
  
  

 
 

  
 

 
  

 

KEY QUESTIONS FOR THE ARTIFICIAL NEURAL NETWORK LEARNER TO ASK THEMSELVES

Department of Physics, Murshidabad University, Berhampore, Murshidabad 742101, 

ARTICLE INFO  ABSTRACT
 
Over the recent years, Artificial Neural Networks (ANNs) have significantly matured, yet numerous 
unresolved issues persist. Instead of reviewing these open questions, this perspective piece will 
present my viewpoint on how to tackle problems within the field o
a set of critical questions we should consider when developing ANN algorithms for machine learning. 
These questions will center on the fundamental definition of ANNs and their connection to the human 
brain, the processe
iteration, the methods for minimizing the discrepancy between predicted and actual values, and the 
recent advancements in model architecture and design. 
 
 

 
 
 
 

 
 
 

Copyright©2025, Basir Ahamed Khan. This is an open
use, distribution, and reproduction in any medium, provided
 
 
 
 
 

 

 
 
 
 

 
 
 
 

INTRODUCTION 
 
Artificial Neural Networks (ANNs) have emerged as one of 
the most powerful tools in modern machine learning 
(Benjamin et al. 2018; D'Amour et al. 2022; Sarkar 
2023), driving advances across domains ranging from 
computer vision (Loce et al. 2013; Sivaraman and Trivedi 
2013; Khan et al. 2022; Chib and Singh 2024) and natural 
language processing to robotics and biomedical engineering 
(Broad et al. 2017; Hu et al. 2017, Prasad et al
al. 2022). As their applications continue to expand, so too does 
the need for learners—whether students, researchers, or 
practitioners—to develop not just technical proficiency but 
also a reflective and strategic approach to learning and 
applying neural network techniques. While there is no shortage 
of tutorials, courses, and frameworks to help l
train neural networks, the true challenge often lies in 
developing the critical thinking necessary to navigate the 
complexities of real-world modelling. Understanding the 
mathematical foundations, interpreting model behaviour, 
diagnosing performance issues, and making informed design 
choices all require more than rote learning
thoughtful inquiry process. This paper aims to support ANN 
learners by proposing a structured set of key questions they 
should ask themselves at various stages of their learning and 
development process. These questions are designed to prompt 
deeper understanding, guide problem-solving, and foster an 
iterative mindset conducive to mastery. By consistently
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to develop not just technical proficiency but 
also a reflective and strategic approach to learning and 
applying neural network techniques. While there is no shortage 
of tutorials, courses, and frameworks to help learners build and 
train neural networks, the true challenge often lies in 
developing the critical thinking necessary to navigate the 

world modelling. Understanding the 
mathematical foundations, interpreting model behaviour, 

performance issues, and making informed design 
choices all require more than rote learning—they demand a 
thoughtful inquiry process. This paper aims to support ANN 
learners by proposing a structured set of key questions they 
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engaging with these questions, learners can devel
robust intuition for neural networks and improve both their 
theoretical understanding and practical outcomes.
 

Fundamentals of Neural Network
 
What is an artificial neural network and how is it inspired by 
the human brain?: An artificial neural n
computational model designed to mimic the way the human 
brain processes information (Prieto 
Bohte 2017). It consists of interconnected nodes, or "neurons," 
which are organized in layers
layer, one or more hidden layers, and an output layer. Each 
connection between neurons has a weight that adjusts as 
learning progresses, similar to how synaptic strengths in the 
brain change with experience. The ANN processes data by 
passing inputs through these layers, using mathematical 
functions to simulate the firing of neurons and enabling the 
system to learn patterns, make predictions, or classify data. 
This structure and learning process are inspired by the 
biological neural networks in the brain, w
communicate through electrical impulses to process and 
transmit information. 
 
What are the key components of a neural network (e.g., 
neurons, weights, biases, activation functions)?: 
components of a neural network include neurons, weig
biases, and activation functions. Neurons, also known as 
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engaging with these questions, learners can develop a more 
robust intuition for neural networks and improve both their 
theoretical understanding and practical outcomes. 

Fundamentals of Neural Network 

What is an artificial neural network and how is it inspired by 
An artificial neural network (ANN) is a 

computational model designed to mimic the way the human 
brain processes information (Prieto et al. 2016; Gerven and 
Bohte 2017). It consists of interconnected nodes, or "neurons," 
which are organized in layers—typically including an input 
layer, one or more hidden layers, and an output layer. Each 
connection between neurons has a weight that adjusts as 
learning progresses, similar to how synaptic strengths in the 
brain change with experience. The ANN processes data by 

h these layers, using mathematical 
functions to simulate the firing of neurons and enabling the 
system to learn patterns, make predictions, or classify data. 
This structure and learning process are inspired by the 
biological neural networks in the brain, where neurons 
communicate through electrical impulses to process and 

What are the key components of a neural network (e.g., 
neurons, weights, biases, activation functions)?: The key 
components of a neural network include neurons, weights, 
biases, and activation functions. Neurons, also known as 
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nodes, are the basic units that receive inputs, process them, and 
pass the results to the next layer. Each connection between 
neurons has an associated weight, which determines the 
importance of the input signal—higher weights mean stronger 
influence. Biases are additional parameters added to the input 
of each neuron, allowing the model to shift the activation 
function and improve flexibility. Activation functions 
introduce non-linearity into the network, enabling it to learn 
and model complex patterns; common examples include the 
sigmoid, ReLU (Rectified Linear Unit), and tanh functions 
(Rasamoelina et al. 2020). Together, these components work 
in layers to process data, adjust based on errors during training, 
and ultimately make accurate predictions or decisions. Fig. 1 
shows the schematic diagram of a neural network with one 
hidden layer. 

 
Figure 1. A schematic diagram of Neural Network 

with one hidden layer 
 
What is the difference between a perceptron and a multilayer 
perceptron (MLP)?: A perceptron is the simplest type of 
neural network, consisting of a single layer of neurons that can 
perform basic binary classification tasks. It takes multiple 
inputs, applies weights and a bias, and passes the result 
through an activation function to produce an output. However, 
perceptrons are limited in their ability to solve complex 
problems, especially those that are not linearly separable. In 
contrast, a multilayer perceptron (MLP) is a more advanced 
architecture that includes one or more hidden layers between 
the input and output layers. These hidden layers allow the 
MLP to learn and represent more complex patterns and 
relationships in the data. Each layer in an MLP uses activation 
functions to introduce non-linearity, enabling the network to 
solve problems like image recognition, speech processing, and 
more, which a single-layer perceptron cannot handle. 
 
Why do we need non-linear activation functions?: We need 
non-linear activation functions in neural networks because they 
enable the model to learn and represent complex patterns and 
relationships in data (Sharma et al. 2017, Varshney and Singh 
2021). Without non-linearity, a neural network composed of 
only linear operations—such as weighted sums—would 
essentially behave like a single-layer model, regardless of how 
many layers it has, and could only solve simple, linearly 
separable problems. Non-linear activation functions like 

ReLU, sigmoid, or tanh allow the network to stack layers in a 
meaningful way, creating a deep architecture that can 
approximate complex functions. This capability is essential for 
tasks such as image classification, language translation, and 
speech recognition, where the input-output relationships are 
highly intricate and non-linear (Dubey et al. 2022). 
 
Forward and Backpropagation 
 
How does forward propagation work in a neural network? 

Forward propagation in a neural network is the process by 
which input data is passed through the network to generate an 
output or prediction. It begins at the input layer, where each 
input value is multiplied by its corresponding weight, and a 
bias is added. The result is then passed through an activation 
function to produce the neuron's output. This output becomes 
the input for the next layer, and the process repeats through all 
hidden layers until it reaches the output layer. At each layer, 
the network transforms the data using its current set of 
weights, biases, and activation functions, gradually building a 
more abstract representation of the input. The final output is 
used to make a prediction or classification, which is later 
compared to the actual result during training to calculate the 
error for learning. 

What is backpropagation and how does it update weights?: 
Backpropagation is a training algorithm used in neural 
networks to minimize the error between the predicted output 
and the actual target value by updating the network’s weights. 
It works by first performing forward propagation to calculate 
the output and then computing the error using a loss function. 
This error is then propagated backward through the network, 
layer by layer, using the chain rule of calculus to determine 
how much each weight contributed to the error (Zhou 2021). 
The gradients of the loss with respect to each weight are 
calculated, and these gradients are used to adjust the weights in 
the opposite direction of the error—typically with an 
optimization algorithm like gradient descent. This process 
allows the network to learn by gradually reducing the error 
over many iterations, improving its accuracy in making 
predicions. 
 
What role does the loss/cost function play in training?: The 
loss, or cost, function plays a critical role in training a neural 
network by measuring how far the network's predicted outputs 
are from the actual target values (Crone 2002; Jafarian et al. 
2018). It serves as a guide for learning, providing a numerical 
value that represents the model's error for a given set of 
weights and biases. During training, the goal is to minimize 
this loss, meaning the network is making more accurate 
predictions. The loss function is used during backpropagation 
to compute the gradients, which indicate the direction and 
magnitude of adjustments needed for each weight in the 
network. Common loss functions include mean squared error 
for regression tasks and cross-entropy for classification 
problems (Alkinanai et al. 2020; Matel et al. 2022). By 
continuously evaluating and minimizing the loss, the neural 
network gradually improves its performance on the training 
data. 
 
How do gradients flow through the network and what are 
vanishing/exploding gradients?: Gradients flow through a 
neural network during the back propagation process, where the 
error from the output layer is propagated backward through the 

33485                                        Basir Ahamed Khan, Key questions for the artificial neural network learner to ask themselves 



network to update the weights. This involves calculating the 
partial derivatives of the loss function with respect to each 
weight using the chain rule, allowing the network to learn by 
adjusting weights in the direction that minimizes the loss. 
However, in deep networks, this process can lead to problems 
like vanishing or exploding gradients. Vanishing gradients 
occur when the gradients become extremely small as they 
move backward through each layer, causing the earlier layers 
to learn very slowly or not at all. Exploding gradients happen 
when gradients grow excessively large, leading to unstable 
training and drastic weight updates. Both issues can hinder the 
learning process, but they can be addressed with techniques 
such as using ReLU activation functions, gradient clipping, 
proper weight initialization, or specialized architectures 
designed to maintain stable gradient flow. 
 
Training and Optimization 
 
What is the purpose of using an optimizer like SGD, Adam, 
or RMS prop?: The purpose of using an optimizer like SGD 
(Stochastic Gradient Descent) (Gardner 1984; Amari 1993; 
Anuraganand 2021), Adam (Kingma and Ba 2014), or 
RMSprop (Zou et al. 2019) in training a neural network is to 
efficiently update the model’s weights in order to minimize the 
loss function and improve performance. These optimizers 
determine how the network learns by deciding the direction 
and size of each weight update based on the calculated 
gradients. While SGD updates weights using the average 
gradient from a batch of data, it can be slow and may struggle 
with complex loss landscapes. Adam and RMSprop are more 
advanced optimizers that adapt the learning rate for each 
parameter, speeding up convergence and improving stability. 
Adam, in particular, combines the advantages of both 
RMSprop and momentum, making it one of the most widely 
used optimizers in deep learning. Overall, optimizers are 
essential for guiding the training process toward better 
accuracy and faster convergence. 
 
How do learning rate and batch size affect training?: The 
learning rate and batch size are two crucial hyper parameters 
that significantly influence the training of a neural network 
(Smith et al. 2017; He et al. 2019; Granziol et al. 2022). The 
learning rate determines the size of the steps the optimizer 
takes when updating the model's weights. If it's too high, the 
model may overshoot the optimal solution and fail to 
converge; if it's too low, training can be very slow or get stuck 
in local minima. The batch size refers to the number of 
training examples used to calculate the gradient in a 
single update. Smaller batch sizes lead to more 
frequent updates and can help the model generalize 
better but may introduce noise in the training 
process. Larger batch sizes provide more stable and 
accurate gradient estimates but require more 
memory and can sometimes lead to poorer 
generalization. Balancing both the learning rate and 
batch size is key to achieving efficient and effective 
training (Bruno et al. 2021). 

What is overfitting, and how can I prevent it?: Overfitting 
occurs when a neural network learns the training data too well, 
capturing not only the underlying patterns but also the noise 
and random fluctuations (Piotrowski and Napiorkowski 2013; 
Srivastava et al. 2014; Ying 2019). As a result, the model 

performs well on the training set but poorly on unseen data, 
indicating poor generalization. This typically happens when 
the model is too complex relative to the amount of data or 
when training is too lengthy without proper regularization. To 
prevent overfitting, several techniques can be used (Schaffer 
1993; Defernez and Kemsley 1999; Hawkins 2004; Pothuganti 
2018; Santos and Papa 2022): regularization methods like L1 
or L2 penalties add constraints to the model's weights, dropout 
randomly disables neurons during training to promote 
robustness, and early stopping halts training when performance 
on a validation set starts to degrade. Additionally, using more 
training data, simplifying the model architecture, or applying 
data augmentation can also help reduce overfitting and 
improve the model’s ability to generalize. 

How do I evaluate if my model is learning properly?: To 
evaluate if your model is learning properly, you should 
monitor its performance on both the training and validation 
datasets throughout the training process. Key indicators 
include the loss values and accuracy (or other relevant metrics) 
over time. Ideally, the training loss should decrease steadily, 
and the validation loss should follow a similar trend without 
diverging. If both training and validation performance 
improve, the model is likely learning effectively. However, if 
the training loss decreases while the validation loss increases, 
it may be overfitting. Additionally, plotting learning curves, 
tracking metrics like precision, recall, or F1-score (especially 
for imbalanced datasets), and using tools like confusion 
matrices or ROC (Receiver Operating Characteristic) curves 
can provide deeper insights into the model’s behavior. Regular 
evaluation ensures the model is not just memorizing data but 
truly learning meaningful patterns. 
 
Model Architecture and Design 
How do I decide the number of layers and neurons per 
layer?: Deciding the number of layers and neurons per layer in 
a neural network depends on the complexity of the problem 
and the amount of available data. For simple tasks, such as 
linear regression or basic classification, a small network with 
one or two hidden layers and a modest number of neurons may 
be sufficient. More complex problems, like image or speech 
recognition, often require deeper networks with many layers to 
capture intricate patterns. The number of neurons per layer 
should be large enough to allow the model to learn, but not so 
large that it leads to overfitting or unnecessary computation. A 
common strategy is to start with a simple architecture and 
gradually increase the depth or width based on performance, 
using techniques like cross-validation to compare results. 
Additionally, tools such as grid search, random search, or 
automated architecture search can help tune these parameters. 
Ultimately, experimentation and validation are key to finding 
the right balance for your specific task. 
 
What is the impact of depth vs. width in a network?: The 
impact of depth versus width in a neural network relates to 
how the model captures and represents patterns in the data. 
Depth refers to the number of layers, and increasing it allows 
the network to learn more abstract and hierarchical features, 
which is especially useful in tasks like image or language 
processing. Deep networks can break complex functions into 
simpler ones, layer by layer. Width, on the other hand, refers to 
the number of neurons in each layer. Wider networks can 
model more intricate interactions within a single layer, but they 
may struggle to capture hierarchical relationships without 
sufficient depth. While both depth and width can increase a 
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network’s capacity, very deep networks can suffer from 
vanishing gradients or be harder to train, while overly wide 
networks may overfit or become computationally expensive. 
Striking the right balance between the two—often guided by 
experimentation and validation—is essential for building an 
effective model. 
 
How do different activation functions (ReLU, sigmoid, tanh) 
affect learning?: Different activation functions like ReLU, 
sigmoid, and tanh significantly affect how a neural network 
learns by shaping the output of neurons and influencing the 
flow of gradients during training. ReLU (Rectified Linear 
Unit) is widely used because it introduces non-linearity while 
being computationally efficient and helping reduce the 
vanishing gradient problem by allowing gradients to pass 
through unchanged for positive inputs. However, it can lead to 
"dead neurons" if too many outputs become zero. Sigmoid 
maps input values to a range between 0 and 1, making it 
suitable for binary classification, but it can cause vanishing 
gradients for very large or small inputs due to its flat tails. 
Tanh is similar to sigmoid but outputs values between -1 and 
1, often leading to better convergence because it centers data 
around zero (see Table 1). However, like sigmoid, it also 
suffers from vanishing gradients. The choice of activation 
function can impact the speed of learning, stability, and 
ultimately the performance of the model, so it’s often chosen 
based on the specific task and network architecture. 
  

Table 1. Most common activation functions used in ANNs. 
 

Function Expression Application 
Linear 𝑓(𝑧) = 𝑧 Output layers 
Logistic sigmoid 

𝑓(𝑧) =
1

1 + 𝑒ି௭
 

Output and hidden 
layers 

Hyperbolic 
tangent sigmoid 𝑓(𝑧) =

𝑒௭ − 𝑒ି௭

𝑒௭ + 𝑒ି௭
 

Hidden layers 

ReLU 𝑓(𝑧) = max(0, 𝑧) Output layers 

 
When should I use techniques like dropout, batch 
normalization, or regularization?: Techniques like dropout, 
batch normalization, and regularization are essential tools 
used during neural network training to improve model 
performance and prevent overfitting. You should use dropout 
when your model is complex or has a tendency to memorize 
the training data, as it randomly turns off a percentage of 
neurons during training, encouraging the network to learn 
more general and robust features. Batch normalization is 
especially helpful in deep networks because it normalizes the 
inputs of each layer, which can speed up training, reduce 
sensitivity to weight initialization, and help with vanishing or 
exploding gradients. It’s commonly placed between the linear 
transformation and the activation function. Regularization 
techniques, such as L1 and L2 regularization, apply penalties 
to large weight values, discouraging the model from becoming 
too complex and thus improving generalization. These 
methods are often used together and are most effective when 
you notice signs of overfitting or unstable training behavior. 
 
Data and Evaluation 
 
Is my data normalized/scaled correctly?: To determine if your 
data is normalized or scaled correctly, you should examine the 
range and distribution of your input features. Properly scaled 
data ensures that all features contribute equally during training, 
especially in algorithms sensitive to input magnitude like 
neural networks or gradient-based optimizers. If you’ve used 

standardization, your features should have a mean near zero 
and a standard deviation close to one, while normalization 
should transform the values to a range such as 0 to 1. You can 
verify this by reviewing summary statistics (like mean, min, 
and max) or plotting the feature distributions. It’s also 
important to apply the same scaling transformation to both 
training and testing datasets to maintain consistency. Ensuring 
correct scaling can significantly improve model convergence 
and performance. 
 
Do I have a balanced dataset? If not, how can I handle class 
imbalance?: To determine if you have a balanced dataset, you 
need to check the distribution of classes in your target variable. 
A balanced dataset has roughly the same number of examples 
for each class, while an imbalanced dataset shows a significant 
difference in the number of samples across classes. Class 
imbalance can lead to biased models that perform well on the 
majority class but poorly on the minority one.  
 
If your dataset is imbalanced, you can handle it using several 
techniques: resampling methods like oversampling the 
minority class (e.g., with SMOTE) or undersampling the 
majority class; class weighting, which adjusts the loss function 
to penalize misclassifications of minority classes more heavily; 
or using specialized algorithms that are designed to be robust 
to imbalance. Evaluating model performance with metrics like 
precision, recall, F1-score, or AUC-ROC instead of just 
accuracy is also crucial in these cases. 
 
What evaluation metrics should I use (accuracy, precision, 
recall, F1, etc.)?: The evaluation metrics you should use 
depend on the nature of your problem and the balance of your 
dataset. Accuracy is a common metric that measures the 
overall percentage of correct predictions, but it can be 
misleading when dealing with imbalanced datasets. In such 
cases, precision (the proportion of true positive predictions out 
of all positive predictions) and recall (the proportion of true 
positives out of all actual positives) provide more insight into 
how well your model is identifying specific classes.  
 
F1-score, which is the harmonic mean of precision and recall, 
is especially useful when you need to balance both false 
positives and false negatives. For binary and multi-class 
classification problems, AUC-ROC can also be helpful to 
evaluate how well the model distinguishes between classes. 
Choosing the right metric depends on your goals—for 
example, in medical diagnostics, high recall may be more 
important to minimize missed positive cases, while in spam 
detection, high precision may be key to avoid false alarms. 
 
How do training, validation, and test sets differ and why are 
they important?: Training, validation, and test sets serve 
distinct purposes in the machine learning process and are 
essential for building reliable models. The training set is used 
to teach the model by allowing it to learn patterns and adjust its 
parameters. The validation set is used during training to fine-
tune hyperparameters and monitor the model's performance on 
unseen data, helping to prevent overfitting.  
 
It acts as a checkpoint to ensure that improvements on the 
training data translate to better generalization. Finally, the test 
set is used only after training and validation are complete, 
providing an unbiased evaluation of the model’s real-world 
performance. Keeping these sets separate ensures that the 
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model doesn't "cheat" by memorizing the data and gives a clear 
picture of how well it will perform on truly new data. 
 

Experimentation and Iteration  
 

What assumptions am I making about my data/model?: 
When building a machine learning model, you often make 
several assumptions about your data and model, sometimes 
without realizing it. One common assumption is that the data is 
representative of the real-world scenario you’re trying to 
model, meaning the training, validation, and test sets all come 
from the same distribution.  
 
You also assume that the features used are relevant and 
informative, and that there’s enough data to capture the 
underlying patterns. Depending on the algorithm, you may 
assume linearity, independence, or normality in the data. For 
example, linear regression assumes a linear relationship 
between features and the target, while some models assume 
independent and identically distributed (i.i.d.) data points. 
Additionally, you assume that your model architecture and 
hyperparameters are capable of learning the patterns without 
overfitting or underfitting. Recognizing these assumptions is 
crucial, as violating them can lead to poor performance and 
misleading results. 
 
What are the key hyperparameters I can tune?: Key 
hyperparameters you can tune in a machine learning model 
include those that control the learning process, model 
complexity, and regularization. One of the most important is 
the learning rate, which determines how quickly the model 
updates its weights during training—a value too high can lead 
to instability, while too low can slow convergence. Batch size 
affects how many samples are used per gradient update and 
can influence training speed and generalization. In neural 
networks, you can also tune the number of layers and neurons 
per layer, which influence the model’s capacity to learn 
complex patterns. Other critical hyperparameters include the 
activation function, dropout rate (to prevent overfitting), and 
regularization terms like L1 or L2 penalties. Additionally, 
choosing the right optimizer (such as SGD, Adam, or 
RMSprop) and adjusting its settings can have a major impact 
on performance. Hyperparameter tuning is essential for finding 
a good balance between underfitting and overfitting and 
achieving optimal model performance. 
 
How can I systematically test different configurations?: To 
systematically test different configurations of your model, you 
can use hyperparameter tuning techniques such as grid search, 
random search, or more advanced methods like Bayesian 
optimization. Grid search involves specifying a set of possible 
values for each hyperparameter and training the model with 
every possible combination, which can be exhaustive but time-
consuming. Random search, on the other hand, samples 
random combinations from the hyperparameter space and is 
often more efficient, especially when only a few parameters 
significantly impact performance. For even smarter tuning, 
Bayesian optimization builds a model of performance over the 
hyperparameter space and chooses new configurations based 
on previous results to find the best settings faster. These 
searches are usually done using a validation set or with cross-
validation to ensure the results generalize well. Tools like 
scikit-learn, Optuna, or Ray Tune can automate this process, 
making it easier to find the optimal configuration for your 
model.  

What insights am I getting from loss curves and metrics over 
epochs?: Loss curves and performance metrics plotted over 
epochs provide valuable insights into how well your model is 
learning and generalizing. By observing the training and 
validation loss curves, you can detect signs of underfitting, 
where both losses remain high, or overfitting, where the 
training loss decreases while the validation loss starts to rise. 
Ideally, both losses should decrease and then plateau, with the 
validation loss staying close to the training loss. Similarly, 
tracking metrics like accuracy, precision, recall, or F1-score 
over time can help you understand whether the model is 
improving in the areas that matter most for your task. Sudden 
spikes or drops may indicate issues such as noisy data, learning 
rate problems, or unstable training. These plots can guide 
decisions on when to stop training (using early stopping), 
adjust hyperparameters, or modify the model architecture. In 
essence, loss and metric trends act as real-time feedback, 
helping you steer model development in the right direction. 

Advanced topics and Extensions 

When should I use CNNs, RNNs, or Transformers instead of 
a standard MLP?: You should consider using CNNs, RNNs, 
or Transformers instead of a standard MLP when your data has 
specific structures or patterns that these specialized 
architectures are designed to capture. Convolutional Neural 
Networks (CNNs) are ideal for image and spatial data because 
they excel at detecting local features and maintaining spatial 
relationships through convolutional filters. Recurrent Neural 
Networks (RNNs) are better suited for sequential or time-series 
data, such as text or speech, as they process inputs in order and 
maintain a form of memory across time steps. However, RNNs 
can struggle with long sequences, which is where 
Transformers come in—they use attention mechanisms to 
capture relationships between elements regardless of their 
position in the sequence, making them highly effective for 
natural language processing, translation, and even some vision 
tasks. In contrast, MLPs (Multilayer Perceptrons) treat all input 
features as independent and are more appropriate for simpler 
tabular datasets without spatial or sequential structure. 
Choosing the right architecture depends on the nature of your 
input data and the patterns you want the model to learn. 
 
How do transfer learning and fine-tuning work?: Transfer 
learning and fine-tuning are techniques that allow you to 
leverage a pre-trained model—usually trained on a large 
dataset like ImageNet or a massive corpus of text—to solve a 
different but related task with less data and computation. In 
transfer learning, you start by using the pre-trained model’s 
learned features, typically by freezing its early layers (which 
capture general patterns like edges or grammar), and only 
training the final layers that are specific to your new task. This 
is especially useful when your dataset is small or similar in 
nature to the one the model was originally trained on. Fine-
tuning takes this a step further: instead of just training the final 
layers, you unfreeze some or all of the pre-trained layers and 
continue training the entire model on your new data, but 
usually with a lower learning rate. This allows the model to 
adapt more precisely to the new task while still benefiting from 
the generalized knowledge it already possesses. Both 
techniques are widely used in computer vision and natural 
language processing, dramatically improving performance and 
reducing training time on new tasks. 
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What are some recent advancements in neural network 
training?: Recent advancements in neural network training 
have introduced innovative techniques aimed at improving 
efficiency, scalability, and performance. One notable 
development is the emergence of Relational Deep Learning, 
which utilizes Graph Neural Networks (GNNs) to extract 
meaningful patterns directly from relational databases without 
the need for extensive feature engineering. This approach has 
the potential to unlock new AI applications across various 
industries.  In the realm of hardware optimization, researchers 
have proposed a novel training technique that significantly 
reduces the energy consumption of neural networks. This 
method opens the door to more sustainable AI applications by 
addressing the substantial energy demands typically associated 
with training large models. Additionally, the concept of 
Adaptive Class Emergence Training has been introduced to 
enhance neural network stability and generalization. This 
methodology involves progressively evolving target outputs 
during training, allowing networks to adapt more smoothly to 
complex classification tasks and reducing the risk of 
overfitting. Furthermore, the integration of Mixture of Experts 
(MoE) models has gained traction, particularly in large-scale 
transformer architectures. MoE models dynamically allocate 
computational resources to specialized subnetworks (experts), 
enabling efficient scaling and improved performance on 
diverse tasks. These advancements reflect a concerted effort to 
address the challenges of training neural networks, focusing on 
enhancing computational efficiency, scalability, and resource 
optimization. Ongoing research and workshops, such as the 
Workshop on Advancing Neural Network Training (WANT), 
continue to provide platforms for exploring these innovations. 
 
What are the ethical and societal implications of deploying 
neural network models?: The deployment of neural network 
models carries significant ethical and societal implications that 
must be carefully considered. One major concern is bias and 
fairness—if the training data reflects societal biases, the model 
can unintentionally perpetuate discrimination in areas like 
hiring, lending, law enforcement, and healthcare. This can lead 
to unjust outcomes, particularly for marginalized groups. 
Another critical issue is privacy, especially when models are 
trained on sensitive or personal data; without proper 
safeguards, neural networks can memorize and potentially leak 
private information. Transparency and explainability also pose 
challenges. Neural networks, especially deep ones, often 
operate as "black boxes," making it difficult to understand how 
they reach decisions. This lack of interpretability can erode 
trust and make it hard to identify or correct harmful behavior. 
Moreover, automation and job displacement are societal 
concerns, as AI systems may replace human workers in certain 
industries, leading to economic disruptions. There's also the 
risk of misuse—neural networks can be we aponized for deep 
fakes, misinformation campaigns, surveillance, or other 
harmful applications. Therefore, it’s crucial to approach the 
development and deployment of these models with strong 
ethical frameworks, transparent governance, and inclusive 
policies that prioritize fairness, accountability, and human 
oversight. 
 

CONCLUSION 
 

As artificial neural networks (ANNs) continue to drive 
advancements in machine learning and artificial intelligence, it 
becomes increasingly important for learners to engage 
critically and thoughtfully with the concepts, tools, and 

challenges involved. This review has outlined a range of key 
questions that aspiring ANN practitioners should ask 
themselves throughout their learning journey—from 
foundational understanding and architectural choices to 
training strategies, evaluation metrics, and ethical implications. 
By consistently reflecting on these questions, learners can 
deepen their comprehension, avoid common pitfalls, and 
develop more robust, responsible, and effective models. 
Importantly, such a reflective approach fosters not only 
technical competence but also an awareness of the broader 
impact of neural network applications in real-world contexts. 
Ultimately, asking the right questions is not just a learning 
strategy—it is a mindset that distinguishes skilled, thoughtful 
practitioners in the evolving field of neural networks. 
 
Key Points 
 
 This paper emphasizes the importance of questioning how 

closely Artificial Neural Networks should model the 
human brain. 

 A core focus is placed on the mechanisms of forward and 
backward propagation—key processes in how ANNs learn. 

 Finally, it urges ANN developers to ask targeted questions 
about the training process, optimization strategies (e.g., 
gradient descent variants), and the impact of iteration. 
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