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INTRODUCTION 
 
The event history analysis set-up considered in classical 
survival models may be generalized in sequential of 
occurrence of event an individual.  More than one type of 
events may be considered for each individual under study and 
or the event in question may happen more than once for each 
individual.More generally, any Markov process may be 
considered with a finite number of states which may be used to 
model the life-history of an individual.This paper deals with an 
illness death model with recovery state, r
transitions and three states namely disease free (0) diseased (1) 
and dead (2) and the transitions 01, 10, 0
following diagram represents the illness death model with a 
recovery state also the transition probability matrix.
that there are samples of n individuals from the population. 
The observation of the survival times for these individuals will 
typically be subject to right censoring, meaning that for some 
individuals it is only known, that their true survival times 
exceed certain censoring times.  The censoring is assumed to 
be independent in the sense that the additional knowledge of 
censorings before any time t does not alter the risk of failure at 
t.Right censoring is not the only kind of data incompleteness in 
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ABSTRACT 

An illness death model is a Multi-state model where subjects progress though 
An illness death model is a discrete space continuous time stochastic process, for a

)), Tt   with a finite state space S = {1, 2 ... N}.  Here, T = [0, τ], τ <

the value of the process at time t the state occupied at that time. The states are either transient or 
absorbing. An absorbing state is a state from which further transitions cannot occur while a transient 
state allows transition to other states. This paper deals with the Non parametric estimation of an illness 
death model with a recovery state, in which the patients move among disease free 
diseased  disease free, diseased  death and diseased free  death. A longitudi
is being employed to describe the Non parametric estimators, Nelson Aalen (1972), Aalen Johansen 
(1978), and Kaplan Meier (1958) to estimate cumulative intensities, transition probabilities, and 
survival probabilities respectively and to study their statistical properties. The evolution of multi state 
model, an illness death model with recovery state has achieved by the method of episode spiting.
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survival analysis. Often, in epidemiological applications, 
individuals are not followed from time zero (in the relevant 
time scale, typically age), but only from a later entry time 
(conditional on survival until this entry time). Thus, in addition 
to right censoring, the survival data are subject to left 

truncation. The number at risk

individuals who have entered the study before time 

still in the study just prior to

numbers at risk j
r , may be low for small values of

 

 

Figure 1. An illness death model with recovery and its transition 
probability matrix

Quite often the survival distribution function

to be estimated, representing the probability that an individual 
will be alive at time t. This may be done from right
and/or left-truncated survival data by the 
estimator. The relation t(A
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Figure 1. An illness death model with recovery and its transition 

probability matrix 

Quite often the survival distribution function
)()( tAetS  needs 

to be estimated, representing the probability that an individual 
alive at time t. This may be done from right-censored 

truncated survival data by the Kaplan-Meier 
)t(Sln)t  suggests that the 
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cumulative hazard rate function alternatively may be estimated 
as minus the logarithm of the Kaplan-Meier estimator. Even 
though this estimator numerically will be close to the Nelson-
Aalen estimator, the latter is the canonical one from a 
theoretical point of view. Further, the Nelson-Aalen estimator 
may be used in a number of different situations while the 
alternative estimator applies only to the survival data 
situation.In particular in a study involving treatment of cancer, 
state 0 could correspond to ‘healthy’ state 1 to ‘acquired 
pneumonia’ and state 2 to ‘death’.  The probability )t,s(p 01

is then the probability of being in response function suggested 
by Temkin (1978) and sometimes used as an outcome measure 
when studying the efficacy of therapy.  Consider the state 0 
could correspond to “diseased free”, state 1 to “diseased” and 
state 2 to “dead”.  Thus the Aalen-Johansen and Nelsen-Aalen 
estimators are related in exactly the same way as are the 
transition probability matrix and the cumulative transition 
intensities themselves. This suggests that the Aalen-Johansen 
estimator is the canonical nonparametric estimator for the 
matrix of transition probabilities in a Markov process with a 
finite number of states.  This statement is supported by the fact 
that it may also be given a nonparametric maximum likelihood 
interpretation (Johansen, 1978).This interpretation of the states 
is the one relevant for the following illustration of SIR3 in four 
sections.Section 1, introduction, section 2, non parametric 
estimators of an illness death model, section 3, analysis of 
SIR3 data and in section 4 interpretation of results.The specific 
data considered in this study is sir.cont is a subset of larger 
cohort denoted SIR3 (Spread of nosocomial Infections and 
Resistant pathogens).  This data base is taken from the package 
mvna (2015) and estimated using R version 3.1.3 programme. 
 

Back ground 
 
An illness death model, Multi state models are systems of 
multivariate survival data where individuals transition through 
a series of distinct states following certain paths of possible 
transitions. Transitions between states may be reversible or 
irreversible while states can be either absorbing or transient. 
Multi state models have a wide range of application including 
epidemiology, dentistry, clinical trials, reliability studies in 
engineering and medicine, where individuals progress through 
the different states of diseases such as cancer and AIDS. Data 
in these applications are often subject to right censoring and 
possibly left truncation. Aalen (1978) and Nelson (1972) 
proposed an estimator for the integrated hazard under a broad 
class of counting process models. Aalen and Johansen (1978) 
obtained an estimator for the transition probability matrix and 
subsequently state occupation probabilities through product-
limit integration of the Nelson-Aalen estimator. Datta and   
Satten,(2001) established that the resulting estimators of state 
occupation probabilities remained valid even when the process 
is non Markovian. Datta, and Satten, (2002) also proposed an 
estimator for state occupation probabilities that can handle 
state dependent censoring and other flexible models through a 
weighting function based on the censoring scheme. Estimation 
of state entry and exit distribution functions are also of interest, 
as discussed by Pepe (1991) and Datta and Ferguson (2011).  
This can be calculated through normalized sums of state 
occupation probabilities. 
 

Non parametric estimation of an illness death model 
 

Assume first that the transition intensities are the same for all 
individuals but that they are allowed to vary freely with time 

)()( tt
hj

i

hj
  .  Statistical inference is then conveniently phrased 

in terms of the counting process approach pioneered by Aalen 
(Anderson et al., 1993). An important feature of the 
nonparametric approach is its elegant generalization, to 
estimating transition probabilities. The basic tool is the product 

integral.  The Aalen-Johansen estimator of ),( tsP
hj  is obtained 

by plugging the matrix of Nelson-Aalen estimators ))(( tAhj


.  

The sufficient knowledge about )()( tAetS  estimates the Kaplan 

Meier estimates of survival probabilities. 
 
Nelson-aalen estimator 

 
Consider a finite-state Markov process with transition 

intensities )(t
gh

  for hg   focusing on fixed g and h in the 

following, drop the subscripts and write just )t(  for the 

hg  transition intensity.  Further denote by ...tt 21 

the times when transitions from g to h are observed.  Let dj be 
the number of individuals who experience a hg  transition 

at tj and write rj for the number of individuals in state g i.e. at 
risk for a hg  transition just prior to time tj. Then the 

cumulative hg  transition intensity 
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 . Similarly the integrated intensity of 

an non homogeneous Poisson process may be estimated with 
the tj denoting the times of observed event, the djand rj being 
the corresponding number of event and number at risk 
respectively. 
 
Aalen-johansen estimator 

 
Consider that exact times for transitions between the states are 
recorded and are denoted by ...tt 21   the times when 

transitions between any two states are observed.  Further for
,hg,Ih,g   let dghj be the number of individuals who 

experience a transition from state g to state h at tj and introduce





hg

ghjgj gd for the number of transitions out of state g at that 

time.  Finally let rgj be the number of individuals in state g just 
prior to time tj.  Then the Aalen-Johansen estimator takes the 

form 
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Statistical properties of Non Parametric estimators are studied 
by the representation of Aalen-johansen and Nelson Aalen 
estimators as the Kaplan Meier estimator. 
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Application to real time data 

 
The data base is in the form of a two dimensional array with 
747 patients and six variables.  The variables include (‘id’, 
representing the unique patient identification Number, ‘from’ 
representing the entry state, ‘to’ representing the exit state, 
‘time’ representing the number of days spent in a particular 
state, ‘age’ representing the age of the patient measured in 
years and ‘sex’ representing the gender of the patients.  In 
sir.cont data, all the variables except ‘sex’ are represented 
using numeric values and the ‘sex’ are with character 
representation (‘M’-Male and ‘F’- Female). The state consider 
in this analysis include’0’ ‘1’ and ‘2’.  The state ‘0’ denotes 
disease free nature of the patient, ‘1’ denotes the diseased state 
(under ventilation) and ‘2’ denotes death of the patient.  Here 
state ‘2’ is treated as an absorbing state. With the three 
states’0’, ‘1’ and ‘2’ the transitions form 0 to 1, 0 to 2, 1 to 0, 1 
to 2 and 0 to 2 are allowed.  The other parts are restricted for 
this analysis. So model the disease-histories of the patients by 
the Markov illness-death model with the state 0 and 1 
corresponding to “alive without pneumonia” and “alive with 
pneumonia”, respectively and with pneumonia duration as time 
scale.  The specific data considered in this section of the study 
is sir.cont is a subset of larger cohort denoted SIR3 (Spread of 
nosocomial Infections and Resistant pathogens).  This data 
base is taken from the package mvna (2015). The data base is 
in the form of a two dimensional array with 747 patients and 
six variables.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The variables include (‘id’, representing the unique patient 
identification Number, ‘from’ representing the entry state, ‘to’ 
representing the exit state, ‘time’ representing the number of 
days spent in a particular state, ‘age’ representing the age of 
the patient measured in years and ‘sex’ representing the gender 
of the patients.  In this data base all the variables except ‘sex’ 
are represented using numeric values and the ‘sex’ are with  

character representation (‘M’-Male and ‘F’- Female).  The 
state consider in this analysis include’0’ ‘1’ and ‘2’.  The state 
‘0’ denotes disease free nature of the patient, ‘1’ denotes the 
diseased state (under ventilation) and ‘2’ denotes death of the 
patient.  Here state ‘2’ is treated as an absorbing state. With the 
three states’0’, ‘1’ and ‘2’ the transitions form 0 to 1, 0 to 2, 1 
to 0, 1 to 2 and 0 to 2 are allowed.  The other parts are 
restricted for this analysis. 
 
Nelson-Aalen estimates of cumulative intensities 

 
The Nelson-Aalen estimates of cumulative intensities of an 
illness death model as prescribed in section 2 is illustrated in 
the following table. 
 
The cumulative intensities tabulated above for different 
transitions are represented in the following Figures. 
 
The transition specific cumulative intensities estimated and 
graphed provide a clue, through their slopes.  By comparing 
the slopes of the four possible transitions, it is seen that the 
cumulative hazard changes rapidly when transition takes place 
from ‘disease free’ state to ‘death’ state.  The slope is least for 
the transition from ‘disease free’ state to ‘diseased’ state.  This 
indicates the varying nature of the transitions and its impact on 
the cumulative intensities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Aalen-Johnsen Estimator 

 
The output, including empirical transition matrix 
corresponding to Aalen-Johnsen estimator is provided below 
shows the uncorrelated structure among the transitions. 
 
 

Table 1. The Nelson-Aalen estimates of cumulative intensities and their variances for different transitions Transition 
 

Time Nelson-Aalen 
Estimates 

Variance 
Aalen 

Variance 
Greenwood 

Lower 
Limit 

Upper 
limit 

No of 
Risk 

No. of 
Event 

The Nelson-Aalen estimates of cumulative intensities and their variances for Transition 0  1 
0 0.00 0.00 0.00 0.00 0.00 367 0 
15 0.26 0.00 0.00 0.20 0.34 106 2 
34 0.38 0.00 0.00 0.27 0.54 26 0 
55 0.67 0.02 0.02 0.43 1.04 10 1 
89 1.17 0.27 0.15 0.49 2.81 2 1 
130 1.67 0.52 0.27 0.71 3.90 1 0 

The Nelson-Aalen estimates of cumulative intensities and their variances for Transition 0  2 
0 0.00 0.00 0.00 0.00 0.00 367 0 
15 2.10 0.01 0.01 1.90 2.33 106 15 
34 4.33 0.07 0.06 3.85 4.86 26 2 
55 6.29 0.19 0.16 5.50 7.21 10 3 
89 8.58 1.04 0.66 6.79 10.83 2 0 
130 9.41 1.40 0.86 7.35 12.04 1 0 

The Nelson-Aalen estimates of cumulative intensities and their variances for Transition 1  0 
Time Nelson-Aalen Estimates Variance Aalen Variance Greenwood Lower limit Upper Limit No of Risk No. of Event 
0 0.00 0.00 0.00 0.00 0.00 380 0 
14 0.95 0.00 0.00 0.83 1.09 137 6 
33 1.57 0.01 0.01 1.36 1.80 49 5 
54 2.34 0.04 0.04 1.97 2.78 14 0 
85 2.61 0.07 0.06 2.15 3.18 8 0 
130 3.98 1.14 0.12 2.36 6.73 1 0 

The Nelson-Aalen estimates of cumulative intensities and their variances for Transition 1  2 
0 0.00 0.00 0.00 0.00 0.00 380 0 
14 0.29 0.00 0.00 0.23 0.38 137 2 
33 0.77 0.01 0.01 0.62 0.96 49 2 
54 1.16 0.02 0.02 0.89 1.50 14 0 
85 1.79 0.09 0.07 1.28 2.50 8 3 
130 2.82 0.49 0.30 1.73 4.60 1 0 
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Transition wise Nelson-Aalen estimates of cumulative intensities Transition wise Nelson-Aalen estimates of cumulative intensities with lower and 

upper limits 

 
Figure 2. Transition wise Nelson-Aalen estimates of cumulative intensities with lower and upper limits 

 
 

Table 2. Estimate of covariance matrix for P(1, 183) using Aalen-Johnsen estimator 
 

 00 10 20 01 11 21 02 12 22 

00 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 
01 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 
02 0 0 0 0 0 0 -2.864E-20 -1.126E-19 0 
12 0 0 0 0 0 0 -4.785E-20 2.710E-19 0 
22 0 0 0 0 0 0 0 0 0 

 
 

Table 3. Aalen-Johnsen Estimates of Transition Probability for different transitions 
 

Probability Time Variance Lower limit Upper limit No. of risk No. ofevent 

Aalen-Johnsen Estimates of Transition Probability from 01 
0.000000 1.5 0.0000000 0.000000 0.000000 394 0 
0.043086 16.0 0.0000410 0.030500 0.055672 93 1 
0.015684 35.0 0.0000093 0.009719 0.021650 28 0 
0.006327 56.0 0.0000032 0.002826 0.009828 6 0 
0.002433 90.0 0.0000012 0.000284 0.004582 1 0 
0.000000 183.0 0.0000000 0.000000 0.000000 1 0 

Aalen-Johnsen Estimates of Transition Probability from 02 
0.000000 1.5 0.000000 0.000000 0.000000 394 0 
0.872251 16.0 0.000152 0.848070 0.896432 93 9 
0.969663 35.0 0.000023 0.960362 0.978963 28 2 
0.991268 56.0 0.000005 0.987034 0.995502 6 1 
0.996595 90.0 0.000002 0.994043 0.999147 1 0 
1.000000 183.0 0.000000 NA NA 1 1 

Aalen-Johnsen Estimates of Transition Probability from 10 
0.005666 1.5 0.00002 0.000000 0.013496 353 2 
0.152624 16.0 0.00024 0.121884 0.183363 122 3 
0.061281 35.0 0.00013 0.038447 0.084114 38 0 
0.012543 56.0 0.00003 0.001628 0.023459 14 0 
0.005714 90.0 0.00002 0.000000 0.013559 6 1 
0.000000 183.0 0.00000 0.000000 0.000000 0 0 

Aalen-Johnsen Estimates of Transition Probability from 12 
Probability Time variance LowerLimit Upperlimit No. ofrisk No. ofevent 
0.000000 1.5 0.000000 0.000000 0.000000 353 0 
0.553994 16.0 0.000541 0.508419 0.599570 122 2 
0.840423 35.0 0.000032 0.805174 0.875672 38 0 
0.949825 56.0 0.000121 0.928248 0.971401 14 1 
0.979865 90.0 0.000054 0.965494 0.994237 6 0 
1.000000 183.0 0.000000 NA NA 0 0 
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The Transition Probabilities tabulated above for different 
transitions are represented in the following Figures 
 

 
 

Transition wise Aalen-Johnsen estimate of Transition probabilities 

 
 

Transition wise Aalen-Johnsen estimate of Transition 
probabilities with upper and lower limits 

 
Figure 3. Transition wise Aalen-Johnsen estimate of Transition 

probabilities with upper and lower limits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The transition specific transition probabilities, estimated and 
graphed provide a pattern, through their increasing or 
decreasing structures. By comparison it is seen that for the 
transitions ‘disease free to death’ and ‘diseased to death’, 
transition probability increases over the time. Also it is seen 
that for the transitions ‘diseased to diseased’ and ‘disease free 
to disease free’, transition probability decreases over the time.  
This again indicates differing patterns for different transitions 
that can be made use for proper identification and intervention 
programs. 
 
Kaplan Meier estimates of survival probabilities 

 
The Kaplan-Meier (product-limit) estimators for the censored 
observations are given by, 
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and the same represented in the table given below. 
 
The transition specific Kaplan-Meier estimates derived are 
pictorially represented in Figure 3.3.1 
 

 
 

Figure 4. Transition wise Kaplan-Meier Estimate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Transition wise Kaplan-Meier Estimate of Survival Probability with Confidence bounds (edited version) 
 

                                          Transition 01                                           Transition 10 

t rj dj Survival 
Probability 

S.E Lower 
CI 

Upper 
CI 

T rj dj Survival 
Probability 

S.E Lower 
CI 

Upper  
CI 

1 686 11 0.98 0.00 0.98 0.99 1.0 455 38 0.92 0.01 0.89 0.94 
2 675 11 0.97 0.01 0.96 0.98 1.5 417 2 0.91 0.01 0.89 0.94 
3 617 4 0.96 0.01 0.95 0.98 2.0 415 26 0.85 0.02 0.82 0.89 
4 559 7 0.95 0.01 0.93 0.97 2.5 381 1 0.85 0.02 0.82 0.89 
. .  . . . . . . . . . . . 
. . . . . . . . . . . . . . 
. . . . . . . . . . . . . . 
45 32 1 0.73 0.05 0.65 0.83 90.0 7 1 0.08 0.02 0.05 0.14 
55 17 1 0.69 0.06 0.58 0.82 95.0 6 1 0.07 0.02 0.04 0.13 
89 6 1 0.58 0.12 0.39 0.86 116.0 2 1 0.03 0.03 0.01 0.16 
124 3 1 0.38 0.17 0.16 0.94 164.0 1 1 0.00 NA NA NA 

Transition 02 Transition 12 
t rj dj Survival 

Probability 
S.E Lower 

CI 
Upper 
CI 

T rj dj Survival 
Probability 

S.E Lower 
CI 

Upper 
CI 

2 675 47 0.93 0.01 0.91 0.95 2 415 8 0.98 0.01 0.97 0.99 
3 617 54 0.85 0.01 0.82 0.88 3 380 5 0.97 0.01 0.95 0.99 
4 559 62 0.75 0.02 0.72 0.79 4 351 3 0.96 0.01 0.94 0.98 
. . . . . . . . . . . . . . 
. . . . . . . . . . . . . . 
. . . . . . . . . . . . . . 
70 7 1 0.01 0.01 0.01 0.03 85 10 3 0.20 0.06 0.11 0.34 
101 5 1 0.01 0.00 0.00 0.03 95 6 1 0.17 0.06 0.09 0.32 
108 4 1 0.01 0.00 0.00 0.02 100 4 1 0.12 0.05 0.05 0.30 
183 1 1 0.00 NA NA NA 113 3 1 0.08 0.05 0.03 0.27 
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Conclusion 

 
An illness death model is a multi state model generalizes the 
usual survival analysis, in which more than two states are 
involved in the time sequence.  This necessitates transition 
wise estimate of survival probability and cumulative 
intensities.  The behaviour in different transitions is captured 
through analysis of SIR3 data through illness death models that 
account for individual transition specific events. The 
nonparametric approach proposed by Nelson-Aalen, Kaplan 
Meier and Aalen-Johnsen are effectively employed to derive 
the cumulative intensities and transition probabilities for 
different transitions.  Also their variance estimates and their 
corresponding 95% confidence bounds are estimated.  
Graphical representation of cumulative intensities indicate the 
slopes of four possible transitions vary considerably and that 
the cumulative hazard changes rapidly when transition takes 
place from ‘disease free’ state to ‘death’ state. The slope is 
least for the transition from ‘disease free’ state to ‘diseased’ 
state. This indicates the varying nature of the transitions and its 
impact on the cumulative intensities.  The state specific 
transition probabilities, estimated and graphed provide a 
pattern, through their increasing or decreasing structures. It is 
seen that for the transitions ‘disease free to death’ and 
‘diseased to death’, transition probability increases over the 
time. Also it is seen that for the transitions ‘diseased to 
diseased’ and ‘disease free to disease free’, transition 
probability decreases over the time.  This again indicates 
differing patterns for different transitions that can be made use 
for proper identification and intervention programs. The 
decline in the survival curve of Kaplan meier estimates also 
evidences the transition nature of different states.  Thus, the 
Illness death model with three state and four transition is 
effective in bringing out the differing structures, in terms of 
transition probabilities and cumulative intensities.  This model 
provides a more general global view of the transitions that are 
ignored under usual two state survival models. 
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