € M such that n'yn # 0 for everyy €T’

Proof

i) =ii) If M is a ['-seminear-field, then {0} and M are the only
semigamma bi-ideals of M. For if {0} # B is a semigamma bi-
ideal of M, clearly MI'b € M. On other hand, n € M, n = nye =
ny(b'yb) = (nyb')yb € MI'b implies M € MI'b. Hence M =
MIb. Similarly, M = bI'M. Now, M = M? = MIM =
(bI'M)I'(MI'b) & bI'MI'b € B. Therefore M = B. Hence M is
b-simple and the identity in M satisfies the required conditions.

ii)=1) Since My #{0}, there exists d € M; and dyd' = dy(d' +
0) = dyd' + dy0. This implies that dy0 = 0. We know that M,
is a semigamma bi-ideal of M and since M is b-simple, we get
M = M,. Let 0 #n € M, then by proposition 2.10, Myn is a
semigamma bi-ideal of M and 0 # n'yn € Myn for some n' €
M. Since M is b-simple, M = Myn. Therefore by lemma 3.3,
M is a I'-seminear-field.

Theorem 3.6

Let M be a I'-seminear-ring then M is b-simple I'-seminear-
ring iff M=mI'MI'm V m € M.

Proof:

Let M be a b-simple I'-seminear-ring. Let m € M. Then by
theorem 2.13, mI'MI'm is a semigamma bi-ideal of M. Then M
= mI'MI'm. Let B be a semigamma bi-ideal of M. Let b € M,
then M = bI'MIb € BIMIB € B => M € B = M = B.
Therefore M is a b-simple I'-seminear-ring.
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