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INTRODUCTION 
 
A measurement theory can be described as a set of 
assumptions and definitions from which psychometric 
properties of measures can be determined (Allen
1979). Most definitions of measurement relate to the 
assignment of numbers to objects (Lord and 
Whereas some definitions of measurement are limited to the 
assignment of numbers in defined ways, others go further and 
require that the numbers represent the distances between 
objects on a continuous line in terms of what 
measured (Wright and Stone, 1979). Classical Test Theory 
(CTT), also referred to as true score measurement theory, 
assume that a test taker’s observed score (raw score) on a test 
is comprised of a true score and an uncorrelated measurement 
error (Crocker and Algina, 1986). A true score is hypothesised 
as the arithmetic mean of the distribution of scores obtained by 
a test taker in independent repeated measures and the error of 
measurement (error score) is the difference between an 
observed score and its theoretical true score counterpart 
(Harvill, 1991). The error score is that part of the observed 
score which is unsystematic, random and due to chance. 
Reliability is a key concept in CTT and is operationalised 
through the Kuder-Richardson Formula 20
dichotomously scored multiple-choice questions. The KR
formula is the result of two factors, namely item variance and 
test variance. As such it is directly proportional to the 
variances of the test, i.e. the sum of the item variance remains
constant and as the test variance increases, so does the 
reliability. As such reliability paints an incomplete picture. The 
standard error of measurement (SEM) is defined
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ABSTRACT 

Multiple-choice tests are usually scored dichotomously, i.e. as correct or as incorrect. A correct 
response is scored one and an incorrect response is scored zero. Using these scores different 
psychometric paradigms and models are used to analyse the data and to quantify the performance
the test takers. Classical Test Theory commonly add the question scores to obtain a total score whilst 
Rasch and Item Response Theory models estimate measures from probabilities.
argument is made that dichotomous scoring includes significant measurement error as uncertainty of 
responses is not considered. It is demonstrated how Option Probability Theory can overcome this 
through assigning percentages to one or more options according to the test taker’s mental processes.
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A measurement theory can be described as a set of 
assumptions and definitions from which psychometric 
properties of measures can be determined (Allen and Yen, 
1979). Most definitions of measurement relate to the 

and Novick, 1968). 
Whereas some definitions of measurement are limited to the 
assignment of numbers in defined ways, others go further and 
require that the numbers represent the distances between 
objects on a continuous line in terms of what is being 

Classical Test Theory 
(CTT), also referred to as true score measurement theory, 
assume that a test taker’s observed score (raw score) on a test 
is comprised of a true score and an uncorrelated measurement 

Algina, 1986). A true score is hypothesised 
as the arithmetic mean of the distribution of scores obtained by 
a test taker in independent repeated measures and the error of 
measurement (error score) is the difference between an 

d its theoretical true score counterpart 
(Harvill, 1991). The error score is that part of the observed 
score which is unsystematic, random and due to chance. 
Reliability is a key concept in CTT and is operationalised 

Richardson Formula 20 (KR-20) for 
questions. The KR-20 

formula is the result of two factors, namely item variance and 
test variance. As such it is directly proportional to the 
variances of the test, i.e. the sum of the item variance remains 
constant and as the test variance increases, so does the 
reliability. As such reliability paints an incomplete picture. The 
standard error of measurement (SEM) is defined as the 

 
standard deviation of errors of measurement that is associated 
with the test scores for a specific group of test takers, i.e. it is a 
measure of the variability of the errors of measurement and is 
directly related to the error score variance. The SEM is directly 
related to reliability, i.e. the ratio of the true score variance to 
the observed score variance, and can be calculated
 

��� = ���(1 − ���′)                              
 
where �� is the standard deviation of observed scores and 
is the reliability of the test (Peterson, 1994).
reliability of the test is a perfect 1, will the SEM be zero, i.e. 
no error of measurement. The unit of measurement for the 
SEM is the same as the unit of measurement of the original test 
scores and allows for statements about the precision of test 
scores of test takers. Interpretation of the SEM is based on a 
normal distribution. By adding multiples of the SEM to an 
observed score, the precision or confidence of the score can be 
expressed – the higher the precision, the wider the score band. 
In the Standards for Educational and Psychological Testing 
(1985) it is defined that the standard deviation of errors of 
measurement is associated with the test scores for a specified 
group of test takers, i.e. the SEM is a test characteristic 
estimated from a specific group of test takers. Although the 
SEM is usually reported as a single value, Harvill (1991) 
recommends that SEMs at different score levels be used in 
calculating score bands rather than a singl
also noted that the type of reliability coefficient used in 

                                                
1A good approximation for the SEM is 0.432 times the square root of the 
numbers of items in a test. 
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choice tests are usually scored dichotomously, i.e. as correct or as incorrect. A correct 
is scored zero. Using these scores different 

models are used to analyse the data and to quantify the performance of 
the test takers. Classical Test Theory commonly add the question scores to obtain a total score whilst 
Rasch and Item Response Theory models estimate measures from probabilities. In this paper an 
argument is made that dichotomous scoring includes significant measurement error as uncertainty of 
responses is not considered. It is demonstrated how Option Probability Theory can overcome this 

ons according to the test taker’s mental processes. 
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of errors of measurement that is associated 
scores for a specific group of test takers, i.e. it is a 

measure of the variability of the errors of measurement and is 
directly related to the error score variance. The SEM is directly 
related to reliability, i.e. the ratio of the true score variance to 
the observed score variance, and can be calculated1 as 

                                                            (1) 

is the standard deviation of observed scores and ���′ 
is the reliability of the test (Peterson, 1994). Only if the 
reliability of the test is a perfect 1, will the SEM be zero, i.e. 
no error of measurement. The unit of measurement for the 
SEM is the same as the unit of measurement of the original test 

and allows for statements about the precision of test 
scores of test takers. Interpretation of the SEM is based on a 
normal distribution. By adding multiples of the SEM to an 
observed score, the precision or confidence of the score can be 

higher the precision, the wider the score band. 
In the Standards for Educational and Psychological Testing 
(1985) it is defined that the standard deviation of errors of 
measurement is associated with the test scores for a specified 

e. the SEM is a test characteristic 
estimated from a specific group of test takers. Although the 
SEM is usually reported as a single value, Harvill (1991) 
recommends that SEMs at different score levels be used in 
calculating score bands rather than a single SEM value and 
also noted that the type of reliability coefficient used in 
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calculating the SEM can make a difference, both 
computationally and logically, based on the research of Feldt, 
Steffan and Gupta (1985). In Rasch/Item Response Theory 
(IRT) models, the estimates of item parameters are 
independent of the distribution of the trait in the sample being 
tested and test takers’ scores do not depend on the particular 
sample of items administered. These models assume local 
independence, i.e. that responses to questions (items) are 
independent for test takers at the same level of the latent trait 
being measured. The differences in assumptions between CTT 
and Rasch/IRT result in different procedures to estimate 
psychometric properties – reliability in particular. Rasch/IRT 
models go beyond the set of items in a test. Whereas CTT 
requires a new set of descriptions for a different test since there 
is no direct relationship between item scores and test takers’ 
scores, Rasch/IRT uses mathematical models for predicting the 
probability of success of a test taker on an item, depending on 
the test taker’s ability and the item difficulty (Wu and Adams, 
2007). A transformation to raw scores is applied so that 
distances between the locations of two test takers is preserved, 
independent of the particular items administered. This allows 
for exchanging of items in a test with other items that measure 
the same latent trait – something that cannot be done in CTT 
since CTT doesn’t make any assumptions about the latent trait. 
 
The Rasch/IRT probability function, referred to as an item 
characteristic curve or item response function, has the general 
mathematical form 
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where person n with ability β has a certain probability P to 
respond correctly to item i with difficulty δ, given e the base of 
the natural logarithm, α is the discrimination parameter, γ is 
the guessing (pseudo chance) parameter and D is a scaling 
constant in IRT. For the 2-parameter IRT model, γ is zero and 
for the Rasch/1-parameter IRT model, α is one in addition to γ 
taken as zero.  
 
A first step in Rasch analysis is to determine if the data fit the 
model (Wright and Stone, 1979). This is a measure of accuracy 
which is quantified by fit statistics. Residual based weighted 
(Infit) and unweighted (Outfit) mean squares are commonly 

used in the form of 
2 variates where X is the observed score 

and E is the expected score: 
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Fit mean square values have an expectation of one and values 
less than one are interpreted as “over” fit and values greater 
than one are interpreted as “under” fit. The outfit statistic is 
more sensitive to outliers than the robust infit statistic which is 
more related to discrimination. Outfit is commonly used for 
diagnostic purposes, to find aberrant response patterns. 
 
Precision on the other hand is quantified by standard errors and 
can be related to the concept of reliability (Wu and Adams, 
2007). Every Rasch/IRT measure has an associated standard 

error and is calculated as one divided by the square root of the 
statistical information in a measure, i.e. 
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Conceptually information is given by the slope squared divided 
by the conditional variance, i.e. 
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where P(θ) is the probability of a correct answer. The 
computational equation for the 3-Parameter Logistic IRT 
model (3PL) is given by 
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Note that (6) becomes 
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for the 1-Parameter Logistic IRT (1PL) and Rasch models 
where D=1; a=1 and C=0, i.e. item information is equal to item 
variance.  
 
Information functions are used to calculate the Standard Error 
of the Estimate (SEE), an IRT statistic which is interpreted in 
the same way as the SEM of CTT. In Rasch measurement an 
estimate’s standard error is the modelled standard deviation of 
the normal distribution of the observed estimate around its true 
value (Linacre, 1994). For example, a standard error of 0.385 
yields 99% confidence that the true estimate is within one logit 
from the reported estimate. For N well targeted observations, 

the minimum SE is �
�

�
 and the maximum SE is �

�

�
 so that for 

51 observations the minimum SE is 0.28 and the maximum is 
0.42. Precision of ability measures can be increased by 
increasing the test length and precision of item difficulty 
measures can be increased by increasing the sample size. 
 
Measuring test takers’ abilities 
 
The main goal of measurement is to quantify test takers’ 
performance. This is achieved through the building blocks of a 
test, namely the questions (items). The items are used to derive 
a score which is used to express performance as a number on a 
scale. In CTT it is common practice to use the raw (number 
correct) total score as such an indicator. It is acknowledged 
that the total score includes some error resulting in reporting 
the (fixed) SEM. Rasch/IRT overcomes the restrictions of 
sample dependency through stochastic processes and 
calculating probabilities of a correct response to obtain ability 
measures on an interval level scale. It doesn’t matter whether 
CTT, Rasch or IRT is used as the underlying measurement 
paradigm, the scores/measures always have associated errors. 
Traub and Rowley (1991) mention that there are many sources 
for errors in tests scores, and in multiple-choice questions 
(MCQs) guessing is arguably one of the most prominent. 
Whereas a correction for guessing was introduced in CTT 
(Hogan, 2003), Rasch modelling uses fit statistics to identify 
aberrant responses and response patterns which may indicate 
guessing. A correct response to an item with difficulty greater 
than a test taker’s ability is considered as an unexpected 
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response and should be flagged if the item is answered 
correctly. The 3PL IRT model incorporates a pseudo chance 
parameter which is often interpreted as indicative of guessing. 
Whether CTT, Rasch or IRT is used, MCQs are usually scored 
dichotomously, i.e. as either correct or incorrect and scored as 
either 1 or 0. The stochastic approach of Rasch/IRT computing 
the probability of a test taker to answer an item correctly or 
incorrectly remains based on a 0/1 score. A test taker may have 
decided that the correct answer is, say, one of two options and 
since only one option can be chosen, the test taker has to 
choose one of these two options. If the test taker had to make a 
choice between the two options and weigh them as a 50/50 
chance of being correct, there is significant error in both 
whether the correct or the incorrect option was finally chosen 
as the answer, if one of the two options was correct. The same 
rationale holds for other response combinations. A 
dichotomous 0/1 item score therefore doesn’t account for a 
possible large amount of error. When considering the answer 
to an MCQ, a test taker would normally weigh all the options 
and choose the option most likely correct in their opinion, even 
if it is an educated guess. If an incorrect option is chosen as the 
answer, the test taker scores 0. This score does not reflect the 
extent to which the correct option was considered. To quantify 
this, Bayesian’s rule can be applied: Each item entails k 
hypotheses for each option i the hypothesis Hi that i is correct. 
The initial prior hypothesis is that Hi are all equal, i.e. �(��) =
�

�
 where k is the number of options. Thus, the conditional 

probabilities are Hi \ M where M is the mental process. The test 
taker chooses the option that is correct in their opinion, i.e. 

�(�\��). According to Bayes’ rule �(��\�) =
�(��).�(�\��)

�(�)
. 

The test taker thus selects the option for which �(��\�) is a 
maximum. But this option is not necessarily the correct option 
and therefore �(��\�) is a better measure of M since it is 
proportional to �(�\��), the ability to choose the correct 
option C. This means that the item score is equal to the 
probability assigned to the correct option and not the option to 
which the maximum probability is assigned. This is in sharp 
contrast with 0/1 scoring where the test taker chooses the 
option that is correct in their view, even if it is a guess. This 
score should be a monotonic increasing function of ��	�(��\
�) for the correct option i which can be achieved with a linear 
function ofln�(��\�), i.e. the scoring rule should be a 
logarithmic rule. 
 
To derive the scoring rule, consider item i with k options. The 
test taker assigns probabilities to each option so that the 
response vector �̅ = (��, ��, … , ��)	where 0	 ≤ �� ≤ 1 and 
∑ �� = 1�
��� . The score si is a monotonic increasing function of 

response vector �̅, i.e. �(��) = �(��). Irrespective of the scoring 
rule, the test taker must estimate the likelihood to maximise the 
expected score E. Such a scoring system where �̅ = �̅ 
maximises if � = ∑�(�) × �(��) = ∑�(�) × �(��). Scoring 
systems of this class are inexhaustible. If it is based on the 
probability assigned to the correct option only, then �� = �(��) 

for 0	 ≤ �� ≤ 1 and  ∑ �� = 1�
��� . The expected score E can be 

written as a linear function � = ∑�(��\�). log �(��\�). By 
substituting �(��\�) with pi and considering only the 
response to the correct option, s can be maximised: � =
∑��. � = ∑���(��).Thus,s is a function for F of ri and the 
expected value is a maximum if and only if ri = pi for all i. 
Function F can be derived through partial differentiation under 
the condition that ∑�� = 1 using the Lagrange multiplier λ:  

 

�[∑(�(�)�(�)�λ(��∑�)]
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= 0                                                     (8) 

 

when p(j)=r where r = rc and for all k. Thus �(�).
��(�)

��
− � =

0 yielding            
 
��(�)

��
=

�

�
 for p(j)=r for all k and substituting r for p(j) and λ a 

constant independent of r. It follows that �(�) = � ln(�) + 	� 
for constants A and B. For scoring purposes, A and B can be 

chosen so that si = 0 if �� =
�

�
 which indicates that the test 

taker doesn’t know (guesses) and si = 1 if rc = pk = 1. 
 
This scoring rule estimates the probability assigned to the 
correct option as a measure of “true” ability and not the 
probability to answer the question correctly as in Rasch/IRT 
which is a measure of confidence that the option is correct. The 
difference is subtle but significant. Barnard (2015) labelled this 
approach Option Probability Theory (OPT) and demonstrated 
how this approach minimises uncertainty and illuminates 
guessing. Unlike dichotomous scoring, a test taker assigns a 
percentage to any number of answer options and the 
percentage assigned to the correct option is scored by means of 
the logarithmic scoring function Ψ = �(�) = � ln(�) + 	� 
which penalises low percentages assigned to correct answers 
(higher percentages assigned to incorrect answers). The theory 
was applied in a study comparing the performance across three 
assessment formats in online test administration; Multiple 
Choice Questions (MCQs), Short Answer Questions (SAQs) 
and Option Probability Theory (OPTs) using parallel tests on a 
sample of 276 Bachelor of Medicine and Bachelor of Surgery 
(MBBS) students. (Trigg, Barnard, Devitt and Pham, 2016). 
The authors found that the students performed best in the MCQ 
and worst in the OPT and concluded that the OPT scores 
purport to provide information about individuals’ guessing 
which cannot be captured through MCQs and the lower OPT 
scores were due to penalising for uncertainty of correct 
answers. 
 
Comparing ability estimates 
 
To quantify the difference between dichotomous scoring and 
OPT scoring, 51 students were administered a 40-item four-
choice practice medical exam online. All students responded to 
all items and the data was analysed within the Classical Test 
theory (CTT), Rasch Measurement Theory and Option 
Probability Theory frameworks. For the dichotomous scoring, 
a(classical) mean of 23.73 (59.33%) with a standard deviation 
of 3.77 (9.43%) was obtained. The relatively low alpha (KR-
20) reliability of 0.48 had an associated SEM of 2.72 (6.80%). 
This means, for example, that there is a 68% certainty that a 
student who scored 30 (75%) has a “true ability” within the 
range [27.28; 32.72], i.e. [68.2%; 81.8%]. The Rasch 
calibration yielded a mean item difficulty of 0 logits (SD 1.17), 
due to standardising on item difficulty, and an item estimate 
reliability of 0.90. The students had a mean ability of 0.59 
logits (SD 0.49 logits) and a mean estimate reliability of 0.41. 
Using a score equivalence table, it is found, for example, that a 
student with a score of 30 (75.0%) has an ability estimate of 
1.40 and a standard error of 0.40 logits. A SE of 0.40 is 
associated with a (classical) reliability index of approximately 
0.84 and if this value is substituted in equation 1 using the SD 
of 9.43% the resulting SE is 3.77% which is less than the CTT 
SE of 6.80%. The Rasch score is thus more precise than the 
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CTT score. Table 1 shows the SE range for these scores, 
showing the more precise Rasch range. 
 

Table 1. SE confidence ranges for CTT and Rasch scores 
 

 Range % 
CTT [68.2; 81.8] 
Rasch [71.2; 78.8] 

 
In the OPT scoring, an estimated score, ε, was calculated from 
the percentages assigned by the students. This estimated score 
is intended to mimic dichotomous scoring and interprets higher 
percentages assigned to correct answers as correct responses 
and low percentages assigned to correct answers as incorrect 
responses. If 50% was assigned to a correct option, the item is 
scored as correct (1) and if this happens a second time the item 
is scored as incorrect (0), repeating this scoring regime for 
each student’s response vector. The estimated score ε thus 
dichotomises the responses to yield response vectors that 
mimic MCQ dichotomous scoring. It is expected that ε will be 
greater than Ψ for test takers who don’t have a perfect score 
and that the difference between ε and Ψ will be greater as a 
function of the percentages assigned and also of the number of 
questions to which higher percentages are assigned to incorrect 
answers. This is shown in Table 2. 
 

Table 2. OPT data for 8 possible cases for ε as 75% 
 

 A B C D E F Ψ ε Diff E+F 
Case 1 0 0 10 0 10 20 67.9 75.0 7.1 75.0 
Case 2 5 5 0 0 10 20 66.4 75.0 8.6 75.0 
Case 3 10 0 0 0 10 20 66.0 75.0 9.0 75.0 
Case 4 0 0 0 10 5 20 65.3 75.5 10.2 62.5 
Case 5 0 0 10 0 15 15 63.4 75.0 11.6 75.0 
Case 6 0 0 0 20 0 20 62.8 75.0 12.2 50.0 
Case 7 5 5 0 0 15 15 61.9 75.0 13.1 75.0 
Case 8 10 0 0 0 15 15 61.5 75.0 13.5 75.0 

 

where 
A = Number of items to which a high probability is assigned to an incorrect 
option. 
B = Number of items to which a moderate probability is assigned to an 
incorrect option. 
C = Number of items to which no preference was given to any option, i.e. 
equal probabilities to all options. 
D = Number of items to which a low probability is assigned to a correct 
option. 
E = Number of items to which a moderate probability is assigned to a correct 
option. 
F = Number of items to which a high probability was assigned to a correct 
option. 
Ψ = OPT scaled score 
ε = Estimated OPT score 
Diff = ε – Ψ 

 
Note that ε = E+F for all cases except for cases 4 and 6 where 
credit was given to the ε score from items in column D where 
50% was assigned to the correct answer of the items. To a 
lesser extent than the items in column E, this can be interpreted 
as some partial knowledge. This difference is a maximum for 
Case 6 where there were the most items in column D, followed 
by Case 4. 
 
The difference between ε and Ψ is the smallest for Case 1. In 
this case 100% was assigned to the correct answer of 20 items; 
80% to the correct answers of 10 items and equal percentages 
(20%) to all of the options of 10 items. The Ψ score is 7.1% 
less than the ε score because of the 20% uncertainty of the 10 
items in column E. (The 10 items in column C did not attract 
any penalty because no preference was given to any option 
through assigning 20% to each option which indicates that 
there was no guessing in these items). The difference between 

the ε score and the Ψ score increases from Case 1 to Case 8 
almost exclusively as a function of the number of items in 
column F where high percentages were assigned to the correct 
answers. The exception was Case 5 where E + F was greater in 
Case 5 than in Case 6 due to the 20 items in column D in Case 
6. In all cases ε = 75% and greater than the Ψ score due to the 
penalties for the uncertainties. The Ψ scores ranged from 
61.5% to 67.9%, i.e. penalties ranging from 7.1% to 13.5% and 
thus lower than the lower bounds in Table 1. Thus, although 
the Rasch estimate was more precise than the CTT score, it did 
not include the Ψ score. Although the (Rasch) ability estimates 
for cases 1 and 8 were the same due to the sufficient statistic 
property of the Rasch model, the Rasch fit index for Case 1 
indicated a much less aberrant response pattern than the fit 
index for Case 8. In sharp contrast, the OPT Ψ score reflects 
the higher uncertainty in Student 8’s score directly. 
 
Summary and conclusion 
 
Different psychometric paradigms can be used to analyse data 
and to score test takers. Dichotomous scoring of multiple-
choice questions is the most popular scoring regime. However, 
scoring a question as 0 or 1 does not account for large amounts 
of uncertainty and guessing. Rasch and IRT models attempt to 
quantify this in different ways, but are based on probabilities 
assigned to the ability to choose the correct response amongst a 
number of responses. In contrast the scoring rule in OPT 
estimates the probability assigned to the correct option as a 
measure of “true” ability and not the probability to answer the 
question correctly as in Rasch/IRT which is a measure of 
confidence that the option is correct. The difference in scores 
obtained from CTT, Rasch and OPT was demonstrated and it 
can be concluded that OPT scoring is superior to dichotomous 
scoring in the sense that it captures uncertainty and guessing 
and thereby minimising measurement error. Conflict of interest 
and funding statement: The author declares that there is no 
conflict of interest and no funding obtained to write and submit 
this original paper. 
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