

PRAGMATIC SURVEY AND COMPARATIVE ANALYSIS OF SOFTWARE
ARCHITECTURE UNIFIED MODELING LANGUAGE AND COMPONENT

SYSTEM DEVELOPMENT LIFE CYCLE

* Rev. Engr. Dr. Okafor, Friday Onyema

Department of Mathematics/Statistics/Computer Science, Michael Okpara University of Agriculture, Umudike

ARTICLE INFO ABSTRACT

Software provides a means for productive activities of man and industries. Indeed the strength,
intelligence and vastness of the use of computer lie on the software. Sequel to the above, this paper
discusses the component
acquisition and elicitation of requirements in combination with COTS selection as a multi
decisions process which possess great problem
solution to this great problem. The paper compares Component
Cyclic Life Cycle model, and software architecture with component
concludes that the component
configuration management. Finally, it compares Unified Modeling Language (UML) and
Component
modeling while the Compo
collaboration between the components through the interfaces. Finally using an appropriate diagram,
the paper presents the various aspects of Component
architecture, implementation architecture and deployment architecture.

INTRODUCTION

The erratic and ever- growing requirements of users for
advanced functionalities as well as the proliferation of
software application in all fields of life, have created high
demand for software and have made software development
process more complex. Today, software is used in games, fund
transfer, weather prediction, space craft guide, data mining,
internet operations, vast information storage, music, industries,
military, homes, just to mention but a few. The intelligence
and vastness of the computer application is dependent on the
ability of the computer software to interact with the computer
hardware. Thus, the need for critical survey, comparative
analysis of the software architecture, Unified Modeling
Language and Component Based Development models
becomes inevitable. Component based software development
(CBD) is being described as the conceptualization of software
systems as a composition of individual reusable components
that come together to achieve the objective of a system.
According to Crnkovic (2001:127-133),
development involves mainly reusability and can be deployed
independently and may include a third party software such as
commercial off the shelf (COTS) tools. CBD is a high level
abstraction of software system development that tolls an
approach that is very similar to industrial component
assembly line procedure.

*Corresponding author: revmachi_4@yahoo.co.uk

ISSN: 0975–833X

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol.

Article History:

Received 11th January, 2011
Received in revised form
18th February, 2011
Accepted 15th March, 2011
Published online 14th May 2011

Key Words:

UML,
COTS,
Component-Based Development,
Reusability
Cyclic life cycle model.

REVIEW ARTICLE

PRAGMATIC SURVEY AND COMPARATIVE ANALYSIS OF SOFTWARE
ARCHITECTURE UNIFIED MODELING LANGUAGE AND COMPONENT

SYSTEM DEVELOPMENT LIFE CYCLE MODELS

Rev. Engr. Dr. Okafor, Friday Onyema

Department of Mathematics/Statistics/Computer Science, Michael Okpara University of Agriculture, Umudike

ABSTRACT

Software provides a means for productive activities of man and industries. Indeed the strength,
intelligence and vastness of the use of computer lie on the software. Sequel to the above, this paper
discusses the component- based system development life cycle, reusability and identifies the
acquisition and elicitation of requirements in combination with COTS selection as a multi
decisions process which possess great problem. It suggests the use of cyclic life cycle paradigm as a
solution to this great problem. The paper compares Component- Based Development cycle with the
Cyclic Life Cycle model, and software architecture with component
concludes that the component- Based approach and architectural design play vital role in product
configuration management. Finally, it compares Unified Modeling Language (UML) and
Component- Based systems modeling. The UML can be used for both component and system
modeling while the Component- Based design should best concentrate on interface definitions and
collaboration between the components through the interfaces. Finally using an appropriate diagram,
the paper presents the various aspects of Component- Based Architecture which include
architecture, implementation architecture and deployment architecture.

growing requirements of users for
proliferation of

software application in all fields of life, have created high
demand for software and have made software development
process more complex. Today, software is used in games, fund
transfer, weather prediction, space craft guide, data mining,
internet operations, vast information storage, music, industries,
military, homes, just to mention but a few. The intelligence
and vastness of the computer application is dependent on the
ability of the computer software to interact with the computer

ware. Thus, the need for critical survey, comparative
analysis of the software architecture, Unified Modeling
Language and Component Based Development models

Component based software development
lization of software

systems as a composition of individual reusable components
that come together to achieve the objective of a system.

133), component
development involves mainly reusability and can be deployed

ly and may include a third party software such as
commercial off the shelf (COTS) tools. CBD is a high level
abstraction of software system development that tolls an
approach that is very similar to industrial component-based

This approach makes CBD very attractive and helps to reduce
software development time and cost drastically. This paper
compares CBD with the cyclic life cycle (CLC) paradigm and
observes that finding and selecting of components in CLC is
replaced with requirements identification and design in CBD,
hence component based development requires a detailed
analysis and thus, meeting up the requirements becomes very
difficult and impossible. This is one of the major challenges
that face CBD. It is also important t
software architecture and components are closely related to
each other. This relationship could be seen in the fact that
functionality-based architecture design is the first phase of the
structuring and then software architecture a
Osuagwu (2005). More so, once the software architecture is
defined, components selection/development will result.
which is a graphical language for specifying a process is a
standard way for writing system blue prints. It is used for both
component and system modeling

Component-based system development life cycle

The main emphasis when developing components is
reusability, though other components could be incorporated. A
component must be well specified, easy to understand,
sufficiently general, easy to adapt, deliver, deploy and replace.
The component interface must be simple and strictly separated
(both physically and logically) from its implementation. In
component development, acquisition and elicitation of

Available online at http://www.journalcra.com

ternational Journal of Current Research
Vol. 33, Issue, 5, pp.075-077, May, 2011

 INTERNATIONAL
 OF CURRENT RESEARCH

 © Copy Right, IJCR, 2011

PRAGMATIC SURVEY AND COMPARATIVE ANALYSIS OF SOFTWARE
ARCHITECTURE UNIFIED MODELING LANGUAGE AND COMPONENT-BASED

Department of Mathematics/Statistics/Computer Science, Michael Okpara University of Agriculture, Umudike

Software provides a means for productive activities of man and industries. Indeed the strength,
intelligence and vastness of the use of computer lie on the software. Sequel to the above, this paper

based system development life cycle, reusability and identifies the
acquisition and elicitation of requirements in combination with COTS selection as a multi- criteria

use of cyclic life cycle paradigm as a
Based Development cycle with the

Cyclic Life Cycle model, and software architecture with component- Based Development and
ed approach and architectural design play vital role in product

configuration management. Finally, it compares Unified Modeling Language (UML) and
Based systems modeling. The UML can be used for both component and system

Based design should best concentrate on interface definitions and
collaboration between the components through the interfaces. Finally using an appropriate diagram,

Based Architecture which include conceptual
architecture, implementation architecture and deployment architecture.

This approach makes CBD very attractive and helps to reduce
software development time and cost drastically. This paper
compares CBD with the cyclic life cycle (CLC) paradigm and
observes that finding and selecting of components in CLC is

irements identification and design in CBD,
hence component based development requires a detailed
analysis and thus, meeting up the requirements becomes very
difficult and impossible. This is one of the major challenges
that face CBD. It is also important to observe and state that
software architecture and components are closely related to
each other. This relationship could be seen in the fact that

based architecture design is the first phase of the
structuring and then software architecture assessment

More so, once the software architecture is
defined, components selection/development will result. UML
which is a graphical language for specifying a process is a
standard way for writing system blue prints. It is used for both

based system development life cycle

The main emphasis when developing components is
reusability, though other components could be incorporated. A
component must be well specified, easy to understand,

general, easy to adapt, deliver, deploy and replace.
The component interface must be simple and strictly separated
(both physically and logically) from its implementation. In
component development, acquisition and elicitation of

INTERNATIONAL JOURNAL
OF CURRENT RESEARCH

© Copy Right, IJCR, 2011 Academic Journals. All rights

requirements in combination with COTS selection is a multi-
criteria decisions process and posses great problem. It is
indeed highly probable that COTS, meeting all the
requirements will not be found. Early selection of components
in the development process may not even meet all the
requirements. In practice, development with components is
focused on reusable entities and relations between them,
starting from the system requirements. There are two essential
steps involved in the early design process:

1. Specification of a system architecture in terms of
functional components and their interaction-this gives the
logical view of the systems and

2. Specification of a system architecture consisting of
physical components.

Using the cyclic lifecycle (CLC) Paradigm of the software
lifecycle, we can modify it to implement an extreme
component-base system. Fig.1 below shows CBD cycle
compared with the cyclic life cycle model. It is important to
observe that requirements identification and a design in CLC
process is combined with finding and selecting components in
component approach. Wolak (2001), pointed out that every
software must undergo routine life cycle phases which may
include requirements, design, installation, and commission,
depending on the type of model under consideration.
However, the component-based systems development process
steps include:

1. Find components which may be used in the system: This

phase (step) is an issue of both technology and business
and hence requires that a vast number of candidates
(people) and tools must be on ground for this task. The
possible components are found and listed here for further
investigation.

2. Select the components which meet the requirements of
the system: fulfilling completely component
requirements is impossible and hence a trade-off analysis
is carried out here. Most times, the system architecture is
adjusted and the requirements are reformulated to
accommodate the existing components.

3. Alternatively, create a proprietary component to be used

in the system: This requires more human efforts and
lead-time and hence less attractive. Core-functionality
components, however, are developed internally in order
to provide the competitive advantage of the product.

4. Adapt the selected components so that they suit the
existing component model or requirement specification:
it is important to notice here that some components can

be directly integrated into the system, while others may
need modification through parameterization process or
code wrapping for adaptation etc.

5. Compose and deploy the components using a framework
for components: usually functionality is provided by
component models.

6. Replace earlier with later versions of components: This
step corresponds with system maintenance. Bugs may
have been eliminated or new functionality added.

Software architecture and component-based development

Software architecture and components are closely related.
Bass, Clement and Kazman (1998), defined computer software
architecture as the structure or structure of the system, which
comprise software components, the externally visible
properties of those components and the relationships among
them. Component technologies focus on composition and
deployment at execution time or near execution time. Thus,
the architecture remains recognizable during the application or
system execution in a component system. Component-based
software engineering therefore, embraces the total lifecycles of
components and component-based systems and all the
procedures involved in such lifecycles.

 Using top-down design approach, software design begins
with determining its architecture and structuring the system in
smaller parts, as independent as possible. The functionality-
based architecture design is the first phase of the structuring,
and then followed by the software architecture assessment.
Defining the software architecture gives birth to the
components selection or development. Different categories of
components can then be distinguished in relation to the
requirements of the system; viz: special purpose components
(developed specifically for the system), reused components,
(internally developed for multiple usage), and final
commercial components (COTS). Finally, pre-existing
components typically need to be integrated into the system
using glue code or a modification of the components
themselves.

However, the top-down approach does not encourage the reuse
of pre-existing components, since the pre-existing do not
exactly fit into the system. However, the solution to this
challenge is to use a mix of top-down and bottom up
approaches. This will allow for the merging of common
techniques, methods and tools. Architectural definition
language (ADLS) such as ACME can be used for designing
component-based systems and implemented for the existing

Fig. 1 The Component-Based Development Cycle Compared with The Cyclic Life Cycle Model

076 Rev. Engr. Dr. Okafor, Friday Onyema, Pragmatic survey and comparative analysis of software

component models. The architectural analysis helps in making
decision in component selection. In summary software
architecture and component-based development are
successfully used in the development of software product lines
from which many variants of a product are delivered (ACME,
2001). The component-based approach and architectural
design play important role in product configuration
management (Larsson and Crnkovic, 1999).

Unified modeling language (UML) and component-based
systems modeling: Arlow and Neustadt (2002) defined the
unified modeling language (UML) as a graphical language for
visualizing, specifying, constructing and documenting the
artifacts of a software-intensive system.

Fig. 2. UML Component

Fig.3, shows the three aspects of system architecture. The conceptual
architecture is a result of a top-down system analysis and design. In at
least the first step, the conceptual architecture is not different from a
non-component-based design. In the conceptual part the components
are expressed by UML packages with the <<subsystem>> stereotype.
In the implementation architecture part, the physical components are
represented by UML components and the <<imp>> stereotype. UML
is not specialized for CBD and hence certain extensions to standard

UML (e.g. naming convention or stereotypes) are required.
It is a language for specifying but not a method or procedure
and offers a standard way to write systems blue prints,
including conceptual things such as business processes and
system functions as well as concrete things such as
programming language statements, data schemes, and reusable
software components. UML can be used for both component
and system modeling. Component-based design, concentrates
on interface definitions and collaboration between the

components through the interfaces. The design process
continues with the modeling of the system with physical
components, which do not necessarily match the logical
structure. These may be pre-existing components, with
interface already specified and possibly in need of wrappers.
One logical component, identified in the first phase of design,
may consist of several physical components. Finally, there is a
deployment aspect, the components being executed on
different computers in a distributed application. However, for
non-component-based approach, first the design is important
while direct mapping takes place, between the conceptual and
implementation level and the deployment phase is the same for
the whole application. In principle, UML can be utilized to
provide support for designing component-based systems
covering all these aspects. Interfaces are presented as multiple
subsystems, which indicate the possibility of changing the
implementation without replacing the interface. An interface
can be presented in two ways: canonical form or edited form
see Fig. 2 above.

Conclusion; The major problem encountered in component-
Based system development is acquisition and elicitation of
requirements in combination with COTS selection as this is a
multi- criteria decision process. The solution to this great
problem is the use of CLC paradigm which modifies this to
implement an extreme component- Based system. The paper
was able to critically compare the six steps involved in CLC
and CBD cycle. The pre-existing components needs to be
integrated into the system using glue code or modification of
components themselves, but the top-down approach does not
encourage the reuse of pre-existing components. The paper
suggests a mixture of top-down and bottom-up approach as a
solution to this problem. Software architecture and CBD are
used in the development of a successful software product lines
and especially in product configuration management. The
author in this paper successfully presented UML as a standard
way of writing systems blue prints such as business processes,
system functions, programming language statements, data
schemes, and reusable software components. The author
presented UML as the best language for both component and
system modeling and component-Based development for
interface definition and collaboration between the components
via the interfaces

REFERENCES

ACME, 2001. ACMC Architecture Definition Language, sourced:

http://www.cs.cmu.edu/~qeme/
Arlow, J and Neustadt, 2002. UML And The Unified Process:

Practical Object-Oriented Analysis And Design, Pearson
Education Ltd, London.

Bass, L., Clements, P and Kazman, R. 1998. Software Architecture In
Practice, Addison Wesley, London.

Crnkovic, I. 2001. Component-Based Software Engineering – New
Challenges In Software Development; Software Focus, 2(14),
Lund.

Larsson, M and Crnkovic, I. 1999. New Challenges For
Configuration Management, Proceedings Of 9th Symposium On
System Configuration Management, Lund University, Lund.

Osuagwu, Oliver E. 2005. Software Engineering: A Pragmatic And
Technical Perspective, Oliverson Industrial Publishing House
Owweri Nigeria.

Wolak, R.G. 2001. DISS 725 – System Development Research Paper
2, Software Requirements Engineering Best Practices, School Of
Computer And Information Science, Southeastern University,
Nova.

077 International Journal of Current Research, Vol. 3, Issue, 5, pp.075-077, May, 2011

