

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 12, Issue, 02, pp.10278-10282, February, 2020

DOI: https://doi.org/10.24941/ijcr.37936.02.2020

REVIEW ARTICLE

ETHIOPIA'S RESPONSE TO CLIMATE CHANGE AND VARIABILITY: A REVIEW

*Yibeltal Yihunie

Department of Natural Resources Management, College Agricultural Sciences, Arba Minch University, P.O.BOX 21, Arba Minch, Ethiopia

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 24 th November, 2019 Received in revised form 10 th December, 2019 Accepted 09 th January, 2020 Published online 28 th February, 2020	This review paper was initiated to review the Ethiopia's response to the existing climate variability and change. Climate variability and change have been occurring in Ethiopia. Evidences showed that there is an increase in temperature and spatial and temporal rainfall variability has been increasing. The changing climate has led to recurrent droughts and famines, flooding, expansion of desertification, loss of wetlands, loss of biodiversity, decline in agricultural production and productivity. Ethiopia had shown many efforts to combat climate change in the different parts of the country. Promoting conservation agriculture, home gardens and traditional agro forestry systems, harvesting non-timber forest products, protected area systems, a forestation and reforestation programs, renewable energy sources, livestock selling and production are among the mechanisms for mitigating and adapting climate change in Ethiopia as a response.
Key words:	
Adoption, Climate Change, Variability, Ethiopia.	
Copyright © 2020, Yibeltal Yihunie. This	s is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,

Copyright © 2020, *Yibeltal Yihunie*. *This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Citation: Yibeltal Yihunie, 2020. "Ethiopia's Response to Climate Change and Variability: A Review", International Journal of Current Research, 12, (02), 10278-10282.

INTRODUCTION

There is a rapid change and variability in the earth's climate as a result of increases in the concentrations of greenhouse gases in the atmosphere mainly caused by human activities, particularly burning of fossil fuels, agriculture and deforestation (Wigley, 1999; Stern, 2006; IPCC, 2007; Zegeye, 2013; Hailab, 2018). According to the Intergovernmental Panel on Climate Change (IPCC) prediction, the global surface temperature will increase by 1.4 - 5.8°C by 2100 years due to increasing concentration of GHGs specifically carbon dioxide. The Least Developed Countries (LDCs) like Ethiopia are highly vulnerable to climate change and variability since they are dependent on agriculture and climate sensitive economic sectors (Bruckner, 2012). Climate, as a natural resource, is probably the most important single factor in agriculture and food production. Agriculture remains highly sensitive to climate variations, which are the dominant source of the overall inter-annual variability in production in many regions and a continuing source of disruption to ecosystem services (Howden et al., 2007). Adverse climate change impacts are particularly high in countries located in tropical Africa that depend on agriculture as their main source of livelihood (IAC, 2004; Dixon, Gulliver and Gibbon, 2001; IPCC, 2001).

*Corresponding author: Yibeltal Yihunie,

Department of Natural Resources Management, College Agricultural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia Rural communities, who depend on agriculture for sustenance and livelihood, are often vulnerable to the direct impacts of adverse impacts of climate variability and change (Molnar, 2010; Melese, 2019). Negussie and Ashebir, 2016 reported that the smallholder, low-input and rain-fed agriculture, and the pastoral livelihood system in the arid and semiarid lowlands are more vulnerable to the adverse effects of climate variability and change because of dependence on climate sensitive natural resource based economic activities. Ethiopia is mainly at risk to climate change and variability because of its greater reliance on climate sensitive economic sectors like subsistence crop cultivation and livestock production. In addition, a large part of the country is arid and semiarid and is highly prone to desertification and drought (NMA, 2001 and Melese, 2019). Thus, this review paper was initiated to review the country's response to the existing climate variability and change.

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

Climate variability and change in Ethiopia: Even if the climate of Ethiopia is changing in recent years, it is naturally diverse and variable (Umer, 2010; Eshetu, 2011; Mokria *et al.*, 2017). The temperature (maximum, minimum, mean) is increasing, but the rainfall does not show any definite trend, it shows high variability (NMSA, 2007; Bewket and Conway, 2007; McSweeney *et al.*, 2008; Addisu *et al.*, 2015). Since 1950, the annual average maximum and minimum temperatures of the country have been increasing every decade by about 1 and 0.25°C, respectively (NMSA, 2001). In Ethiopia, climate variability and change is mainly manifested

through the variability and decreasing trend in rainfall and increasing trend in temperature. Besides, rainfall and temperature patterns show large regional differences (Zerga andGebeyehu, 2016). According to Addisu et al. (2015), the annual total rainfall data from 109 representative ground based meteorological stations in Ethiopia indicated a coefficient of variation ranging from 20 to 89%, and 17 stations had above 42% coefficient of variation highlighting the extreme variability of rainfall over the country. They also noted that the maximum, minimum and mean temperatures had increasing trend; whereas rainfall amount showed a general decreasing trend in Lake Tana Sub-Basin. The amount of rainfall has been decreasing in many parts of the country. Butsome areas in the western part of the country have experienced irregularities, unpredictability and a pattern of shortened rains, temperature increase, heavy rains, frost and hail (Troeger, 2010).

Nowadays climate change is a key concern to Ethiopia and needs to be tackled in a state of emergency. It has brought an escalating burden to already existing environmental concerns of the country including deforestation (Ayana et al., 2011) and agriculture sector (UNDP Ethiopia, 2011). Climate change and its impacts have also been perceived by local people, who express climate variability and change in that generally the temperature is increasing and the rainfall is decreasing (Kassa, 2013; Addisu et al., 2016; Belay et al., 2017; Mekonnen et al., 2017; Tilahun et al., 2017). The frequency of droughts in Ethiopia, particularly in the recent decades, is an indication of the prevalence of the variation in climate. There were 19 drought events which occurred in Ethiopia in the period 1900-2002, which is almost once in 6 years in the period 1900-1987 (14 drought events) and roughly in 3 years in the period 1988-2002 (5 drought events) (NMSA, 1987; World Bank, 2005). Since 1876, about 22 droughts with an average cycle of every 6 years are occurring in Ethiopia (Eshetu et al., 2010). According to study of Deressa (2006) for Ethiopia, by using Heckman sample selection model both increasing temperature and decreasing precipitation are damaging Ethiopian agriculture. Climate change has strong impact on the agricultural sectors and forestry by modifying or degrading productive capacities and by directly and indirectly increasing the risks associated with production (FAO, 2011).

Major impacts of climate change in Ethiopia: Agricultureis a sector which is negatively impacted by climate change. It is clear that climate change will bring about substantial welfarelosses especially for smallholder farmers whose main source of livelihood comes from agriculture (Zerga and Gebeyehu, 2016). Changes in climate extremes are already having impacts on social, economic and natural systems, and future changes associated with continued warming will present additional challenges (Karl et al., 2008). Indirectly climate change has an effect on agricultural sector as: -changes in soil moisture, land and water condition change in frequency of fire and pest infect, and the distribution of diseases. The potential for a system to sustain adverse impact on agriculture is determined by its capacity to adapt to the changes. Higher temperatures, reduced rainfall, and increased rainfall variability reduce crop productivity that would be affected food security in low income and agriculture-based economies. Thus, the impact of climate change is detrimental to countries that depend on agriculture as the main livelihood (Edwards et al., 2009). In Ethiopia, many species are vulnerable to the impacts of climate change. Many forest tree species in Desa'a forest in Northern Ethiopia have showed poor regeneration due

to human disturbances and changing environmental conditions including climate change (Aynekulu et al., 2011). Species with limited geographical opportunities, restricted habitat requirements and/or small populations (for example, species restricted to Afroalpine ecosystems, such as Giant Lobelia, Walia Ibex, Ethiopian Wolf) are typically the most vulnerable (Zerga and Gebeyehu, 2016). Similarly climate change has increased increase the spread and abundance of invasive alien species which are becoming threats to biodiversity of the country (Zegeve, 2017; Sharma and Nigatu, 2013). Climate change will alter the hydrology of both surface and ground water resources thereby affecting the spatial and temporal availability as well as their productivity (Ludi 2009; Negash, 2010). It will affect the distribution, quantity and quality of water. As such, climate change will cause shortage of water for domestic, industrial and agricultural/irrigation purposes; fishery and aquaculture, hydroelectric power generation, transportation, water-based recreation and ecosystem health. It is obvious that water scarcity is a critical problem in many parts of the country, particularly arid and semi-arid regions. Climate change has also direct and indirect impacts on the prevalence and spread of diseases and pests. Warmer

temperatures and variations in rainfall patterns associated with climate change are already altering the transmission mechanisms of water and vector borne diseases in Ethiopia. Incidence of malaria, dengue fever, and water borne diseases like cholera, dysentery is likely to become more prevalent, while food insecurity related to extreme events also threatens the lives andlivelihoods of millions of Ethiopians (NAPA, 2007).

World Health Organization (2002) states that in year 2000, climate changes was estimated to be responsible for approximately 2.4% of worldwide diarrhoea, and 6% of malaria in some middle income countries. Ethiopia is highly vulnerable to drought and floods. Drought occurs anywhere in the world but its damage is not as severe as in Africa in general and in Ethiopia in particular due to low adaptive capacity. Recurrent drought events in the past have resulted in huge loss of life and property as well as migration of people. The other climate-related hazards that affect Ethiopia from time to time are flash and seasonal river floods. Areas in the Afar region along the Awash River, in the Somali region along the WabiShebele river and in the Gambela region along the Baro-Akobo river, in the Southern region along the Oomo-Gibe river, BahirdarZuria and Fogera areas along the Abbay river in the Amhara region are prone to seasonal river floods (Tadege, 2007).

Climate Change Adaptation and Mitigation Mechanisms in Ethiopia: Adaptation to climate change refers to adjustments in environmental, social and economic systems in response to the actual and expected impacts of climate change.Adaptation to climate change has to be localized, given that adaptation to climate change is inevitably and unavoidably local (Blaikie et al., 1994; Ribot, 1995). Adaptation to climate change requires combining scientific knowledge with indigenous knowledge and practices. Moreover, adaptation to climate change needs to be a continuous endeavor. Ethiopia is taking the necessary steps to implement the two categories of responses to climate change mitigation and adaptation. Accordingly, Ethiopia prepared its National Adaptation Programme of Action (NAPA) and Nationally Appropriate Mitigation Action (NAMA) and submitted to the UNFCCC in 2007 and 2010, respectively.

To boost socio-economic development and combat climate change, Ethiopia developed a CRGE strategy in 2011 (Anonymous, 2011). Conservation agriculture and climate smart agriculture, has a high potential for both climate change mitigation and adaptation in Africa including Ethiopia (Ching et al., 2011). Conservation agricultural practices include terracing, crop rotation, intercropping, retention of crop residues and use of animal dung, composting, mulching, crop diversification (including farmers' varieties), water harvesting and storage, home gardening and traditional agroforestry, management of grazing areas, etc. The agricultural system of the Konso people in southern Ethiopia is famous for its perfect adaptation to a harsh environment of steep, stony hills and little rainfalls. Traditional technologies are used for soil and water conservation, water harvesting and many more (Kebede et al., 2010). According to Ching et al. (2011) report, conservation agriculture in Tigray has showed positive results, both in terms of rehabilitation of degraded lands and improvement of livelihoods of local communities, and is being scaled up to many areas within the region and other regions of the country. According to Temesgen et al. (2006), sale of agricultural tools and other assets are identified as a coping mechanism to climate variability and extremes in Ethiopia. Farmers may sell some of their resources in market, and this can be an important extra income, and can also function as a safety net and a coping mechanism. Material assets within the household can be seen as a buffer against difficult periods, in the same way as for example livestock.

Table 1. Climate change adaptation and mitigation mechanisms in Ethiopia

Climate change mitigation and adaptation mechanisms	
Tree planting such as home gardening and traditional agroforestry	
Crop diversification (growing different crops and varieties)	
Growing fruit plants (e.g. apple in the highlands)	
Soil and water conservation practices	
Promoting small-scale irrigation	
Government and international agencies assistance	
Involvement of traditional institutions (Edir, Equb, religious institutions)	
and social networks	
Seasonal migration to other neighboring areas	
Sale of grains and livestock and their by-products	
Changing crop sowing dates	
Traditional water harvesting and storage	
Sale of grains and livestock and their by-products	
Collection of wild foods	
Indigenous forecasting and early warning systems	
Sources: Asfaur (2010) Zagava (2012) Kassa (2012) Tadassa at al. (2012)	

Sources: Asfaw (2010), Zegeye (2013), Kassa (2013), Tadesse *et al.* (2013), Addisu *et al.* (2015), Simane *et al.* (2016), Zerga and Gebeyehu (2016), Belay *et al.* (2017), Mekonnen *et al.* (2017) and Tilahun *et al.* (2017).

Pastoralists and agro-pastoralists in the drylands such as Afar in northeastern, Somali in eastern and Borana in Southern Ethiopia use different strategies like decreasing the number of cattle and sheep and increasing the number of camels and goats (because of their remarkable capacity to adapt severe drought) in their herds as a strategy to improve their livelihoods and adapt to climate change to cope with the impacts of climate variability and change (Aklilu and Catley, 2010; Tadesse et al., 2013). Those pastoral communities in Afar, Somali and Borana are living with climate change and are able to adapt to the changing climate with their own short and longterm strategies (Riché et al., 2010; Tilahun et al., 2017). Homegardens and agroforestry systems are other sort of mechanisms in climate change adaptation in Ethiopia (Asfaw, 2010). Homegardens and agroforestry systems have a range of environmental, social, economic and cultural benefits. They help to sustain the environment and improve livelihoods of people, and as such

hold considerable potential for human and livestock adaptation to climate change (FAO, 2000; Asfaw, 2010; Zegeye, 2013). They control soil erosion, improve soil fertility, sequester carbon, moderate microclimate, provide various products; fuel wood, charcoal, construction material, timber, poles, posts, farm implements, food, medicines, fodder, spices, bee forage, etc.), increase income, and provide shade and amenity. They supplement food supplies and also serve as a buffer during periods of droughts and crop failures. Moreover, they are well placed for adding new plants to the existing flora.

Conclusion

Ethiopia has been experiencing the impacts of both climate variability and change. Climate change has led to recurrent droughts and famines, flooding, expansion of desertification, loss of wetlands, loss of biodiversity, decline in agricultural production and productivity, shortage of water, and increased incidence of pests and diseases.

It is apparent that climate change will have dramatic environmental, social, economic, cultural and political impacts. Ethiopia is vulnerable to the impacts of climate change mainly due to geographical location, rapid human population growth, heavy dependence on agriculture and natural resources for subsistence, widespread poverty and limited resources (human, technical, technological, institutional, financial. and infrastructural). It also has in general low adaptive capacity to the impacts of climate change. To combat climate change, Ethiopia has shown both conservation and policy responses. Protected area systems, afforestation and reforestation programmes, development of renewable energy sources and energy efficiency, ecological agriculture, flexible livestock production, home gardens and traditional agroforestry systems, harvesting and use/marketing of non-timber forest products and climate change education, are all feasible strategies for mitigating and adapting climate change. Indeed, there is a need to employ the right mix of climate change mitigation and adaptation strategies prioritized in space and time so as to reduce vulnerability of biodiversity and humanity to the escalating impacts of climate change.

REFERENCES

- Addisu S., Gebreselassie Y., Fissha G. &Gedif B. (2015). Time series trend analysis of temperature and rainfall in Lake Tana Sub-Basin, Ethiopia. Environ. Syst. Res. 4:1-12.
- Aklilu Y. &Catley A. 2010. Livestock exports from pastoral areas: An Analysis of benefits by wealth group and policy implications, IGAD LPI Working Paper No. 01-10.
- And Adaptation. Journal of Social Science and Humanities Research, 2(4), 66–84.
- Anonymous 2011. Ethiopia's Climate-Resilient Green Economy – Green economy strategy, Addis Ababa: Federal Democratic Republic of Ethiopia.
- Asfaw Z. 2010. Homegardens and traditional agroforestry systems in climate adaptation in Ethiopia. The Biological Society of Ethiopia, Addis Ababa University. Pp. 41-53.
- Aynekulu E., Denich M., Tsegaye D., Aerts R., NeuwirthB. &Boehmer H. 2011. Dieback affects forest structure in a dry Afromontane forest in northern Ethiopia. J. Arid Environ. 75:499-503.

- Belay A., Recha J. W., Woldeamanuel T. & Morton J. F. 2017. Smallholder farmers' adaptation to climate change and determinants of their adaptation decisions in the Central
- Bewket W. & Conway D. 2007. A note on the temporal and spatial variability of rainfall in th drought-proneAmhara region of Ethiopia. Int. J. Climatology. 27:1467-1477.
- Blaikie P., Cannon T., Davis I. & Wisner B. (1994). At risk: Natural hazards, people's vulnerability, and disasters, New York: Routledge.
- Bruckner M. 2012. Climate change vulnerability and the identification of least developed countries (LDCs).The United Nations Development Policy and Analysis Division Department of Economic and Social Affairs. pp. 3-15.
- Change Mitigation and Sustainable Development. Haramaya
- Ching L. L., Edwards S. & Scialabba N. E. (eds.) 2011. Climate change and food systems resilience in sub-Saharan Africa, Rome: FAO.
- Deressa, T. 2006. Measuring the economic impact of climate change on Ethiopian agriculture: Ricardianapproach. CEEPA Discussion Paper No. 21. South Africa: CEEPA, University of Pretoria.
- Edwards-Jones, G., Plassmann, K., & Harris, I. M. 2009. Carbon foot printing of lamb and beef productionsystems: Insights from an empirical analysis of farms in Wales, UK. *Journal of Agricultural Sciences*, 147, 707–719.
- Eshetu Z. 2011. Climate variability in Ethiopia and global greenhouse gases emission. In Commemoration of 3rd National Mother Earth Day and 2011 International Year of Forests. Forum for Environment, Addis Ababa. Pp. 25-37.
- FAO. 2011. Framework programme on climate change adaptation. Rome: Food and Agriculture Organization of the United Nation.
- Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N.,Dunlop, M., &Meinke, M. 2007. Adapting agricultureto climate change. *Proc Natl Acad Sci.*, USA, 104(50).
- International Conference on Biodiversity Conservation and Ecosystem Services for Climate Change Mitigation and Sustainable Development. UNDP. Pp. 2-15.
- IPCC 2001. Climate change 2001: Impacts, adaptation, and vulnerability, contribution of Working Group II to the Third Assessment Report, Cambridge, UK: Cambridge University
- IPCC 2007. Climate change 2007: Synthesis report, contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland: IPCC.
- Kassa M. 2013. Farmers' perception of climate change and local adaptation strategies in the highlands of Ethiopia: the case of Menz Gera Midir, Amhara region, Ethiopia.
- Kebede A., Grenzebach H. &Teigane G. 2010. Perfect adaptation to climate change in Konso. SLM Research Group on Climate Change and Adaptation. The Biological Society of Ethiopia, Addis Ababa University, Addis Ababa. 82p.
- Ludi E. 2009. Climate change, water and food security, background note, ODI.
- McSweeney C., New M. &Lizcano G. 2008. UNDP climate change country profiles – Ethiopia. Available online at: http://country-profiles.geog.ox.ac.uk (accessed on 4 September 2017).

- Mekonnen Z., Kassa H., Woldeamanuel T. &Asfaw Z. 2017. Analysis of observed and Perceived climate change and variability in ArsiNegele District, Ethiopia. Environment, Development and Sustainability. DOI: 10.1007/s10668-017-9934-8.
- Mokria M., Gebrekirstos A., Abiyu A., Noordwijk M. V. &Bräuning A. 2017. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment. Global Change Biology. 00: 1-19.
- Molnar, J. J. 2010. Climate change and societal response: Livelihoods, communities, and the environment. Rural Sociol, 75, 1–16. doi:10.1111.
- NAPA. 2007. Climate Change National Adaptation Programme of Action (NAPA) of Ethiopia. Report of the Federal Democratic Republic of Ethiopia. Ministry of Water Resources, National Meteorological Services Agency.
- Negash F. 2010. Climate change and its impact on water resources management in Ethiopia: Challenges and opportunities for adaptation. In: Assefa F and Girmay W (eds.), Proceedings of a National Workshop on Climate Change: Addis Ababa University, Pp. 30-40.
- NMA. 2001. Initial National Communication of Ethiopia to the UNFCCC. Addis Ababa.
- NMSA 2007. Climate Change National Adaptation Programme of Action (NAPA) of Ethiopia, Addis Ababa: National Meteorological Services Agency (NMSA).
- Rift Valley of Ethiopia. Agriculture and Food Security. 6:1-13.
- Sharma J. J. & Nigatu L. 2013. Parthenium weed invasion and biodiversity loss in Ethiopia. In:
- Stern N. 2006. Stern review: The economics of climate change, Cambridge: Cambridge University Press.
- Tadege, A. 2007. Climate Change National Adaptation Program of Action (NAPA) of Ethiopia. Addis Ababa, Ethiopia: NMS (National Meteorological Agency:
- Tadesse Y., Urge M., Dessie T., Abegaz S., Kurtu M. Y. &Kebede K. 2013. Cattle and camel population dynamics and livelihood diversification as a response to climate change in Borana Zone, Ethiopia: its implication for the conservation of the Borana cattle.
- Tilahun M., Angassa A. &Abebe A. 2017. Community-based knowledge towards rangeland condition, climate change, and adaptation strategies: the case of Afar pastoralists. Ecological Processes. 6:29. DOI: 10.1186/s13717-017-0094-4.
- Troeger S. 2010. Features of climate change in Ethiopia transforming forces on livelihood constituents and social cohesion. The Biological Society of Ethiopia, Addis Ababa University, Addis Ababa. Pp. 54-67.
- Umer M. 2010. History of climate change and past adaptations in northeastern African region: lessons for the future. The Biological Society of Ethiopia, Addis Ababa University, Addis Ababa. Pp. 15-20.
- WHO. 2002. The World Health Report 2002, Reducing risks, promoting healthy life. Geneva: World Health Organization.
- Wigley T. M. L. 1999. The science of climate change: Global and U.S. perspective, Arlington, Virginia: Pew Centre in Global Climate Change.
- Workeneh S, Dechassa N, Ketema M and Belayneh A (eds.), Proceedings of the International Conference on Biodiversity Conservation and Ecosystem Services for Climate

- Zegeye H. 2013. Global climate change: causes, impacts and solutions. Proceedings of the
- Zegeye H. 2017. Major drivers and consequences of deforestation in Ethiopia: implications for forest conservation. Asian Journal of Science and Technology. 8(8): 5166-5175.

Zerga, B., & Gebeyehu, G. 2016. Climate Change in Ethiopia Variability, Impact, Mitigation,
