
  

  

 
 

  
 

 
  

 

ON CLASSES OF GREEN’S FUZZY GENARALIZED INVERSE SEMIGROUP

Principal, Vivekananda Padana Kendram, Arts 

ARTICLE INFO         ABSTRACT
 

 

In the field of research, the study about fuzziness in the classes of regular semigroups becomes very 
important in the recent days. The fast and
been continued
related to fuzzy algebraic structure are established recently. In the paper “On Green’s Fuzzy Orthodox 
semigroup” (G H
Hariprakash,
fuzzy property. This work is a follow up of these studies. Mainly the work concentrated 
Green’s Fuzzy Orthodox semigroups and classes of Green’s Fuzzy Generalized inverse semigroups. In 
particular the study is about the quotient classes of Green’s Fuzzy Orthodox semigroups and quotient 
classes of Green’s Fuzzy Generalized invers
Fuzzy Generalized inverse semigroup and two lemmas in Green’s Fuzzy Orthodox semigroup. The 
conclusion of the work is to find out a necessary and sufficient condition for quotient classes of 
Green’s Fuz
the opening of a new area of study Green’s Fuzzy Idempotent Separating,
relations and other related notions.
 

 

 

Copyright © 2018, Hariprakash. This is an open access
distribution, and reproduction in any medium, provided 
 
 
 

 

 

 

 

INTRODUCTION 
 
Definition 1.1; Idompotent: An element ‘e’ in asemigroup S 
is called an idempotent if e.e=e.The set of idempotent in S is 
denoted by E(S) 
 

Definition 1.2. Regular semigroup:-A semigroup S is regular 
if all its elements are regular. (A.H. Clifford and G.B. Preston,
1967). That is for any aS there exists xS, such 
 
Definition 1.3: Inverse semigroup:-A semigroup S is called 
an inverse semigroup if every element ‘a’ in S posses a unique 
inverse.( A.H. Clifford and G.B. Preston,1967)
 
Definition 1.4: Fuzzy congruence:-A fuzzy compatible 
similarity relation on a semigroup is called a fuzzy congruence
(J.P  Kim and, D.R Bae, 1997). 
 
Definition 1.5: Fuzzy Orthodox semigroup:
semigroup S is a regular semigroup in which the set of its 
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ABSTRACT 

In the field of research, the study about fuzziness in the classes of regular semigroups becomes very 
important in the recent days. The fast and intensive development of the subject
been continued from the twentieth century. In logical algebra using fuzzy tools many definitions 
related to fuzzy algebraic structure are established recently. In the paper “On Green’s Fuzzy Orthodox 
semigroup” (G Hariprakash, 2016) and “On Green’s fuzzy generalized inverse semigroup” G 
Hariprakash, 2017) characterizes orthodox semigroups and generalized inverse semigroups using 
fuzzy property. This work is a follow up of these studies. Mainly the work concentrated 
Green’s Fuzzy Orthodox semigroups and classes of Green’s Fuzzy Generalized inverse semigroups. In 
particular the study is about the quotient classes of Green’s Fuzzy Orthodox semigroups and quotient 
classes of Green’s Fuzzy Generalized inverse sEmigroups. The text includes two lammas in Green’s 
Fuzzy Generalized inverse semigroup and two lemmas in Green’s Fuzzy Orthodox semigroup. The 
conclusion of the work is to find out a necessary and sufficient condition for quotient classes of 
Green’s Fuzzy Regular semigroup to be a Green’s Fuzzy Orthodox semigroup. This work endeavors 
the opening of a new area of study Green’s Fuzzy Idempotent Separating,
relations and other related notions.   
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An element ‘e’ in asemigroup S 
called an idempotent if e.e=e.The set of idempotent in S is 

A semigroup S is regular 
A.H. Clifford and G.B. Preston, 

S, such that; axa =a 

A semigroup S is called 
an inverse semigroup if every element ‘a’ in S posses a unique 
inverse.( A.H. Clifford and G.B. Preston,1967)   

A fuzzy compatible 
relation on a semigroup is called a fuzzy congruence 

Fuzzy Orthodox semigroup:-An Orthodox 
semigroup S is a regular semigroup in which the set of its  
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idempotents form a semigroup (S. Madhavan,1978).
membership function is defined on S
Orthodox semigroup (G Hariprakash,
Fuzzy Generalized inverse semigroup:
S is a Generalized Inverse semigroup if the set E(S) of its 
idempotent which is band is normal
for e,f,g, h ∊E (S);efgh=egfh.
Generalized inverse semigroup in which a membership 
function is defined is called a fuzz

semigroup (Hariprakash, 2017) this study 
Fuzzy Green’s Relations (Green, 
 

L̂ -fuzzy generalized inverse semigroup
 

Definition 1.7 ; If L̂  is a  fuzzy congruence on a orthodox 

semigroup S,and if S/ L̂ itself is an orthodox 

L̂  is called an L̂ -fuzzy orthodox semigroup.

Lemma 2.1. Let S/ L̂  be a 

semigroup. If L̂ e ES/ L̂ and a

elements L̂ a'ea and L̂ aea' are both idempotent.
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idempotents form a semigroup (S. Madhavan,1978). If a 
ership function is defined on S, it is called a Fuzzy 

G Hariprakash, 2016).  Definition 1.6; 
Fuzzy Generalized inverse semigroup:-An orthodox semigroup 
S is a Generalized Inverse semigroup if the set E(S) of its 
idempotent which is band is normal (Madhavan, 1978). That is 

;efgh=egfh. (Hariprakash, 2017). A 
Generalized inverse semigroup in which a membership 
function is defined is called a fuzzy generalized inverse 

2017) this study L̂  and R̂  denotes 
Green, 1951), (Hariprakash, 2016]).  

y generalized inverse semigroup 

fuzzy congruence on a orthodox 

itself is an orthodox semigroup then S/

fuzzy orthodox semigroup. 

be a L̂ -fuzzy generalized inverse 

a  S, for every a'  V(a), the 

are both idempotent. 
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Proof. 
 

 ( L̂ a'ea)
2 = L̂  a'eaa' ea 

= L̂ a'aa'eaa' ea 

= L̂ a'aa' aa' eea 

= L̂ a'aa' ea 

= L̂ a' ea 

Hence, L̂ a' ea is an idempotent in S/ L̂ . 
 

R̂ -fuzzy generalized inverse semigroup 
 

Similarly, we can show that L̂ a ea' is an idempotent in S/ L̂ . 
 

Lemma 2.2. Let S/R̂ be a R̂ -fuzzy genaralized inverse 

semigroup. If R̂ e  E(S/ R̂ ) and a S, for every R̂ a' V(Ra) the 

element R̂ a'ea and R̂ aea' belongs to E(S/ R̂ ). 
 

Lemma 2.3. Let S/ L̂  be a L̂ -fuzzy orthodox semigroup. If a 

S and  L̂ d  V( L̂ a); V( L̂ a)= E L̂ 1a a * L̂ a-1 * E L̂ 1.aa
 . 

Let x  E L̂ 1a a * L̂ a-1 * E L̂ 1.aa
  

 
Then 
 

x = L̂ a'a * L̂ a'* L̂ aa' 

= L̂ a'aa'aa' 

= L̂ aa'aa' 

= L̂ a'V( L̂ a). 

  E L̂ 1a a * L̂ a-1 * E L̂ 1.aa
 V( L̂ a). (1) 

 

Consider L̂ a''V( L̂ a). Then 
 

L̂ a'' = L̂ a'' L̂ a L̂ a''  

= L̂ a''aa'' 

= L̂ a''aa''aa'' 

= L̂ a''* L̂ a'' * L̂ aa'' 
 

 E L̂ 1a a * L̂ a-1 * E L̂ 1.aa
 

  V( L̂ a')E L̂ 1a a * L̂ a-1*E L̂ 1.aa
(2) 

 
From (1) and (2), 
 

V( L̂ a) = E L̂ 1a a * L̂ a-1 * E L̂ 1.aa
 

 

Lemma 2.4 Let S/ R̂  be a R̂  - fuzzy orthodox semigroup.  

If a S and  a'  V(a), 
 

V( R̂ a) = E R̂ 1a a * R̂ a-1 * E R̂ 1.aa
 

 
Proof: Result follows from lemma 2.3 using the property of 

R̂ a. 
 

Result  2.5. If  x'1 V(x)  and x'2 V(x), 
1xx 'E = 

2xx 'E  and 

1x ' xE = 
2x ' xE . 

Theorem 2.6. A regular semigroup S/ L̂  is a L̂ - fuzzy 

orthodox if and only if for all a, b  S,  
 

V( L̂ a)  V( L̂ b)    V( L̂ a) = V( L̂ b). 
 

Proof. Suppose S/ L̂  is a L̂ - fuzzy orthodox semigroup and V(

L̂ a) V( L̂ b)  . Let L̂ xV( L̂ a) V( L̂ b). Then 
 

L̂ x V( L̂ a) and L̂ x V( L̂ b)  L̂ a  V( L̂ x) and L̂ b  V( L̂ x)   

E( L̂ x L̂ a)=E( L̂ x L̂ b) and E( L̂ a L̂ x)= E( L̂ b L̂ x)   

 E L̂ x L̂  a = E L̂ x L̂ b and E L̂ a L̂ x = E L̂ b L̂ x.   

  E L̂ xa = E L̂ xb and E L̂ ax = E L̂ bx.   
 

Since L̂ xV( L̂ a), by lemma 2.3 
 

V( L̂ a) = E L̂ xa* L̂ x * E L̂ ax 

= E L̂ xb* L̂ x * E L̂ bx 

= V( L̂ b)   
 

Conversely, assume S/ L̂  is regular and V( L̂ a) = V( L̂ b) . Let 

L̂ e and L̂ f  be two idempotents in S/ L̂ . Let L̂ x be in inverse 

of L̂ e * L̂ f. Then  
 

L̂ e* L̂ f * L̂ x* L̂ e* L̂ f = L̂ e* L̂ f,  (3) 
 
and  
 

L̂ x* L̂ e * L̂ f * L̂ x = L̂ x  (4) 
 
We have 
 

L̂ fxe* L̂ fxe = ( L̂ f * L̂ x * L̂ e) * ( L̂ f * L̂ x * L̂ e) 

= ( L̂ f * ( L̂ x * L̂ e * L̂ f * L̂ x) * L̂ e  

= ( L̂ f * L̂ x * L̂ e) 

 = L̂ fxe 
 

That is, L̂ fxe  ES/ L̂ . 
 

L̂ fxe* L̂ efxe * L̂ fxe = L̂ fx * L̂ e * L̂ e * L̂ fxe * L̂ fxe 

= L̂ fx * ( L̂ e)
2
 * ( L̂ fxa)

2
 

= L̂ fx * L̂ e * L̂ fxe 

= L̂ fxe * L̂ fxe 

= ( L̂ fxe)
2 

= L̂ fxe. 
 
Also, 
 

L̂ efxe* L̂ efxe = L̂ e * L̂ f * L̂ x* L̂ e * L̂ e * L̂ f * L̂ x L̂ e = L̂ e *( L̂ f * L̂

x* L̂ e) *( L̂ f * L̂ x* L̂ e ) 

= L̂ e *( L̂ f * L̂ x * L̂ e)
2 

= L̂ e. = L̂  fxe  
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= L̂ efxe. 

Hence L̂ f * L̂ x * L̂ e and L̂ e* L̂ f * L̂ x* L̂ e are 

indempotents in S/ L̂ . 
 

That is, L̂ fxe and L̂ efxe are idempotents in S/ L̂ . 
Again, 
 

L̂ efxe L̂ fxe L̂ efxe = L̂ e * L̂ fxe * L̂ efxe * L̂ efxe 

= L̂ e * ( L̂ fxe)
2

 * L̂ efxe 

= L̂ e * L̂ fxe * L̂ efxe 

= L̂ efxe * L̂ efxe 

= L̂ efxe. 
 

Also, we get L̂ fxe* L̂ efxe* L̂ fxe = L̂ fxe. Hence L̂ efxe.  is the 

inverse of L̂ efxe. That is,  L̂ fxeV( L̂ efxe). Since L̂ fxe is an 

idempotent L̂ fxe is an inverse of itself. That is L̂ fxeV( L̂ fxe). 

That is, L̂ fxeV( L̂ efxe)  V( L̂ fxe)  V( L̂ fxe)  V( L̂ efxe)    
 

Then, by hypothesis, V( L̂ fxe) =V( L̂ efxe). Again, 
 

  L̂ ef * L̂ fxe* L̂ ef  = L̂ e * L̂ f * L̂ f * L̂ x * L̂ e * L̂ e* L̂ f 

= L̂ e * L̂ f * L̂ x L̂ e * L̂ f 

= L̂ ef * L̂ f * L̂ x * L̂ e * L̂ f 

= L̂ ef  * L̂ x * L̂ ef 

= L̂ ef', 
and  
 

L̂ fxe * L̂ ef * L̂ fxe  = L̂ f  * L̂ x * L̂ e * L̂ e * L̂ f * L̂ f * L̂ x *

L̂ e 

= L̂ f  * L̂ x * L̂ e * L̂ f  * L̂ x* L̂ e 

= L̂ fxe * L̂ fxe  

= L̂ fxe. 
 

We have L̂ ef V( L̂ fxe)  L̂ ef V( L̂ efxe). Therefore, 
 

L̂ e  * L̂ f  = L̂ ef  = L̂ ef * L̂ efxe * L̂ ef  = L̂ e * L̂ f * L̂ e * L̂ f * 
 
 
 
 
 
 
 
 
 

L̂ x * L̂ e* L̂ e * L̂ f 

= L̂ e  * L̂ f * L̂ e * L̂ f  * L̂ x* L̂ e* L̂ f 

  = L̂ e * L̂ f * L̂ e * L̂ f  

 = ( L̂ e* L̂ f)
2 

That is, L̂ e* L̂ f = ( L̂ e * L̂ f)
2. That is, the product of two 

idempotents in S/ L̂ is an indempotent. Given S/ L̂ is regular. 

So S/ L̂ is a L̂ -fuzzy orthodox semigroup.  
 

Theorem 2.7. A regular semigroup S/ R̂ is a R̂ -fuzzy 

orthodox if and only if for all a, b S,V( R̂ a)  R̂ a    V(

R̂ a) = V( R̂ b). 
 
The result follows from theorem 4.3.13 using the property of 

R̂ a.  
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