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INTRODUCTION 
 

Let (L2 R) be the analyzing wavelet and 
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Definition1.1. A function   L2(R,dt) is admissible only if  is not identical to zero and  
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Lemma1.2.  L2(R,dt)\{0} is admissible if and only if the integral  





0R

2

d
||

|)(|
 exists.  

Prof. See [4, p. 877].  
 

Lemma1.3. Let  be admissible and f  L2(R,dt) 
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defines an element of L2 (RxR0, )
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Moreover,  
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 is an isometry.  

 
Proof. See [4, p, 877).  
 

From (1.5), the Fourier transform of L with respect to its translation argument is given by  
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Definition1.4. The operator :L  L2(R,dt)  L2 (RxR0, )
a
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2

 is called wavelet transform with respect to analyzing wavelet 

.  
 

In this paper, we extend the wavelet transform, which we defined on L2(R, dt), to weighted Sobolev space B

k  and boundedness 

properties will be investigated. Asymptotic properties for small dilation parameter will also be studied. 
 

The Weighted Sobolev Space .
kB  

 

In this section we recall definitions and properties of certain function and distribution spaces introduced by BjÖrck [1]. Let M be 
the set of continuous and real valued functions on Rn satisfying the following conditions:  
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for some real number a and position real number b. We denote by Mc the set of all  M satisfying condition  with 

a concave function  on ),0[  We suppose cM  from now on.  

Let cM . We denote by S the set of all functions  L1(Rn) with the property that  and 
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The topology of S is defined by the semi-norms p and . The dual of S is denoted by S'the elements of which are called 

ultra-distributions. We may refer to [1] for its various properties. We note that for  = log (1+), S is reduces to S, the 
Schwartz space.  
We also recall the definition of test function space D. The space Dis the set of all in L1(Rn) such that  has compact support 

and  ||||  for all  
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Now, let .Mc  Then K is defined to be the set of positive function k in Rn with the following property. There exists >0 
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Note that the space B

k (Rn) is a generalization of the HÖrmander space  

Bk (R
n) [2 ] and reduces to the space Bk(R

n) for= log (1+). 
 

The Wavelet Transform on Weighted Sobolev Space B .
k  

In this section we define the space kW  of all measurable functions f on RxR0 such that  
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Theorem3.1. Assume that analyzing wavelet 
2L satisfies the following admissibility condition:  
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Proof. From (3.1), we have  
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Theorem3.2.  For admissible and integrable 1, 2 and g,f B
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Now, using the inequality  
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Invoking (3.8), (3.4), we have  
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Asymptotic Behavior for Small Dilation Parameters.  
 
Let us recall the equation (1.9):  
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In what follows we assume that  is real valued and a>0.  
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where |I (a, )| = .)a(-1  )(f)(k 
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