

KEY QUESTIONS FOR THE ARTIFICIAL NEURAL NETWORK LEARNER TO ASK THEMSELVES

Department of Physics, Murshidabad University, Berhampore, Murshidabad 742101,

ARTICLE INFO ABSTRACT

Over the recent years, Artificial Neural Networks (ANNs) have significantly matured, yet numerous
unresolved issues persist. Instead of reviewing these open questions, this perspective piece will
present my viewpoint on how to tackle problems within the field o
a set of critical questions we should consider when developing ANN algorithms for machine learning.
These questions will center on the fundamental definition of ANNs and their connection to the human
brain, the processe
iteration, the methods for minimizing the discrepancy between predicted and actual values, and the
recent advancements in model architecture and design.

Copyright©2025, Basir Ahamed Khan. This is an open
use, distribution, and reproduction in any medium, provided

INTRODUCTION

Artificial Neural Networks (ANNs) have emerged as one of
the most powerful tools in modern machine learning
(Benjamin et al. 2018; D'Amour et al. 2022; Sarkar
2023), driving advances across domains ranging from
computer vision (Loce et al. 2013; Sivaraman and Trivedi
2013; Khan et al. 2022; Chib and Singh 2024) and natural
language processing to robotics and biomedical engineering
(Broad et al. 2017; Hu et al. 2017, Prasad et al
al. 2022). As their applications continue to expand, so too does
the need for learners—whether students, researchers, or
practitioners—to develop not just technical proficiency but
also a reflective and strategic approach to learning and
applying neural network techniques. While there is no shortage
of tutorials, courses, and frameworks to help l
train neural networks, the true challenge often lies in
developing the critical thinking necessary to navigate the
complexities of real-world modelling. Understanding the
mathematical foundations, interpreting model behaviour,
diagnosing performance issues, and making informed design
choices all require more than rote learning
thoughtful inquiry process. This paper aims to support ANN
learners by proposing a structured set of key questions they
should ask themselves at various stages of their learning and
development process. These questions are designed to prompt
deeper understanding, guide problem-solving, and foster an
iterative mindset conducive to mastery. By consistently

ISSN: 0975-833X

Article History:

Received 09th March, 2025
Received in revised form
21st April, 2025
Accepted 19th May, 2025
Published online 30th June, 2025

Citation: Basir Ahamed Khan. 2025. “Key Questions for the Artificial Neural Network Learner to Ask Themselves
Research, 17, (06), 33484-33490.

Key words:

Machine Learning, Neural network,
Training, Validation loss, Overfitting.

.

*Corresponding author:
Basir Ahamed Khan

RESEARCH ARTICLE

KEY QUESTIONS FOR THE ARTIFICIAL NEURAL NETWORK LEARNER TO ASK THEMSELVES

*Basir Ahamed Khan

Department of Physics, Murshidabad University, Berhampore, Murshidabad 742101,

ABSTRACT

the recent years, Artificial Neural Networks (ANNs) have significantly matured, yet numerous
unresolved issues persist. Instead of reviewing these open questions, this perspective piece will
present my viewpoint on how to tackle problems within the field o
a set of critical questions we should consider when developing ANN algorithms for machine learning.
These questions will center on the fundamental definition of ANNs and their connection to the human
brain, the processes of forward and backward propagation, the concepts of training, optimization, and
iteration, the methods for minimizing the discrepancy between predicted and actual values, and the
recent advancements in model architecture and design.

open access article distributed under the Creative Commons Attribution
provided the original work is properly cited.

Artificial Neural Networks (ANNs) have emerged as one of
the most powerful tools in modern machine learning

. 2022; Sarkar et al.
), driving advances across domains ranging from

. 2013; Sivaraman and Trivedi
. 2022; Chib and Singh 2024) and natural

language processing to robotics and biomedical engineering
et al. 2021; Zhou et

. 2022). As their applications continue to expand, so too does
er students, researchers, or

to develop not just technical proficiency but
also a reflective and strategic approach to learning and
applying neural network techniques. While there is no shortage
of tutorials, courses, and frameworks to help learners build and
train neural networks, the true challenge often lies in
developing the critical thinking necessary to navigate the

world modelling. Understanding the
mathematical foundations, interpreting model behaviour,

performance issues, and making informed design
choices all require more than rote learning—they demand a
thoughtful inquiry process. This paper aims to support ANN
learners by proposing a structured set of key questions they

s stages of their learning and
development process. These questions are designed to prompt

solving, and foster an
iterative mindset conducive to mastery. By consistently

engaging with these questions, learners can devel
robust intuition for neural networks and improve both their
theoretical understanding and practical outcomes.

Fundamentals of Neural Network

What is an artificial neural network and how is it inspired by
the human brain?: An artificial neural n
computational model designed to mimic the way the human
brain processes information (Prieto
Bohte 2017). It consists of interconnected nodes, or "neurons,"
which are organized in layers
layer, one or more hidden layers, and an output layer. Each
connection between neurons has a weight that adjusts as
learning progresses, similar to how synaptic strengths in the
brain change with experience. The ANN processes data by
passing inputs through these layers, using mathematical
functions to simulate the firing of neurons and enabling the
system to learn patterns, make predictions, or classify data.
This structure and learning process are inspired by the
biological neural networks in the brain, w
communicate through electrical impulses to process and
transmit information.

What are the key components of a neural network (e.g.,
neurons, weights, biases, activation functions)?:
components of a neural network include neurons, weig
biases, and activation functions. Neurons, also known as

International Journal of Current Research
Vol. 17, Issue, 06, pp.33484-33490, June, 2025

DOI: https://doi.org/10.24941/ijcr.49113.06.2025

Key Questions for the Artificial Neural Network Learner to Ask Themselves

 Available online at http://www.journalcra.com
 z

KEY QUESTIONS FOR THE ARTIFICIAL NEURAL NETWORK LEARNER TO ASK THEMSELVES

Department of Physics, Murshidabad University, Berhampore, Murshidabad 742101, India

the recent years, Artificial Neural Networks (ANNs) have significantly matured, yet numerous
unresolved issues persist. Instead of reviewing these open questions, this perspective piece will
present my viewpoint on how to tackle problems within the field of ANNs. Specifically, I will outline
a set of critical questions we should consider when developing ANN algorithms for machine learning.
These questions will center on the fundamental definition of ANNs and their connection to the human

s of forward and backward propagation, the concepts of training, optimization, and
iteration, the methods for minimizing the discrepancy between predicted and actual values, and the

ribution License, which permits unrestricted

engaging with these questions, learners can develop a more
robust intuition for neural networks and improve both their
theoretical understanding and practical outcomes.

Fundamentals of Neural Network

What is an artificial neural network and how is it inspired by
An artificial neural network (ANN) is a

computational model designed to mimic the way the human
brain processes information (Prieto et al. 2016; Gerven and
Bohte 2017). It consists of interconnected nodes, or "neurons,"
which are organized in layers—typically including an input
layer, one or more hidden layers, and an output layer. Each
connection between neurons has a weight that adjusts as
learning progresses, similar to how synaptic strengths in the
brain change with experience. The ANN processes data by

h these layers, using mathematical
functions to simulate the firing of neurons and enabling the
system to learn patterns, make predictions, or classify data.
This structure and learning process are inspired by the
biological neural networks in the brain, where neurons
communicate through electrical impulses to process and

What are the key components of a neural network (e.g.,
neurons, weights, biases, activation functions)?: The key
components of a neural network include neurons, weights,
biases, and activation functions. Neurons, also known as

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Key Questions for the Artificial Neural Network Learner to Ask Themselves”. International Journal of Current

nodes, are the basic units that receive inputs, process them, and
pass the results to the next layer. Each connection between
neurons has an associated weight, which determines the
importance of the input signal—higher weights mean stronger
influence. Biases are additional parameters added to the input
of each neuron, allowing the model to shift the activation
function and improve flexibility. Activation functions
introduce non-linearity into the network, enabling it to learn
and model complex patterns; common examples include the
sigmoid, ReLU (Rectified Linear Unit), and tanh functions
(Rasamoelina et al. 2020). Together, these components work
in layers to process data, adjust based on errors during training,
and ultimately make accurate predictions or decisions. Fig. 1
shows the schematic diagram of a neural network with one
hidden layer.

Figure 1. A schematic diagram of Neural Network

with one hidden layer

What is the difference between a perceptron and a multilayer
perceptron (MLP)?: A perceptron is the simplest type of
neural network, consisting of a single layer of neurons that can
perform basic binary classification tasks. It takes multiple
inputs, applies weights and a bias, and passes the result
through an activation function to produce an output. However,
perceptrons are limited in their ability to solve complex
problems, especially those that are not linearly separable. In
contrast, a multilayer perceptron (MLP) is a more advanced
architecture that includes one or more hidden layers between
the input and output layers. These hidden layers allow the
MLP to learn and represent more complex patterns and
relationships in the data. Each layer in an MLP uses activation
functions to introduce non-linearity, enabling the network to
solve problems like image recognition, speech processing, and
more, which a single-layer perceptron cannot handle.

Why do we need non-linear activation functions?: We need
non-linear activation functions in neural networks because they
enable the model to learn and represent complex patterns and
relationships in data (Sharma et al. 2017, Varshney and Singh
2021). Without non-linearity, a neural network composed of
only linear operations—such as weighted sums—would
essentially behave like a single-layer model, regardless of how
many layers it has, and could only solve simple, linearly
separable problems. Non-linear activation functions like

ReLU, sigmoid, or tanh allow the network to stack layers in a
meaningful way, creating a deep architecture that can
approximate complex functions. This capability is essential for
tasks such as image classification, language translation, and
speech recognition, where the input-output relationships are
highly intricate and non-linear (Dubey et al. 2022).

Forward and Backpropagation

How does forward propagation work in a neural network?

Forward propagation in a neural network is the process by
which input data is passed through the network to generate an
output or prediction. It begins at the input layer, where each
input value is multiplied by its corresponding weight, and a
bias is added. The result is then passed through an activation
function to produce the neuron's output. This output becomes
the input for the next layer, and the process repeats through all
hidden layers until it reaches the output layer. At each layer,
the network transforms the data using its current set of
weights, biases, and activation functions, gradually building a
more abstract representation of the input. The final output is
used to make a prediction or classification, which is later
compared to the actual result during training to calculate the
error for learning.

What is backpropagation and how does it update weights?:
Backpropagation is a training algorithm used in neural
networks to minimize the error between the predicted output
and the actual target value by updating the network’s weights.
It works by first performing forward propagation to calculate
the output and then computing the error using a loss function.
This error is then propagated backward through the network,
layer by layer, using the chain rule of calculus to determine
how much each weight contributed to the error (Zhou 2021).
The gradients of the loss with respect to each weight are
calculated, and these gradients are used to adjust the weights in
the opposite direction of the error—typically with an
optimization algorithm like gradient descent. This process
allows the network to learn by gradually reducing the error
over many iterations, improving its accuracy in making
predicions.

What role does the loss/cost function play in training?: The
loss, or cost, function plays a critical role in training a neural
network by measuring how far the network's predicted outputs
are from the actual target values (Crone 2002; Jafarian et al.
2018). It serves as a guide for learning, providing a numerical
value that represents the model's error for a given set of
weights and biases. During training, the goal is to minimize
this loss, meaning the network is making more accurate
predictions. The loss function is used during backpropagation
to compute the gradients, which indicate the direction and
magnitude of adjustments needed for each weight in the
network. Common loss functions include mean squared error
for regression tasks and cross-entropy for classification
problems (Alkinanai et al. 2020; Matel et al. 2022). By
continuously evaluating and minimizing the loss, the neural
network gradually improves its performance on the training
data.

How do gradients flow through the network and what are
vanishing/exploding gradients?: Gradients flow through a
neural network during the back propagation process, where the
error from the output layer is propagated backward through the

33485 Basir Ahamed Khan, Key questions for the artificial neural network learner to ask themselves

network to update the weights. This involves calculating the
partial derivatives of the loss function with respect to each
weight using the chain rule, allowing the network to learn by
adjusting weights in the direction that minimizes the loss.
However, in deep networks, this process can lead to problems
like vanishing or exploding gradients. Vanishing gradients
occur when the gradients become extremely small as they
move backward through each layer, causing the earlier layers
to learn very slowly or not at all. Exploding gradients happen
when gradients grow excessively large, leading to unstable
training and drastic weight updates. Both issues can hinder the
learning process, but they can be addressed with techniques
such as using ReLU activation functions, gradient clipping,
proper weight initialization, or specialized architectures
designed to maintain stable gradient flow.

Training and Optimization

What is the purpose of using an optimizer like SGD, Adam,
or RMS prop?: The purpose of using an optimizer like SGD
(Stochastic Gradient Descent) (Gardner 1984; Amari 1993;
Anuraganand 2021), Adam (Kingma and Ba 2014), or
RMSprop (Zou et al. 2019) in training a neural network is to
efficiently update the model’s weights in order to minimize the
loss function and improve performance. These optimizers
determine how the network learns by deciding the direction
and size of each weight update based on the calculated
gradients. While SGD updates weights using the average
gradient from a batch of data, it can be slow and may struggle
with complex loss landscapes. Adam and RMSprop are more
advanced optimizers that adapt the learning rate for each
parameter, speeding up convergence and improving stability.
Adam, in particular, combines the advantages of both
RMSprop and momentum, making it one of the most widely
used optimizers in deep learning. Overall, optimizers are
essential for guiding the training process toward better
accuracy and faster convergence.

How do learning rate and batch size affect training?: The
learning rate and batch size are two crucial hyper parameters
that significantly influence the training of a neural network
(Smith et al. 2017; He et al. 2019; Granziol et al. 2022). The
learning rate determines the size of the steps the optimizer
takes when updating the model's weights. If it's too high, the
model may overshoot the optimal solution and fail to
converge; if it's too low, training can be very slow or get stuck
in local minima. The batch size refers to the number of
training examples used to calculate the gradient in a
single update. Smaller batch sizes lead to more
frequent updates and can help the model generalize
better but may introduce noise in the training
process. Larger batch sizes provide more stable and
accurate gradient estimates but require more
memory and can sometimes lead to poorer
generalization. Balancing both the learning rate and
batch size is key to achieving efficient and effective
training (Bruno et al. 2021).

What is overfitting, and how can I prevent it?: Overfitting
occurs when a neural network learns the training data too well,
capturing not only the underlying patterns but also the noise
and random fluctuations (Piotrowski and Napiorkowski 2013;
Srivastava et al. 2014; Ying 2019). As a result, the model

performs well on the training set but poorly on unseen data,
indicating poor generalization. This typically happens when
the model is too complex relative to the amount of data or
when training is too lengthy without proper regularization. To
prevent overfitting, several techniques can be used (Schaffer
1993; Defernez and Kemsley 1999; Hawkins 2004; Pothuganti
2018; Santos and Papa 2022): regularization methods like L1
or L2 penalties add constraints to the model's weights, dropout
randomly disables neurons during training to promote
robustness, and early stopping halts training when performance
on a validation set starts to degrade. Additionally, using more
training data, simplifying the model architecture, or applying
data augmentation can also help reduce overfitting and
improve the model’s ability to generalize.

How do I evaluate if my model is learning properly?: To
evaluate if your model is learning properly, you should
monitor its performance on both the training and validation
datasets throughout the training process. Key indicators
include the loss values and accuracy (or other relevant metrics)
over time. Ideally, the training loss should decrease steadily,
and the validation loss should follow a similar trend without
diverging. If both training and validation performance
improve, the model is likely learning effectively. However, if
the training loss decreases while the validation loss increases,
it may be overfitting. Additionally, plotting learning curves,
tracking metrics like precision, recall, or F1-score (especially
for imbalanced datasets), and using tools like confusion
matrices or ROC (Receiver Operating Characteristic) curves
can provide deeper insights into the model’s behavior. Regular
evaluation ensures the model is not just memorizing data but
truly learning meaningful patterns.

Model Architecture and Design
How do I decide the number of layers and neurons per
layer?: Deciding the number of layers and neurons per layer in
a neural network depends on the complexity of the problem
and the amount of available data. For simple tasks, such as
linear regression or basic classification, a small network with
one or two hidden layers and a modest number of neurons may
be sufficient. More complex problems, like image or speech
recognition, often require deeper networks with many layers to
capture intricate patterns. The number of neurons per layer
should be large enough to allow the model to learn, but not so
large that it leads to overfitting or unnecessary computation. A
common strategy is to start with a simple architecture and
gradually increase the depth or width based on performance,
using techniques like cross-validation to compare results.
Additionally, tools such as grid search, random search, or
automated architecture search can help tune these parameters.
Ultimately, experimentation and validation are key to finding
the right balance for your specific task.

What is the impact of depth vs. width in a network?: The
impact of depth versus width in a neural network relates to
how the model captures and represents patterns in the data.
Depth refers to the number of layers, and increasing it allows
the network to learn more abstract and hierarchical features,
which is especially useful in tasks like image or language
processing. Deep networks can break complex functions into
simpler ones, layer by layer. Width, on the other hand, refers to
the number of neurons in each layer. Wider networks can
model more intricate interactions within a single layer, but they
may struggle to capture hierarchical relationships without
sufficient depth. While both depth and width can increase a

33486 International Journal of Current Research, Vol. 17, Issue, 06, pp. 33484-33490, June, 2025

network’s capacity, very deep networks can suffer from
vanishing gradients or be harder to train, while overly wide
networks may overfit or become computationally expensive.
Striking the right balance between the two—often guided by
experimentation and validation—is essential for building an
effective model.

How do different activation functions (ReLU, sigmoid, tanh)
affect learning?: Different activation functions like ReLU,
sigmoid, and tanh significantly affect how a neural network
learns by shaping the output of neurons and influencing the
flow of gradients during training. ReLU (Rectified Linear
Unit) is widely used because it introduces non-linearity while
being computationally efficient and helping reduce the
vanishing gradient problem by allowing gradients to pass
through unchanged for positive inputs. However, it can lead to
"dead neurons" if too many outputs become zero. Sigmoid
maps input values to a range between 0 and 1, making it
suitable for binary classification, but it can cause vanishing
gradients for very large or small inputs due to its flat tails.
Tanh is similar to sigmoid but outputs values between -1 and
1, often leading to better convergence because it centers data
around zero (see Table 1). However, like sigmoid, it also
suffers from vanishing gradients. The choice of activation
function can impact the speed of learning, stability, and
ultimately the performance of the model, so it’s often chosen
based on the specific task and network architecture.

Table 1. Most common activation functions used in ANNs.

Function Expression Application
Linear 𝑓(𝑧) = 𝑧 Output layers
Logistic sigmoid

𝑓(𝑧) =
1

1 + 𝑒ି௭

Output and hidden
layers

Hyperbolic
tangent sigmoid 𝑓(𝑧) =

𝑒௭ − 𝑒ି௭

𝑒௭ + 𝑒ି௭

Hidden layers

ReLU 𝑓(𝑧) = max(0, 𝑧) Output layers

When should I use techniques like dropout, batch
normalization, or regularization?: Techniques like dropout,
batch normalization, and regularization are essential tools
used during neural network training to improve model
performance and prevent overfitting. You should use dropout
when your model is complex or has a tendency to memorize
the training data, as it randomly turns off a percentage of
neurons during training, encouraging the network to learn
more general and robust features. Batch normalization is
especially helpful in deep networks because it normalizes the
inputs of each layer, which can speed up training, reduce
sensitivity to weight initialization, and help with vanishing or
exploding gradients. It’s commonly placed between the linear
transformation and the activation function. Regularization
techniques, such as L1 and L2 regularization, apply penalties
to large weight values, discouraging the model from becoming
too complex and thus improving generalization. These
methods are often used together and are most effective when
you notice signs of overfitting or unstable training behavior.

Data and Evaluation

Is my data normalized/scaled correctly?: To determine if your
data is normalized or scaled correctly, you should examine the
range and distribution of your input features. Properly scaled
data ensures that all features contribute equally during training,
especially in algorithms sensitive to input magnitude like
neural networks or gradient-based optimizers. If you’ve used

standardization, your features should have a mean near zero
and a standard deviation close to one, while normalization
should transform the values to a range such as 0 to 1. You can
verify this by reviewing summary statistics (like mean, min,
and max) or plotting the feature distributions. It’s also
important to apply the same scaling transformation to both
training and testing datasets to maintain consistency. Ensuring
correct scaling can significantly improve model convergence
and performance.

Do I have a balanced dataset? If not, how can I handle class
imbalance?: To determine if you have a balanced dataset, you
need to check the distribution of classes in your target variable.
A balanced dataset has roughly the same number of examples
for each class, while an imbalanced dataset shows a significant
difference in the number of samples across classes. Class
imbalance can lead to biased models that perform well on the
majority class but poorly on the minority one.

If your dataset is imbalanced, you can handle it using several
techniques: resampling methods like oversampling the
minority class (e.g., with SMOTE) or undersampling the
majority class; class weighting, which adjusts the loss function
to penalize misclassifications of minority classes more heavily;
or using specialized algorithms that are designed to be robust
to imbalance. Evaluating model performance with metrics like
precision, recall, F1-score, or AUC-ROC instead of just
accuracy is also crucial in these cases.

What evaluation metrics should I use (accuracy, precision,
recall, F1, etc.)?: The evaluation metrics you should use
depend on the nature of your problem and the balance of your
dataset. Accuracy is a common metric that measures the
overall percentage of correct predictions, but it can be
misleading when dealing with imbalanced datasets. In such
cases, precision (the proportion of true positive predictions out
of all positive predictions) and recall (the proportion of true
positives out of all actual positives) provide more insight into
how well your model is identifying specific classes.

F1-score, which is the harmonic mean of precision and recall,
is especially useful when you need to balance both false
positives and false negatives. For binary and multi-class
classification problems, AUC-ROC can also be helpful to
evaluate how well the model distinguishes between classes.
Choosing the right metric depends on your goals—for
example, in medical diagnostics, high recall may be more
important to minimize missed positive cases, while in spam
detection, high precision may be key to avoid false alarms.

How do training, validation, and test sets differ and why are
they important?: Training, validation, and test sets serve
distinct purposes in the machine learning process and are
essential for building reliable models. The training set is used
to teach the model by allowing it to learn patterns and adjust its
parameters. The validation set is used during training to fine-
tune hyperparameters and monitor the model's performance on
unseen data, helping to prevent overfitting.

It acts as a checkpoint to ensure that improvements on the
training data translate to better generalization. Finally, the test
set is used only after training and validation are complete,
providing an unbiased evaluation of the model’s real-world
performance. Keeping these sets separate ensures that the

33487 Basir Ahamed Khan, Key questions for the artificial neural network learner to ask themselves

model doesn't "cheat" by memorizing the data and gives a clear
picture of how well it will perform on truly new data.

Experimentation and Iteration

What assumptions am I making about my data/model?:
When building a machine learning model, you often make
several assumptions about your data and model, sometimes
without realizing it. One common assumption is that the data is
representative of the real-world scenario you’re trying to
model, meaning the training, validation, and test sets all come
from the same distribution.

You also assume that the features used are relevant and
informative, and that there’s enough data to capture the
underlying patterns. Depending on the algorithm, you may
assume linearity, independence, or normality in the data. For
example, linear regression assumes a linear relationship
between features and the target, while some models assume
independent and identically distributed (i.i.d.) data points.
Additionally, you assume that your model architecture and
hyperparameters are capable of learning the patterns without
overfitting or underfitting. Recognizing these assumptions is
crucial, as violating them can lead to poor performance and
misleading results.

What are the key hyperparameters I can tune?: Key
hyperparameters you can tune in a machine learning model
include those that control the learning process, model
complexity, and regularization. One of the most important is
the learning rate, which determines how quickly the model
updates its weights during training—a value too high can lead
to instability, while too low can slow convergence. Batch size
affects how many samples are used per gradient update and
can influence training speed and generalization. In neural
networks, you can also tune the number of layers and neurons
per layer, which influence the model’s capacity to learn
complex patterns. Other critical hyperparameters include the
activation function, dropout rate (to prevent overfitting), and
regularization terms like L1 or L2 penalties. Additionally,
choosing the right optimizer (such as SGD, Adam, or
RMSprop) and adjusting its settings can have a major impact
on performance. Hyperparameter tuning is essential for finding
a good balance between underfitting and overfitting and
achieving optimal model performance.

How can I systematically test different configurations?: To
systematically test different configurations of your model, you
can use hyperparameter tuning techniques such as grid search,
random search, or more advanced methods like Bayesian
optimization. Grid search involves specifying a set of possible
values for each hyperparameter and training the model with
every possible combination, which can be exhaustive but time-
consuming. Random search, on the other hand, samples
random combinations from the hyperparameter space and is
often more efficient, especially when only a few parameters
significantly impact performance. For even smarter tuning,
Bayesian optimization builds a model of performance over the
hyperparameter space and chooses new configurations based
on previous results to find the best settings faster. These
searches are usually done using a validation set or with cross-
validation to ensure the results generalize well. Tools like
scikit-learn, Optuna, or Ray Tune can automate this process,
making it easier to find the optimal configuration for your
model.

What insights am I getting from loss curves and metrics over
epochs?: Loss curves and performance metrics plotted over
epochs provide valuable insights into how well your model is
learning and generalizing. By observing the training and
validation loss curves, you can detect signs of underfitting,
where both losses remain high, or overfitting, where the
training loss decreases while the validation loss starts to rise.
Ideally, both losses should decrease and then plateau, with the
validation loss staying close to the training loss. Similarly,
tracking metrics like accuracy, precision, recall, or F1-score
over time can help you understand whether the model is
improving in the areas that matter most for your task. Sudden
spikes or drops may indicate issues such as noisy data, learning
rate problems, or unstable training. These plots can guide
decisions on when to stop training (using early stopping),
adjust hyperparameters, or modify the model architecture. In
essence, loss and metric trends act as real-time feedback,
helping you steer model development in the right direction.

Advanced topics and Extensions

When should I use CNNs, RNNs, or Transformers instead of
a standard MLP?: You should consider using CNNs, RNNs,
or Transformers instead of a standard MLP when your data has
specific structures or patterns that these specialized
architectures are designed to capture. Convolutional Neural
Networks (CNNs) are ideal for image and spatial data because
they excel at detecting local features and maintaining spatial
relationships through convolutional filters. Recurrent Neural
Networks (RNNs) are better suited for sequential or time-series
data, such as text or speech, as they process inputs in order and
maintain a form of memory across time steps. However, RNNs
can struggle with long sequences, which is where
Transformers come in—they use attention mechanisms to
capture relationships between elements regardless of their
position in the sequence, making them highly effective for
natural language processing, translation, and even some vision
tasks. In contrast, MLPs (Multilayer Perceptrons) treat all input
features as independent and are more appropriate for simpler
tabular datasets without spatial or sequential structure.
Choosing the right architecture depends on the nature of your
input data and the patterns you want the model to learn.

How do transfer learning and fine-tuning work?: Transfer
learning and fine-tuning are techniques that allow you to
leverage a pre-trained model—usually trained on a large
dataset like ImageNet or a massive corpus of text—to solve a
different but related task with less data and computation. In
transfer learning, you start by using the pre-trained model’s
learned features, typically by freezing its early layers (which
capture general patterns like edges or grammar), and only
training the final layers that are specific to your new task. This
is especially useful when your dataset is small or similar in
nature to the one the model was originally trained on. Fine-
tuning takes this a step further: instead of just training the final
layers, you unfreeze some or all of the pre-trained layers and
continue training the entire model on your new data, but
usually with a lower learning rate. This allows the model to
adapt more precisely to the new task while still benefiting from
the generalized knowledge it already possesses. Both
techniques are widely used in computer vision and natural
language processing, dramatically improving performance and
reducing training time on new tasks.

33488 International Journal of Current Research, Vol. 17, Issue, 06, pp. 33484-33490, June, 2025

What are some recent advancements in neural network
training?: Recent advancements in neural network training
have introduced innovative techniques aimed at improving
efficiency, scalability, and performance. One notable
development is the emergence of Relational Deep Learning,
which utilizes Graph Neural Networks (GNNs) to extract
meaningful patterns directly from relational databases without
the need for extensive feature engineering. This approach has
the potential to unlock new AI applications across various
industries. In the realm of hardware optimization, researchers
have proposed a novel training technique that significantly
reduces the energy consumption of neural networks. This
method opens the door to more sustainable AI applications by
addressing the substantial energy demands typically associated
with training large models. Additionally, the concept of
Adaptive Class Emergence Training has been introduced to
enhance neural network stability and generalization. This
methodology involves progressively evolving target outputs
during training, allowing networks to adapt more smoothly to
complex classification tasks and reducing the risk of
overfitting. Furthermore, the integration of Mixture of Experts
(MoE) models has gained traction, particularly in large-scale
transformer architectures. MoE models dynamically allocate
computational resources to specialized subnetworks (experts),
enabling efficient scaling and improved performance on
diverse tasks. These advancements reflect a concerted effort to
address the challenges of training neural networks, focusing on
enhancing computational efficiency, scalability, and resource
optimization. Ongoing research and workshops, such as the
Workshop on Advancing Neural Network Training (WANT),
continue to provide platforms for exploring these innovations.

What are the ethical and societal implications of deploying
neural network models?: The deployment of neural network
models carries significant ethical and societal implications that
must be carefully considered. One major concern is bias and
fairness—if the training data reflects societal biases, the model
can unintentionally perpetuate discrimination in areas like
hiring, lending, law enforcement, and healthcare. This can lead
to unjust outcomes, particularly for marginalized groups.
Another critical issue is privacy, especially when models are
trained on sensitive or personal data; without proper
safeguards, neural networks can memorize and potentially leak
private information. Transparency and explainability also pose
challenges. Neural networks, especially deep ones, often
operate as "black boxes," making it difficult to understand how
they reach decisions. This lack of interpretability can erode
trust and make it hard to identify or correct harmful behavior.
Moreover, automation and job displacement are societal
concerns, as AI systems may replace human workers in certain
industries, leading to economic disruptions. There's also the
risk of misuse—neural networks can be we aponized for deep
fakes, misinformation campaigns, surveillance, or other
harmful applications. Therefore, it’s crucial to approach the
development and deployment of these models with strong
ethical frameworks, transparent governance, and inclusive
policies that prioritize fairness, accountability, and human
oversight.

CONCLUSION

As artificial neural networks (ANNs) continue to drive
advancements in machine learning and artificial intelligence, it
becomes increasingly important for learners to engage
critically and thoughtfully with the concepts, tools, and

challenges involved. This review has outlined a range of key
questions that aspiring ANN practitioners should ask
themselves throughout their learning journey—from
foundational understanding and architectural choices to
training strategies, evaluation metrics, and ethical implications.
By consistently reflecting on these questions, learners can
deepen their comprehension, avoid common pitfalls, and
develop more robust, responsible, and effective models.
Importantly, such a reflective approach fosters not only
technical competence but also an awareness of the broader
impact of neural network applications in real-world contexts.
Ultimately, asking the right questions is not just a learning
strategy—it is a mindset that distinguishes skilled, thoughtful
practitioners in the evolving field of neural networks.

Key Points

 This paper emphasizes the importance of questioning how

closely Artificial Neural Networks should model the
human brain.

 A core focus is placed on the mechanisms of forward and
backward propagation—key processes in how ANNs learn.

 Finally, it urges ANN developers to ask targeted questions
about the training process, optimization strategies (e.g.,
gradient descent variants), and the impact of iteration.

ACKNOWLEDGEMENT

I would like to thank Prof. Jane Alam sir for encouraging me
to write this article.

REFERENCES

Alkinani HH, Al-Hameedi ATT, Dunn-Norman S. 2020.

Artificial neural network models to predict lost circulation
in natural and induced fractures. SN Applied Sciences. 2:1-
13. https://doi.org/10.1007/s42452-020-03827-3.

Amari SI. 1993. Backpropagation and stochastic gradient
descent method. Neurocomputing, 5(4-5): 185-196.
doi.org/10.1016/0925-2312(93)90006-O.

Anuraganand S. 2021. Guided parallelized stochastic gradient
descent for delay compensation. Applied Soft Computing.
102:107084. doi.org/10.1016/j.asoc.2021.107084.

Benjamin AS, Fernandes HL, Tomlinson T, Ramkumar P,
VerSteeg C, Chowdhury RH, Miller LE, Kording KP.
2018. Modern Machine Learning as a Benchmark for
Fitting Neural Responses. Front. Comput. Neurosci. 12,
Article 56, p. 1-13. doi: 10.3389/fncom.2018.00056.

Broad A, Arkin J, Ratliff N, Howard T, Argall B. 2017. Real-
time natural language corrections for assistive robotic
manipulators. The International Journal of Robotics
Research. 36(5-7): 684-698.
doi.org/10.1177/0278364917706418.

Bruno G, Antonelli D, Stadnicka D. 2021. Evaluating the
effect of learning rate, batch size and assignment strategies
on the production performance. Journal of Industrial and
Production Engineering. 38(2): 137-147.
doi.org/10.1080/21681015.2021.1883133.

Chib P S, Singh P. 2024. Recent advancements in end-to-end
autonomous driving using deep learning: A survey. IEEE
Transactions on Intelligent Vehicles, 9(1): 103-118. doi:
10.1109/TIV.2023.3318070.

Crone SF. 2002. Training artificial neural networks for time
series prediction using asymmetric cost functions. In

33489 Basir Ahamed Khan, Key questions for the artificial neural network learner to ask themselves

Proceedings of the 9th International Conference on Neural
Information Processing. ICONIP'02. IEEE. Singapore, vol.
5. p. 2374-2380. doi: 10.1109/ICONIP.2002.1201919.

D'Amour A. et al. 2022. Underspecification Presents
Challenges for Credibility in Modern Machine Learning.
The Journal of Machine Learning Research. 23(226):1−61.

Defernez M, Kemsley EK. 1999. Avoiding overfitting in the
analysis of high-dimensional data with artificial neural
networks (ANNs). Analyst. 124(11): 1675-1681. doi:
10.1039/A905556H.

Dubey SR, Singh SK, Chaudhuri BB. 2022. Activation
functions in deep learning: A comprehensive survey and
benchmark. Neurocomputing. 503: 92-108. doi.org/10.
1016/j .neucom.2022.06.111.

Gardner WA. 1984. Learning characteristics of stochastic-
gradient-descent algorithms: A general study, analysis, and
critique. Signal processing, 6(2): 113-133.
doi.org/10.1016/0165-1684(84)90013-6.

Gerven MV, Bohte S. 2017. Artificial neural networks as
models of neural information processing. Frontiers in
Computational Neuroscience. 11: 114. doi.org/ 10.3 389/
fncom.2017.00114.

Granziol D, Zohren S, Roberts S. 2022. Learning rates as a
function of batch size: A random matrix theory approach to
neural network training. Journal of Machine Learning
Research, 23(173): 1-65.

Hawkins DM. 2004. The problem of overfitting. Journal of
chemical information and computer sciences. 44(1): 1-12.
doi: 10.1021/ci0342472.

He F, Liu T, Tao D. 2019. Control batch size and learning rate
to generalize well: Theoretical and empirical evidence.
Advances in neural information processing systems. Curran
Associates, Inc. vol. 32.

Hu C, Shi Q, Liu L, Wejinya U, Hasegawa Y, Shen Y. 2017.
Robotics in biomedical and healthcare engineering. Journal
of healthcare engineering. 2017: 1610372-1610373. doi:
10.1155/2017/1610372.

Jafarian A, Nia SM, Golmankhaneh AK, Baleanu D. 2018. On
artificial neural networks approach with new cost
functions. Applied Mathematics and Computation, 339:
546-555. doi.org/10.1016/j.amc.2018.07.053.

Khan M, Hussain T, Ullah H, Ser JD, Rezaei M, Kumar N,
Hijji M, Bellavista P, de Albuquerque VHC. 2022. Vision-
based semantic segmentation in scene understanding for
autonomous driving: Recent achievements, challenges, and
outlooks. IEEE Transactions on Intelligent Transportation
Systems. 23(12): 22694-22715. doi:
10.1109/TITS.2022.3207665.

Kingma DP, Ba J. 2014. Adam: A method for stochastic
optimization. arXiv prep. arXiv:1412.6980.
doi.org/10.48550/arXiv.1412.6980.

Loce RP, Bernal EA, Wu W, Bala R. 2013. Computer vision in
roadway transportation systems: a survey. Journal of
Electronic Imaging, 22(4): 041121-041121.
doi.org/10.1117/1.JEI.22.4.041121.

Matel E, Vahdatikhaki F, Hosseinyalamdary S, Evers T,
Voordijk H. 2022. An artificial neural network approach
for cost estimation of engineering services. International
journal of construction management. 22(7): 1274-1287.
doi.org/10.1080/15623599.2019.1692400.

Piotrowski AP, Napiorkowski JJ. 2013. A comparison of
methods to avoid overfitting in neural networks training in
the case of catchment runoff modelling. Journal of
Hydrology. 476: 97-111. doi.org/10.1016/ j.jhydrol.
2012.10.019.

Pothuganti S. 2018. Review on over-fitting and under-fitting
problems in Machine Learning and solutions. Int. J. Adv.
Res. Electr. Electron. Instrum. Eng. 7(9): 3692-3695.

Prasad PS, Gunjan VK, Pathak R, Mukherjee S. 2021.
Applications of artificial intelligence in biomedical
engineering. In Handbook of Artificial Intelligence in
Biomedical Engineering. 1st Edition. Apple Academic
Press. p. 125-145. doi.org/10.1201/9781003045564.

Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J,
Rojas I. 2016. Neural networks: An overview of early
research, current frameworks and new challenges.
Neurocomputing. 214: 242-268. doi.org/10.1016/j.
neucom.2016.06.014.

Rasamoelina AD, Adjailia F, Sinčák P. 2020. A review of
activation function for artificial neural network. In 2020
IEEE 18th world symposium on applied machine
intelligence and informatics (SAMI). IEEE. Herlany,
Slovakia. p.281-286. doi: 10.1109/SAMI 48414.20
20.9108717.

Santos CFGD, Papa JP. 2022. Avoiding overfitting: A survey
on regularization methods for convolutional neural
networks. ACM Computing Surveys (CSUR). 54(10s):1-
25. doi.org/10.1145/351041.

Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A,
Tiewsoh I, Lyngdoh NM, Das D, Bidarolli M, Sony HT.
2023. Artificial Intelligence and Machine Learning
Technology Driven Modern Drug Discovery and
Development. Int. J. Mol. Sci. 24: 2026.
https://doi.org/10.3390/ijms24032026.

Schaffer C. 1993. Overfitting avoidance as bias. Machine
learning. 10: 153-178. doi.org/10.1007/BF00993504.

Sharma S, Sharma S, Athaiya A. 2017. Activation functions in
neural networks. Towards Data Sci. 6(12): 310-316.

Sivaraman S, Trivedi MM. 2013. Looking at vehicles on the
road: A survey of vision-based vehicle detection, tracking,
and behavior analysis. IEEE transactions on intelligent
transportation systems. 14(4): 1773-1795. doi:
10.1109/TITS.2013.2266661.

Smith SL, Kindermans PJ, Ying C, Le QV. 2017. Don't decay
the learning rate, increase the batch size. arXiv prep.
arXiv:1711.00489. doi.org/10.48550/arXiv.1711.00489.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I,
Salakhutdinov R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research. 15(1): 1929-1958.

Varshney M, Singh P. 2021. Optimizing nonlinear activation
function for convolutional neural networks. Signal, Image
and Video Processing. 15(6): 1323-1330.
https://doi.org/10.1007/s11760-021-01863-z.

Ying X. 2019. An overview of overfitting and its solutions. J.
Phys.: Conf. Ser. IOP Publishing. 1168: 022022. doi
10.1088/1742-6596/1168/2/022022.

Zhou B, Yang G, Shi Z, Ma S. 2022. Natural language
processing for smart healthcare. IEEE Reviews in
Biomedical Engineering. 17: 4-18. doi:
10.1109/RBME.2022.3210270.

Zhou X, Zhang W, Chen Z, Diao S, Zhang T. 2021. Efficient
neural network training via forward and backward
propagation sparsification. Advances in neural information
processing systems, 34: 15216-15229.

Zou F, Shen L, Jie Z, Zhang W, Liu W. 2019. A sufficient
condition for convergences of adam and rmsprop. In
Proceedings of the IEEE/CVF Conference on computer
vision and pattern recognition. California. p. 11127-11135.

33490 International Journal of Current Research, Vol. 17, Issue, 06, pp. 33484-33490, June, 2025
