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INTRODUCTION 
 
This is the largest genus in the family Geminiviridae
genus Begomovirus is transmitted by whitefly (
Gennadius) in the persistent circulative manner. 
mosaic virus (BGMV) is the type member of the genus. 
Begomoviruses infect dicots in tropical and temperate 
climates. The genome of most begomoviruses consists of two 
ssDNA components, DNA-A and DNA-B, each 2.5
size. There are two ORFs in the virion sense and
complementary sense in DNA-A. DNA-B has one ORF each in 
virion as well as in complementary sense. In begomoviruses, 
the tendency for recombination and acquisition of extra DNA 
components had resulted in emergence of new viruses that 
infect new hosts and cause new diseases (Varma and Malathi, 
2003; Chakraborty et al., 2003). The economically most 
important, geographically wide-spread and numerous 
geminiviruses are within the genus Begomovirus 
BGMV), which contains more than 200 species (Fauquet 
2008; Brown et al., 1995; Brown and Czosnek, 2002; Jones, 
2003; Varma and Malathi, 2003; Brown, 2007; 2010).
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ABSTRACT 

More than 80% of the known geminiviruses are transmitted by whiteflies (
and belong to the genus Begomovirus, which mostly have bipartite genomes designated as DNA
and DNA-B and infect dicotyledenous plants although numerous begomovirus with a monopartite 
genome occur in the Old World and there are some of which a single components is not infectious yet 
no DNA-B component has been found. There have been several of reports of satellite molecules 
associated with begomoviruses. Genome ORFs are plays important roles for host range determination, 
virus symptom development & severity, virus movement and virus replication
which new begomoviruses are appearing shows that these viruses are still evolving and pose a serious 
threat to sustainable agriculture, particularly in the tropics and sub
begomoviruses have also moved to temperate regions causing concern in the production of vegetables 
in greenhouses. In this review we have discus about the genome organization of begomovirus, its 
ORFs and their possible pathogenesis n the basis of research findings.
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Gennadius) in the persistent circulative manner. Bean golden 
(BGMV) is the type member of the genus. 

Begomoviruses infect dicots in tropical and temperate 
climates. The genome of most begomoviruses consists of two 
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the tendency for recombination and acquisition of extra DNA 
components had resulted in emergence of new viruses that 
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Genome organization of begomoviruses
 

The International Committee on the Taxonomy of Viruses 
(ICTV) has recommended a classification and scheme of 
nomenclature, based on complete nucleotide sequences of the 
genome (DNA-A and DNA
Begomovirus originating in the New World have a bipartite 
genome organization whereas those from the Old World have 
either bipartite or monopartite genomes (Brown 
In monopartite begomoviruses such as 
virus (TYLCV) from Israel (Navot 
(Kheyr-Pour et al., 1991), only a single component similar to 
DNA-A of bipartite begomoviruses in
has been identified (Fig. 1a) and shown to be enough for 
producing infectivity when reintroduce
Koch’s postulates and confirming that the single genomic 
component is solely responsible for disease development.
DNA-A and DNA-B components constitute bipartite genome 
in begomoviruses. DNA-A is essential for replication and 
encapsidation (Rogers et al., 1986; Townsend 
Sunter et al., 1987) while DNA
movement and symptom production (Etessami 
Noueiry et al., 1994). The begomovirus replication cycles rely 
entirely on DNA intermediates and occur within the nucleus of 
the infected cell through two basic stages: conversion of 
ssDNA to dsDNA intermediates and rolling circle replication 
(RCR) (Gutierrez, 2002) ((Fig. 1b). 

International Journal of Current Research 
Vol. 9, Issue, 11, pp.61368-61380, November, 2017 

 

 

Snehi, S. K., Purvia, A. S., Parihar, S. S., Gupta, G., Singh, V. and Raj, S. K.  2017. “Overview of begomovirus genomic organization and its 
9, (11), 61368-61380. 

 Available online at http://www.journalcra.com 
 z 

OVERVIEW OF BEGOMOVIRUS GENOMIC ORGANIZATION AND ITS IMPACT 

Singh, V. and 2Raj, S. K. 

462026, M.P., India 
National Botanical Research Institute, Lucknow -226001, U.P., India 

Uda Devi Government Girls Inter College, Mall, Lucknow - 226104, U.P., India 

 
 

are transmitted by whiteflies (Bemisia tabaci Gennadius) 
which mostly have bipartite genomes designated as DNA-A 

B and infect dicotyledenous plants although numerous begomovirus with a monopartite 
single components is not infectious yet 

There have been several of reports of satellite molecules 
are plays important roles for host range determination, 

nt & severity, virus movement and virus replication. The frequency with 
which new begomoviruses are appearing shows that these viruses are still evolving and pose a serious 
threat to sustainable agriculture, particularly in the tropics and sub-tropics. In recent years, some 
begomoviruses have also moved to temperate regions causing concern in the production of vegetables 
in greenhouses. In this review we have discus about the genome organization of begomovirus, its 

basis of research findings. 
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Genome organization of begomoviruses 

The International Committee on the Taxonomy of Viruses 
(ICTV) has recommended a classification and scheme of 
nomenclature, based on complete nucleotide sequences of the 

A and DNA-B) of begomoviruses. 
Begomovirus originating in the New World have a bipartite 
genome organization whereas those from the Old World have 
either bipartite or monopartite genomes (Brown et al., 2002). 
In monopartite begomoviruses such as Tomato yellow leaf curl 

m Israel (Navot et al., 1991) and Sardinia 
., 1991), only a single component similar to 

A of bipartite begomoviruses in genome organization 
has been identified (Fig. 1a) and shown to be enough for 

when reintroduced in tomato, fulfilling 
Koch’s postulates and confirming that the single genomic 
component is solely responsible for disease development. 

B components constitute bipartite genome 
A is essential for replication and 

., 1986; Townsend et al., 1986; 
., 1987) while DNA-B plays a role in systemic 

movement and symptom production (Etessami et al., 1988; 
., 1994). The begomovirus replication cycles rely 

tes and occur within the nucleus of 
the infected cell through two basic stages: conversion of 
ssDNA to dsDNA intermediates and rolling circle replication 
(RCR) (Gutierrez, 2002) ((Fig. 1b).  
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DNA-A of all begomovirus has five ORFs, of which one 
(AV1, also called AR1) is on the virion DNA strand and the 
other four (AC1, AC2, AC3 and AC4 also designated as AL1, 
AL2, AL3 and AL4 respectively) are on the complementary 
strand. The viral strand ORFs code for the coat protein and for 
a protein required for cell-to-cell movement of the virus. The 
proteins encoded by the ORFs on the complementary strand 
are both involved in viral DNA replication, and are translated 
from spliced and unspliced versions of the same mRNA. 
(Harrison et al., 2002) Begomoviruses from the old world 
posses an additional ORF (AV2) does not found in New World 
begomoviruses. DNA-A has two ORFs in the virion sense or 
rightward direction (AV1/AR1-Coat protein (CP) and 
AV2/AR2-pre coat protein) and five ORFs in the 
complementary sense or leftward direction (AC1/AL1-
replication initiator protein (Rep), AC2/AL2-transcription 
activator protein (TrAP), AC3/AL3-replication enhancer 
protein (REn), AC4/AL4 and AC5/AL5). DNA-B has one 
ORF each in virion strand or right ward direction (BV1/ BR1-
nuclear shuttle protein (NSP)) and complementary strand or 
leftward orientation (BC1/ BL1-movement protein (MP)) 
(Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Common region/Intergenic region 
 
DNA-A and DNA-B sequences are different from each other 
except for an approximately 200 bp intergenic region (IR) 
(Padidam et al., 1995b) and hence that region is also called as 
common region (CR). The CR is present in the intergenic 
region between ORFs AV1 and AC1 in DNA-A and between 
ORFs BV1 and BC1 in DNA-B and it is highly specific for a 
virus. CR is the only region with significant sequences 
similarity between DNA-A and DNA-B components of the 
same virus. The CR has many regulatory element including 
two TATA motifs, one for ORF AV1/AV2 and another for 
ORF AC1/AC4. Apparently, the bidirectional promoters for 
these ORFs are also present in the CR. CR also has a binding 
site for Rep protein that are repeated (interons), sometimes in 
perfectly and sometimes in inverted orientation (Arguello–
Astoroga et al., 1994; Fontes et al., 1994). Interon sequences 
of different viruses vary in length, sequence, number and 
orientation. There are characteristic differences in the 
arrangements of the interon between the Old World (Asia, 
Africa, Mediterranean and Australia) and the New World 
species (America) (Arguello-Astoroga et al., 1994). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Genomic organization of begomovirus showing various ORFs (genes) in virion  
sense and complementary sense:  DNA-A (a) and DNA-B (b) 

 
 

 
 

Fig. 2. Genomic structure of betaasatellite DNA component (a) and alphasatellite DNA component Figure source (Xie et al., 2010) 
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Common Region (CR) has the conserved nonanucleotide 
sequence TAATATTAC present in all geminivirus. The 8th 
nucleotide, adenine (A) serves as origin of replication (ori). 
The invariant nonanucleotide sequence present within the loop 
of stem and loop structure with inverted and complementary 
stem sequence being variable in composition and length 
between different viruses (Harrison and Robinson, 1999). 
 
ORF AV1 (Coat Protein) 
 
The ORF AV1 encodes for coat protein (CP) (Kallender et al., 
1988). In addition to forming the capsid, CP also determines 
transmission by insect vector. BGMV, the mutation in CP 
resulted in loss of acquisition and transmission by Bemisia 
tabaci (Azzam et al., 1994). In Abutilon mosaic virus (AbMV), 
exchange of three amino acid in the CP of an otherwise non-
transmissible isolate resulted in efficient whitefly transmission 
(Hohnle et al., 2001). Trans-encapsidation of African cassava 
mosaic virus (ACMV) genome with Beet curly top virus 
(BCTV), CP allowed ACMV to be transmitted by BCTV 
leafhopper vector elucidating the role played by CP in insect 
transmission (Briddon et al., 1990). The most conserved region 
among begomoviruses is the CP gene. This is in conjunction 
with transmission of begomoviruses by a single species of the 
vector suggesting the role played by CP in transmission 
(Stanley, 1985). CP amino acid sequence comparisons first led 
to conclusion that begomoviruses from the same geographical 
area are closest in relationship (Hong and Harrison, 1995; 
Padidam et al., 1995b; Rybicki, 1994). The CP gene plays the 
important role in encapsidation of the viral DNA and is 
implicated in viral movement within the plant as well as in 
whitefly transmission (Wartig et al., 1997; Hanley-Bowdoin et 
al., 1999; Harrison and Robinson, 1999; Sharma and Ikegami, 
2009). It might also play a role in limiting the viral DNA copy 
number by down-regulating Rep activity, specifically nicking 
(Yadava et al., 2010). In bipartite begomoviruses, the CP, 
though not needed for mechanical inoculation or 
agroinoculation of a well adapted host, was needed for 
whitefly transmission or for agroinoculation in a sub optimal 
host (Gardiner et al., 1988; Pooma and Petty, 1996). For 
bipartite Bean dwarf mosaic virus (BDMV), CP to a limited 
extent substituted for BV1 function and rescue cell-to cell 
movement in the absence of ORF BV1 (Sudarshana et al., 
1998). CP mutants accumulated wild-type levels of dsDNA but 
only small amounts of ssDNA suggesting that the CP might 
play a role in sequestering ssDNA (Padidam et al., 1996). For 
monopartite begomoviruses like Tomato yellow leaf curl virus 
(TYLCV), CP was required for infectivity (Ridgen et al., 
1993). In addition to nuclear import, TYLCV CP was found to 
play a role in nuclear export acting as a homologue to the 
bipartite begomovirus BV1 protein (Rojas et al., 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
ORF AV2 (Pre-coat protein) 
 
Only the Old World begomovirus found to possess ORF AV2. 
For a bipartite Tomato leaf curl virus (TLCV) from India, ORF 
AV2 had been found to play a role in virus movement 
(Padidam et al., 1996; Wartig et al., 1997; Hanley-Bowdoin et 
al., 1999; Harrison and Robinson, 1999; Sharma and Ikegami, 
2009) and also as a suppressor of RNA-silencing (Avi et al., 
2007; Yadava et al., 2010). It is speculated that for 
monopartite begomoviruses found only in the Old World, ORF 
AV2 is complementing the function of virus movement 
rendering DNA-B redundant (Harrison and Robinson, 1999). 
 
ORF AC1 (Replication initiator protein)   
 
Replication-associated protein is a multifunctional, oligomeric 
protein, which possesses site-specific DNA binding to the 
reiterated motifs (introns) at the intergenic region (IR) and 
initiates DNA replication by introducing a nick and ligation at 
the conserved nonanucleotide sequence, executes ATP-
dependent topoisomerase I, ATPase and helicase activities and 
also binding of retinoblastoma-related proteins (Hanley-
Bowdoin et al., 1999; Harrison and Robinson, 1999; Pant et 
al., 2001; Choudhury et al., 2006). Replication initiator protein 
(Rep) is the only viral protein absolutely essential for 
replication (Elmer et al., 1988). Replication enhancer protein 
(REn) enhances viral DNA accumulation. This depends on the 
interaction between REn with Rep, which would bind 
simultaneously to the stem-loop structure and to the upstream 
Rep-DNA complex (Hanley-Bowdoin et al., 1996). There is no 
direct evidence for this model but it would serve to direct Rep-
DNA complex to the nicking site.  
 
Mutations in REn produced delayed-onset and attenuation of 
symptoms (Sunter et al., 1990). AS mentioned earlier, Rep 
protein is the only viral protein absolutely required for viral 
DNA replication as it is responsible for initiating DNA 
replication during the rolling-circle amplification stage. In all 
geminiviruses tested so far, Rep has sequence specific DNA 
binding capacity as well as site specific endonucleolytic 
activity. Begomovirus Rep interacts with the viral REn (AL3) 
protein. In all Rep proteins, the C-terminal regions contain a 
NTP- binding domain with typical walker A and B motifs and 
exhibits ATPase activity (Gutierrez, 2002). Rep protein (~43 
kDa) is multi-functional. During replication, Rep specifically 
recognizes the viral origin (Fontes et al., 1994), binds to 
specific sequences (repeats/ introns) found in the CR and 
cleaves the phosphodiester bond between the seventh and 
eighth residues of the conserved nonamer 5’ TAATATTAC 3’ 
(Stanley, 1995).  

Table 1. ORF (Gene) order in begomovirus DNA-A and DNA-B components with their putative protein products and predicted 
function 

 

ORF Predicted molecular weight (kDa) Putative protein Predicted function 

AV1 30.0 Coat protein (CP) Encapsidation 
AV2 13.0 Pre- coat protein Cell to cell movement protein 
AC1 40.0 Replication initiation protein (Rep) Replication initiation 
AC2 17.0 Transcription activator protein 

(TrAP) 
Transcription activators of rightward ORFs, 
suppressor of PTGS 

AC3 15.0 Replication enancer protein (REn) Replication enhancement 
AC4 6.0 _ Suppressor of PTGS, Viral replication 
AC5 18.0 _ Viral replication 
BV1 29.0 Nuclear shuttle protein Nuclear trafficking (NSP) 
BC1 32.0 Movement protein (MP) Cell to cell movement, pathogenicity determinant 
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Rep remains bound covalently to the 5’- phosphate end and the 
3’- hydroxyl end becomes available for rolling-circle 
replication. After one replication cycle, Rep cleaves once again 
at the newly generated origin sequence. Then Rep ligates the 
nascent 3’ end of DNA with the previously generated 5’ end 
releasing a unit–genome length, circular ss DNA molecule 
(Bisaro, 1996). Thus, Rep acts as an endonuclease and ligase 
to initiate and terminate rolling-circle replication (Laufs et al., 
1995a; Orozco and Hanley-Bowdoin, 1998). The Rep proteins 
of all geminivirus have an NTP-binding domain (Hanley-
Bowdoin et al., 1999) and the Rep proteins of Tomato golden 
mosaic virus (TGMV) and Tomato yellow leaf curl virus 
(TYLCV) are known to hydrolyze ATP (Orozco et al., 1997; 
Desbiez et al., 1995). Gorbalenya and Koonin (1993) proposed 
that Rep might function as a DNA helicase during replication. 
Pant et al. (2001) had shown ATP-dependent topoisomerase 
activity of Rep protein from blackgram isolate of Mungbean 
yellow mosaic virus (MYMV). Rep acts as a transcriptional 
regulator to regulate its own synthesis (Sunter et al., 1993; 
Eagle et al., 1994). Rep has also been shown to oligomerise 
with itself as well as with REn protein (Settlage et al., 1996). 
 

DNA binding, cleaving and ligation domain of Rep is at N’ 
terminus, oligomerization domain is located almost in the 
middle and ATP hydrolyzing activity at C’ terminus (Orozco 
et al., 1997). Sequence analysis of rolling circle initiator 
proteins of eubacteria, eukaryotes and archaebacteria revealed 
three-conserved motifs-I (FLTYP), II (HXH) and III (YXXK) 
(Ilyina and Koonin, 1992). Motif III with a tyrosine (Y) 
residue is involved in the nucleophilic attack of phosphodiester 
bond of DNA at ori and represents the active site of Rep for 
DNA cleavage (Laufs et al., 1995a). Mutation of the active 
tyrosine at motif III blocked DNA cleavage and replication by 
TYLCV Rep protein. Mutation of motifs I, II and III of TGMV 
Rep protein also blocked DNA cleavage and replication 
(Orozco and Hanley-Bowdoin, 1998). Two α-helices in the N’ 
terminus of Rep protein, which overlap DNA binding and 
cleavage domains, were conserved among different 
geminivirus (Orozco et al., 1997). Mutations in these helices 
inhibited DNA binding and cleavage in vitro and viral 
replication in vivo, thereby proving that these helices are 
essential for Rep function (Orozco and Hanley-Bowdoin, 
1998). For TYLCV Rep, the structure of the N’ terminus 
catalytic domain (4 -121 amino acids) had been elucidated by 
nuclear magnetic resonance (NMR) spectroscopic studies. It 
comprised nine β-strands and two α-helices (Campos-Olivas et 
al., 2002).  
 

ORF AC 3 (Replication enhancer protein) 
 
Tomato golden mosaic virus (TGMV) Replication enhancer 
protein (REn) had been shown to interact both with TGMV 
Rep and with retinoblastoma-related protein (pRBR). The REn 
oligomerisation was not required for its interaction with Rep or 
pRBR. Rep and pRBR were found to bind to the same domain 
in TGMV REn (Settlage et al., 2001), although functional 
relevance of this interaction is not yet clear. It has been 
proposed that Rep/REn and not pRBR/REn interaction is 
important for viral DNA replication (Gutierrez, 2002). 
Recently, Rep proteins from TGMV and Cabbage leaf curl 
virus (CaLCuV) have been shown to interact with Arabidopsis 
proteins-a Ser/Thr kinase-GRIK (Geminivirus Rep-interacting 
kinase), a kinesin–GRIMP (Geminivirus Rep-interacting motor 
protein) and a histone H3 protein (Kong and Hanley-Bowdoin, 
2002). 
 

ORF AC2 (Transcription activator protein) 
 
Transcription activator protein (TrAP) induces virion sense 
promoters in DNA-A as well as in DNA-B. In TrAP mutants 
of Tomato golden mosaic virus (TGMV), there was no 
accumulation of coat protein and no infectivity was achieved. 
Also ssDNA accumulation was impaired just like CP mutation 
(Sunter et al., 1990). They demonstrated that TrAP 
transactivates virion sense expression of CP in DNA-A as well 
as ORF BV1 in DNA-B at transcription level (Sunter and 
Bisaro, 1991; 1992). Sunter et al. (1994) showed that TrAP 
transactivation was non-specific. TGMV virion sense 
promoters were transactivated by TrAP protein from other 
begomoviruses like African cassava mosaic virus (ACMV) 
and Squash leaf curl virus (SLCV) but transactivation by TrAP 
homolog in curtovirus C2 protein was not achieved. TrAP was 
shown to activate CP by two distinct mechanisms i.e. by 
activation in mesophyll cells, and derepression in phloem cells 
(Sunter and Bisaro, 1997). The activation domain was mapped 
to the C’ terminus of the protein (Hartitz et al., 1999).  The 
protein was found in both the nuclear and cytoplasmic 
compartments when expressed in insect and plant cells (van 
Wezel et al., 2001). TrAP has anti-gene-silencing determinants 
as TYLCV-China TrAP protein caused enhanced susceptibility 
when expressed in transgenic plants (van Wezel et al., 2002a). 
TrAP was also shown to interact with plant adenosine kinase 
and SNFI (Sucrose Nonfermenting I) kinase, which are 
presumed to be components of innate host anti-viral 
mechanisms (Hao et al., 2003), thus explaining enhanced 
susceptibility shown by TrAP protein transgenics.  
 
The TrAP protein transactivates expression of virion-sense 
genes from both DNA-A and DNA-B (Hanley-Bowdoin et al., 
1999; Harrison and Robinson, 1999; Wang et al., 2003; Trinks 
et al., 2005; Gopel et al., 2007; Pandey et al., 2009), 
inactivates adenosine kinase (ADK) (Wang et al., 2003), binds 
siRNA (Vanitharani et al., 2004) and interacts with tomato 
karyopherin α (Gopel et al., 2007). It has also been reported as 
a suppressor of RNA silencing in bipartite begomoviruses 
(Voinnet et al., 1999; Wang et al., 2003; Vanitharani et al., 
2004; Trinks et al., 2005) as well as monopartite 
begomoviruses (Dong et al., 2003; Gopel et al., 2007; Kon et 
al., 2007). 
 
ORFs AC4 and AC5 
 
ORF AC4 is present within Rep protein but in a different 
frame thus it encodes for a different protein. The role of ORF 
AC4 in the virus infection could not be detected for TGMV 
(Pooma and Petty, 1996) but later ORF AC4 was presumed to 
weakly suppress Rep gene expression (Groning et al., 1994) 
and the binding site for AC4 protein mediated repression did 
not involve Rep binding site and was distinct (Eagle and 
Hanley-Bowdoin, 1997). In Tomato leaf curl virus, ORF C4 
was neither required for the virus replication nor for systemic 
spread of the virus but is considered to be a determinant of 
symptom severity (Ridgen et al., 1994). In the case of 
monopartite Begomovirus, TYLCV, it was hypothesized that 
ORF C4 might play a role in delivering viral DNA to the cell 
periphery and the plasmodesmata and serve as BCI protein 
homologue (Jupin et al., 1994; Rojas et al., 2001). Expression 
of ACMV Rep protein alone induced a local hypersensitive 
response; co-expression of Rep and AC4 protein triggered 
systemic necrosis in infected tissues but AC4 protein when 
expressed alone did not induce any such necrosis (van Wezel 
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et al., 2002b). It was proposed that ACMV AC4 might counter 
the plant defense mechanism that was initiated by the Rep-
mediated local hypersensitive response. Asymptomatic vein 
swelling was attributed to AC4 protein activity causing 
abnormal cell division in vascular bundles (Latham et al., 
1997; Krake et al., 1998).  
 
The function of AC4 protein is symptom determinant 
implicated in the control of cell-to-cell movement, and may 
counter a host response to Rep expression and suppression of 
RNA-silencing by binding of siRNAs (Wartig et al., 1997; 
Rojas et al., 2001; Vanitharani et al., 2004; Fondong et al., 
2007; Gopal et al., 2007; Pandey et al., 2009). ORF AC5 
codes for a protein for which the functional significance is yet 
to be ascertained. Presence of this ORF is not very frequent. It 
has also been observed in some geminivirus isolates like 
Tomato leaf curl New Delhi virus (luffa, potato), Papaya leaf 
curl virus (Y15934), Soybean crinkle leaf virus- Japan 
(AB050781), Croton yellow vein mosaic virus (AJ507777), 
Tomato yellow leaf curl-Thailand, Ageratum yellow vein virus 
(NC004626), Euppatorium yellow vein virus-(Yamaguchi) 
(AB079766), Bhendi yellow vein mosaic virus- (Madurai) 
(AF63750), Sida yellow mosaic virus (NC004639), African 
cassava mosaic virus- (Ivory Costa) (AF259894), and Water 
melon chlorotic stunt virus (AJ245652). 
 
ORFs BV1 (Nuclear shuttle protein) and BC1 (Movement 
protein) 
 
In general, for bipartite begomoviruses, ORF BV1 functions as 
a nuclear shuttle protein (NSP) i.e. in transporting the virus 
DNA between nucleus and cytoplasm, while ORF BC1 
(Movement Protein, MP) functions in cell-to-cell movement of 
the viral DNA (Gafni and Epel, 2002; Hussain et al., 2005). 
For Bean dwarf mosaic virus (BDMV), Abutilon mosaic virus 
(AbMV) and Squash leaf curl virus (SLCV), NSP and MP 
have been shown to function co-operatively in cell-to-cell 
movement (Rojas et al., 1998; Sanderfoot and Lazarowitz, 
1995; Zhang et al., 2001). For BDMV, it was demonstrated 
that the NSP exports viral DNA from the nucleus to cytoplasm. 
MP increases the size exclusion limit of plasmodesmata and 
mediated the cell-to-cell movement of the viral DNA (Rojas et 
al., 1998). For SLCV, it was suggested that NSP was involved 
in shuttling viral ss DNA both into and out of the nucleus 
(Pascal et al., 1994). The NSP-ss DNA complex is trapped by 
MP and the MP-NSP-ss DNA complex is directed to the cell 
periphery (Sanderfoot et al., 1996). Studies with ACMV did 
not support the suggestion that NSP and MP function in 
concert in cell-to-cell spread. However, it was suggested that 
NSP supported local spread while MP, possibly along with 
NSP, aided in systemic spread (von Arnim et al., 1993). MP 
has been shown to be the determinant of pathogenicity of 
bipartite begomoviruses (von Arnim and Staley, 1992; Pascal 
et al., 1993). The viral disease-like phenotype seen in 
transgenic plants expressing MP might be due to interference 
of MP with normal macromolecular intercellular trafficking 
(Lucas, 1995; 2006) and 3’ terminus of movment protein (MP) 
was associated with symptom development (Pascal et al., 
1993). 
 
REPLICATION OF GEMINIVIRUS 
 
The geminivirus replication cycle relies entirely on DNA 
intermediates and occurs within the nucleus of the infected cell 
through two basic stages:  

 Conversion of ssDNA to dsDNA intermediates. 
 Rolling circle replication (RCR). 

 
Rolling circle replication 
 
Geminivirus DNA replicates via rolling circle mechanism 
(RCR) that is analogous to bacteriophage T4 replication, which 
also has single-stranded circular DNA. Geminiviruses utilize 
the host cell machinery for their replication. For initiation of 
replication, ss DNA of the geminivirus first converted into 
dsDNA (Kammann et al., 1991; Saunders et al., 1992). This 
step is carried out entirely by host cellular enzymes. For minus 
strand synthesis, priming by RNA or DNA is required. For 
mastreviruses, a small ssDNA molecule, 88 nucleotide-long 
with ribonucleotides at 5’ end was found to be annealed with 
small intergenic region (SIR) in the encapsidated genomic 
ssDNA (Donson et al., 1984; Hayes et al., 1988). For 
begomoviruses, no such ssDNA primers were found but RNA 
primers were found in ACMV, associated near the common 
region (CR) (Saunders et al., 1992). The next stage, the rolling 
circle phase, requires the concerted action of viral Rep protein 
and other viral proteins with cellular factors and leads to the 
production of new dsDNA and ssDNA viral forms (Stenger et 
al., 1991; Stanley, 1995). The double-stranded replicative form 
serves as a template for transcription as well as ssDNA 
synthesis. The single-stranded DNA thus produced may enter 
in the replicative cycle or gets transported from cell-to-cell 
with the help of viral movement protein or gets encapsidated 
by viral coat protein (Gutierrez, 2002). The diagrammatic 
representation of geminivirus replication cycle proposed by 
Gutierrez (1999). A recombination dependent replication 
(RDR) mode seen in the late phase of bacteriophage T4 

infection has also been suggested to occur in many 
geminiviruses like Abutilon mosaic virus (AbMV) (Jeske et 
al., 2001) and ACMV, BCTV, TGMV and TYCLV (Preiss and 
Jeske, 2003). 
 
Transcriptional regulation 
 
Replication (Rep) is known to auto-regulate its own 
expression. The Rep binding iteron is located between TATA 
box and Rep transcription start site and when Rep binds to the 
introns, it down-regulates its own expression (Sunter et al., 
1993; Eagle et al., 1994; Groning et al., 1994). Like 
replication, transcriptional regulation was also specific for the 
homologous Rep protein. The C2 terminus domain of 
mastrevirus Rep has a trans-activation domain (Horvath et al., 
1998), which might be responsible for its transcriptional 
regulation. For begomoviruses too, the same domain was 
expected to be responsible for Rep auto-regulation (Gutierrez, 
2002). Auto-regulation does not require a functional viral ori 
suggesting that Rep binding site acts independently during 
transcription and replication (Eagle et al., 1994). In TGMV, 
AL4 mediated repression of AL1 promoter has been reported 
which does not involve AL1 binding site. Also, a TATA box 
element located immediately upstream of the Rep binding site 
and a G-box element located at the base of stem-loop structure 
is involved in activation of AL1 promoter (Eagle and Hanley-
Bowdoin, 1997). Mutations in TATA-box and G-box motifs 
were detrimental to Rep promoter function. In particular, G-
box mutants displayed very low activity indicating that this 
element is the primary Rep transcriptional activating sequence. 
TATA-box and G-box element share a role in replication as 
well as transcription. A host G-box transcription factor might 
activate Rep expression and facilitate Rep recruitment and 

61372                                           International Journal of Current Research, Vol. 9, Issue, 11, pp.61368-61380, November, 2017 

 



binding to the origin, modulate chromatin assembly and origin 
accessibility or stabilize an origin conformation required for 
efficient replication (Hanley-Bowdoin et al., 1999). In ACMV, 
a domain responsible for negative regulation of Rep promoter 
by its product had been mapped to a 92 bp fragment located 
immediately upstream of Rep initiation codon encompassing 
the consensus TATA box and transcription start site (Hong and 
Stanley, 1995). Like TGMV, ACMV Rep protein could not 
fully silence its promoter. Though the equivalent sequences are 
involved in transcriptional regulation of Rep for both ACMV 
and TGMV, there are some differences too (Hong and Stanley, 
1995). ACMV Rep promoter does not have a G-box factor and 
transcriptional regulation is regulated by multiple cis-elements. 
Also, AC4 protein in ACMV did not negatively regulate Rep 
expression. 
 
For TGMV and ACMV, a TATA-box containing promoter for 
TrAP (ORF AC2) expression had been identified (Haley et al., 
1992; Zhan et al., 1991). Neither promoter for TrAP was 
responsive to Rep or REn protein, ruling out regulation of 
TrAP promoters by these viral proteins (Haley et al., 1992). 
The virion sense promoters for DNA-A (CP) as well as DNA-
B (NSP) in TGMV and ACMV have been mapped. They 
comprise the CR and downstream sequences that contain 
TATA box and transcription start site and were enough for 
virion sense gene activation when TrAP protein was supplied 
in trans (Sunter et al., 1990; Sunter and Bisaro, 1991; 1992; 
Groning et al., 1994). Activation of virion sense promoters 
have been found to occur at the level of transcription (Sunter 
and Bisaro, 1992). AC2 regulation of virion sense promoter is 
non-specific, as it has been shown that TGMV DNA-A could 
complement non-infections ACMV and Potato yellow mosaic 
virus (PYMV) TrAP mutants in plants (Saunders and Stanley, 
1995; Sung and Coutts, 1995).  
 
This suggests that TrAP functions either through conserved 
DNA sequences or through conserved interaction with host 
factors or both. Within virion sense promoters, a conserved 
sequence called the conserved late element (CLE), although 
not ubiquitous, is present in most of the begomoviruses and 
has been implicated for TrAP interaction (Arguello-Astorga et 
al., 1994). But TrAP interaction with CLE had not been proved 
yet. Also, when TGMV promoter having CLE and BGMV 
promoter without CLE were checked for functional 
equivalence by transactivation with heterologous promoters, 
TrAP was found to regulate virion sense promoters non-
specifically. Thus, the CLE was ruled out in TrAP interaction 
(Hung and Petty, 2001). TrAP was found to induce CP 
expression in TGMV by activating it in mesophyll cells and 
derepressing it in phloem cells (Sunter and Bisaro, 1997). 
Thus, TrAP induces CP expression by different mechanisms in 
different cell types by interacting with different components of 
the cellular transcription machinery. In comparative analysis of 
complementary and virion sense promoters for ACMV, the 
complementary sense promoters in DNA-A were found to have 
stronger activity in comparison with viral sense promoters 
(Zhan et al., 1991). Though upstream sequences of MP (ORF 
BC1) are similar to that of Rep in the CR, their activation 
mechanisms are different. In TGMV, 5’ transcription start site 
for MP and Rep are different (Sunter and Bisaro, 1989). Also, 
Rep did not regulate MP transcription (Sunter et al., 1993), 
indicating that MP has different promoter sequences from that 
of Rep. Thus, in contrast to virion sense expression, where 
both genomic components have similar regulation, 
complementary sense expression is distinct for DNA-A and 

DNA-B. Thus, in geminivirus transcription, Rep is active in 
early phase of viral life cycle. When sufficient Rep and AC4 
protein accumulates, these promoters are repressed may be in 
order to limit their interference with the function of 
downstream TrAP promoters. TrAP and MP promoters are 
activated midway in viral life cycle. TrAP protein regulate 
virion sense gene expression and thus CP and NSP are late 
genes produced late in the viral infectivity cycle. This 
expression strategy was proposed by Howarth et al. in 1985.  
 
Geminivirus infection cycles 
 
The first stage in the infection cycle involves the injection of 
viral ssDNA into a plant cell by an insect vector. 
Geminiviruses replicate through a double-stranded (ds)DNA 
intermediate in the nucleus of the infected cells. Upon initial 
entry of a geminivirus into a host cell, there are no viral 
proteins present other than CP. Movement to the nucleus must 
thus be dependent entirely on the CP and exploitation of the 
host transport mechanism. It is not clear whether the virus 
inoculated into the host by the vector moves to the nucleus as 
an encapsulated virion or whether it decapitates and moves as a 
nucleoprotein complex. Apparently, CP is involved during this 
transport stage, probably through interactions with the host 
transport network (Gafni and Epel, 2002). Once in the nucleus, 
the viral ssDNA is converted into a transcriptionally active 
dsDNA intermediate that acts as a template for both 
transcription and replication.  
 
This complementary DNA synthesis is accomplished entirely 
by host proteins. This viral dsDNA is associated with histones 
and packaged into so called minichromosomes. Similar to 
other viral systems, the expression of geminiviral genes seems 
to follow a finely tuned temporal sequence. It is believed that 
the genes encoding proteins involved in replication and 
transcription (e.g. Rep, TrAP, and REn) are expressed earlier 
than the virion sense genes (e.g. CP and NSP genes). After the 
expression of the early viral genes (left side or complementary 
sense), the multiplication of the virus genome by a rolling-
circle (RC) mechanism generates new viral ssDNA molecules 
from the dsDNA intermediate. The last stage of the cycle 
corresponds to the uptake of the virions by the insect vector. In 
this case, it has been shown that the CP and, probably, virus 
particles are indispensable for insect transmission. The viral 
ssDNA genome replicates in the nucleus via dsDNA templates 
by a rolling circle mechanism. NSP, the viral-encoded NSP, 
binds progeny ssDNA genomes and transports these between 
the nucleus and cytoplasm. MPB, the viral cell-to-cell 
movement protein, traps NSP-genome complexes in the 
cytoplasm and directs these to and across the cell wall through 
modified plasmodesmata. In adjacent uninfected cells, NSP-
genome complexes are released, and NSP targets the viral 
ssDNA to the nucleus to initiate new rounds of replication and 
infection.  
 
PHYLOGENY OF BEGOMOVIRUSES 
 
For begomoviruses, DNA-A and their conserved protein 
products CP and Rep are being used for phylogenetic analysis. 
DNA-B sequences are more diverse than that of DNA-A and 
there are fewer conserved elements in DNA-B and hence, in 
general, are not used for phylogenetic analysis (Harrison and 
Robinson, 1999). When CP and Rep proteins of different 
begomoviruses were compared, based on geographical origins, 
they were divided into the Old World (Asian, African, 
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Mediterranean and Australia) and the New World (North and 
South America) viruses (Howarth and Vandemark, 1989). This 
kind of geography-related lineage was confirmed by further 
analysis including more begomoviruses (Hong and Harrison, 
1995; Rybicki, 1994; Padidam et al., 1995b). Within the Old 
World Branch, three sub clusters were discerned for CP: first 
viruses from African and Mediterranean region, second Asian 
viruses and third viruses from China and Australia (Harrison 
and Robinson, 1999). The Old World and the New World 
division of begomoviruses was further established when 
complete nucleotide sequence of DNA-A of 120 geminivirus 
species were analyzed by Fauquet and Stanley (2003). 
Currently, seven different virus clusters have been discerned 
for begomoviruses-New World begomoviruses comprising 
meso and Latin American viruses and viruses infecting sweet 
potato. The Old World viruses comprising of African, Indian, 
Asian viruses and viruses infecting legumes (Fauquet and 
Stanley, 2003). The phylogeny of geminiviruses is extremely 
stable, even when the number of viruses used for comparison 
was increased from 36 in 1989 to 389 in 2005. This aspect of 
stability in the phylogeny of geminiviruses would help in 
elucidating their evolution. 
 
ASSOCIATION OF SETELLITE MOLECULES WITH 
BEGOMOVIRUSES 
 
DNA-β molecule  
 
Satellites are the common features of many plant RNA viruses. 
There are a number of satellite molecules which totally depend 
upon the associated helper viruses for their replication, 
transmission, and encapsidation within the same capsid along 
with the nucleic acid of the helper virus. The satellites have no 
nucleotide sequence similarity with the associated virus and 
host genomes (Murant and Mayo, 1982). The both linear and 
circular types of satellites are found associated with RNA 
viruses. The majority of satellites interferes with helper virus 
replication and attenuate disease expression, but there are also 
a number of satellites known that exacerbate viral symptoms or 
produce novel symptoms quite distinct from the those induced 
by the helper virus alone (Collmer and Howell, 1992).  Till 
1997, there was no any report of association of satellite 
molecule with plant DNA virus system. Mansoor et al. (1999) 
reported a novel single-stranded circular DNA molecule 
approximately half the size (1350 nt) of the begomovirus 
component/full length-DNA-A of Cotton leaf curl virus 
(CLCuV DNA-1) associated with cotton leaf curl disease in 
Pakistan (Fig. 2a).  
 
The nucleotide sequence of this molecule was found to share 
homology to plant nanoviruses. Later on Mansoor et al. 
(2000b) further reported the association of such type of 
molecule with the Ageratum yellow vein disease in Pakistan 
and described that yellow vein disease of ageratum in Pakistan 
is associated with a begomovirus infection and single-stranded 
circular DNA molecule with similarity to CLCuV-DNA-1 and 
termed DNA-β. Since then, a large number of similar disease 
complexes have been reported from a variety of economically 
important and weed plant species (Saunders et al., 2000; 
Briddon et al., 2001 and 2003; Zhou et al., 2003; Mansoor et 
al., 2003; Jose and Usha, 2003; Bull et al., 2004; Xiong et al., 
2005; Rouhibakhsh and Malathi, 2005; Reddy et al., 2005; 
Tahir and Haider, 2005, Snehi et al., 2011, Srivastava et al., 
2013a, Srivastava et al., 2013b, Khan and Khan, 2016). 
Previously the DNA-β were only known to be associated with 

monopartite begomoviruses (Briddon et al., 2003; Jose and 
Usha, 2003) but now have also been reported with bipartite 
begomoviruses (Rouhibakhsh and Malathi, 2005; Reddy et al., 
2005).  Beside this there are a numerous report on a nanovirus-
like component, termed DNA-1 found associated with the 
disease complex. DNA-1 components are related to nanovirus 
components that encode replication-associated proteins. So far 
they have not been shown to have essential role in the disease 
etiology. Moreover, the disease plants also frequently contain 
DNA-β and DNA-1 recombinants that contain the 
begomovirus origin of replication.  The DNA-β satellite 
components require the helper begomovirus for replication in 
cells of host plants, systemic infection and encapsidation in 
virus particles. There is a highly conserved region in their 
nucleotide sequence adjacent to a ubiquitous stem-loop 
required for replication, and an extensive adenine-rich region 
approximately 370 to 420 nts suggested to maintain the size of 
the component (Briddon et al., 2003). All DNA-β molecules 
encode a conserved open reading frame (ORF) and termed as 
βCI. The DNA-β shows negligible sequence identity either to 
DNA-A or DNA-B components associated with 
begomoviruses except from the sequence TAATATTAC 
which is common in all geminiviruses which also contain the 
initiation site of rolling circle replication.  
 
The βC1 in one instance has been shown to be responsible for 
the suppression of jasmonic acid signaling involved in at least 
one gene silencing pathway (Yang et al., 2008). Briddon et al. 
(2003) characterized 26 DNA-β molecules from diverse plant 
species taken/originating from a variety of geographically 
distinct sources. These molecules were found widely 
associated with monopartite begomoviruses from Old World 
and apparently absent from the New World. The phylogenetic 
analysis of nucleotide sequence data formed two groups; one 
originated from Malvaceous hosts and the second from plants 
within the Solanaceae and Compositae.  The requirement for a 
begomovirus and its associated component to produce typical 
disease symptoms has previously been demonstrated for 
Bhendi yellow vein mosaic disease (BYVMD, Jose and Usha, 
2003), ageratum yellow vein disease (AYVD, Saunders et al., 
2000) and cotton leaf curl disease (CLCuD, Briddon et al., 
2001). Saunders et al. (2000) found that Ageratum yellow vein 
virus (AYVV) and DNA-β together form a disease complex 
that is responsible for the yellow vein phenotype of Ageratum 
conyzoides.  
 
The systemic infection of A. conyzoides with AYVV alone is 
asymptomatic and viral DNA replication is reduced to 5% or 
less of that in presence of DNA-β. Cotton leaf curl disease 
(CLCuD) in Pakistan caused by Cotton leaf curl Multan virus 
(CLCuMV) was associated with DNA-β component (Briddon 
et al., 2001). The clone of CLCuMV was alone found 
infectious but not typical to CLCuD. However, when 
CLCuMV and its respective DNA-β was inoculated together, 
induced full range of symptoms in experimentally inoculated 
cotton similar to the naturally infected cotton plants (Briddon 
et al., 2001). Jose and Usha (2003) studied the role of DNA-β 
molecule associated with the bhendi yellow mosaic disease 
caused by Bhendi yellow vein mosaic virus (BYVMV). The 
agro-inoculated bhendi plants with only DNA-A did not 
produce the typical yellow vein mosaic symptoms of the 
disease. The inoculated plants only showed edge curling of the 
leaves. However, the clone was found systemically infectious 
as judged by Southern hybridization. When the bhendi 
seedlings were inoculated with DNA-A and DNA-β showed 
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typical yellow vein mosaic symptom. Furthermore, the 
progeny of the cloned BYVMV DNA-A and DNA-β was 
found to be whitefly transmitted & the inoculated bhendi 
plants developed symptoms similar to the disease. These 
findings strongly support the involvement of the DNA-β 
components with the disease complex. 
 
Alphasatellites (DNA-1) 
 
The begomovirus/betasatellite complexes are often associated 
with a second type of circular ssDNA satellite, initially 
referred to as DNA-1 (Mansoor et al., 1999; 2001; Saunders 
and Stanley, 1999; Briddon et al., 2004), but now called 
alphasatellites (Mubin et al., 2009b, Tiendrebeogo et al., 
2010). Alphasatellites encode a single protein that shares high 
nucleotide (nt) identity with the replication associated 
(activator) protein (Rep), a rolling-circle replication initiator 
protein encoded by viruses in the genus Nanovirus, family 26 
Nanoviridae that also have a genome of circular ssDNA (Fig. 
2b) (Gronenborn, 2004; Xie et al., 2010). Consequently, 
alphasatellites are capable of autonomous replication, but 
require a helper begomovirus for spread in plants and for 
whitefly vector transmission. In addition to Rep, alphasatellites 
also have an A-rich region, ~200 nts long, downstream of the 
Rep-encoding region. Recently, it has been demonstrated that 
the Rep of the alphasatellite associated with Tobacco curly 
shoot virus (TbCSV) can be used as a virus-induced gene 
silencing vector (VIGS) (Huang et al., 2009). In contrast to 
betasatellites, alphasatellites possess in their stem loop the 
nonanucleotide sequence, TAGTATTTAC also found in the 
stem loop of viruses in the family Nanoviridae. Alphasatellites 
can affect both begomovirus titer and symptom development in 
host plants (Saunders and Stanley, 1999; Patil and Fauquet, 
2010). Initially it was thought satellite molecules were limited 
to the Old World, but recently, alphasatellites have been found 
associated with New World begomoviruses (Paprotka et al., 
2010; Romay et al., 2010), thus expanding the geographical 
distribution of satellite molecules associated with 
begomoviruses. Some DNA-2 alphasatellites encode a 
pathogenicity determinant that may modulate begomovirus-
betasatellite infection by reducing betasatellite DNA 
accumulation (Idris et al., 2011). 
 
Conclusion 
 
All biological organisms have a genome. As we have seen 
previously, the virus genome can be either DNA or RNA. This 
nucleic acid used to encode functions necessary for it to 
complete its life cycle and its interaction with its environments. 
There is great variation in the nature of these genomes.  
Several begomovirus infections have been reported in food 
legume, vegetable, fibre, ornamental and weed plant species. 
Begomovirus genome consists of either one or two circular 
single-stranded DNA components, referred as DNA-A and 
DNA-B of each about 2.6-2.8 kb in size (Fauquet et al., 2008). 
Each ORFs of these genomes (DNA-A & DNA-B) are plays an 
important roles for host range determination, virus symptom 
development & severity, virus movement and virus replication. 
Monopartite begomoviruses are associated with one or more 
smaller components, about 1.4 kb in size, known as satellite 
DNAs molecules. Two types of satellite molecules are known: 
the alphasatellites and betasatellites, depending upon the 
organization of their DNA and their effects on the symptoms 
produced by the helper begomovirus. The alphasatellites it is 
previously known as DNA-1, encode their own replication-

associated protein and are believed to have originated from 
another class of single-stranded DNA viruses, the nanoviruses 
(Borah and Dasgupta, 2012). In recent years, some 
begomoviruses have also moved to temperate regions causing 
concern in the production of vegetables in greenhouses. 
Another concern is the emergences of disease that are caused 
by a complex of begomovirus are satellite DNA molecules.  
According to the International Committee on the Taxonomy of 
Viruses (ICTV) recommendation, two sequences belong to two 
viruses if their complete DNA sequence genome (DNA-A and 
DNA-B) of begomoviruses is less than 89% identical, and are 
considered to be variants of the same virus, if the identity is 
more than 89%. So begomovirus genomic organizations are 
necessary for proper identification and characterization of 
begomoviruses at species level on the basis of its genome 
based phylogenic relationships. 
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