

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 6, Issue, 10, pp.9079--9080, October, 2014 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

QUANTITATIVE ESTIMATION OF DISSOLVED OXYGEN IN WATER: A NEW APPROACH TO THE CALCULATION METHODOLOGY OF WINKLAR'S METHOD

*Dr. Angsuman Chanda

Department of Zoology (UG & PG), Raja N. L. Khan Women's College, Midnapur, Paschim Medinipur, WB, India

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 07 th July, 2014 Received in revised form	Till date most acceptable method of estimation of dissolved oxygen in water sample is Winklar's method (APHA-2005). The method of calculation of data is followed by the formula $V_1x N x E x 1000/V_4 (V_2 V_3/V_2)$.
10 th August, 2014	Where, V_1 = Quantity of the sample water.
Accepted 26 th September, 2014	V_1 = Quantity of sodium thiosulphate used in titration.
Published online 25 th October, 2014	N = Normality of sodium thiosulphate (N/80).
	- V ₄ = Quantity of sample taken for titration.
Key words:	$V_3 = Q_{13}$ Quantity of alkaline iodite and manganese sulphate.
Method, Estimation,	$E = Equivalent weight of O_2.$
Dissolved, Oxygen,	This formula can not explain a clear picture related to the chemical reaction takes place within the
Winklar's Method.	reagents used in this methodology. Therefore, an attempt has been made towards chemical deduction of data, available during estimation.

Copyright © 2014 Dr. Angsuman Chanda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Principles

Oxygen dissolved in water oxidises Manganus sulphate $(MnSo_2)$ to Manganic hydroxide $[Mn(OH)_3]$. $Mn(OH)_3$ liberates Iodine (I₂) from Potassium iodide (KI), alkalined with Potassium hydroxide (KOH), in presence of concentrated sulphuric acid (H₂So₄). The liberated iodine is quantitavely estimated by titration against N/80 sodium thiosulphate (Na₂S₂O₃) solution from which amount of oxygen is determined by the following equations:-

1 mole of $O_2 \equiv 2$ moles of $I_2 \equiv 4$ moles of $Na_2S_2O_3$

Reactions

 $\begin{array}{l} 2H_2O + O_2 + 4MnSo_4 + 8KOH = 4Mn(OH)_3 + 4K_2So_4.\\ 2\ Mn(OH)_3 + 2KI + 3\ H\ _2So\ _4 = 2\ MnSo_4 + K_2So_4 + I_2 + 6H_2O.\\ 2\ Na\ _2S\ _2O_3 + I_2 = Na_2S_4O_6 + 2NaI. \end{array}$

Apparatus

- 250 ml conical flask containing 250ml of sample water.
- Beaker.
- Burette.
- Stand.

*Corresponding author: Dr. Angsuman Chanda

Department of Zoology (UG & PG), Raja N. L. Khan Women's College, Midnapur, Paschim Medinipur, WB, India.

Reagents

- 48% Manganous sulphate.
- Alkaline Potassium Iodide.
- Concentrated Sulphuric Acid.
- N/80 Sodium theosulphate solution.
- Freshly prepared starch solution.

Procedure (Winkler's Method, 1888)

- Water sample was collected (250 ml) with great care so that the air bubbles did not enter into the flask.
- 4 ml of MnSo₄ and 4 ml of alkaline potassium iodide were added by using separate pipette for each reagent.
- The bottle was stopped & then the flask was shaken for several times and also allowed to precipitate.
- After 15 minutes the flask was gently shaken and then 4 ml of con. H₂So₄ was added to it.
- Then 50 ml of sample water is taken in a titration flask & placed against white back ground.
- It was then titrated by N/80 $Na_2S_2O_3$ solution till the colour turns pale yellow (straw).
- Then a few drops of freshly prepared starch solution was added to it and then the solution turns blue.
- Then it was again titrate with N/80 $Na_2S_2O_3$ till the blue colour disappeared. The end point is noted.
- This process is done for thrice for proper determination of dissolved oxygen.

RESULTS

No. of Observation	Sample	Burette reading			
	volume (ml)	Initial (ml)	Final (ml)	Difference (ml)	Mean (ml)
1.	50	8	11.5	3.5	
2.	50	11.5	15.1	3.6	3.5
3.	50	15.1	18.5	3.4	

Calculation

The amount of $Na_2S_2O_3$ used is 3.5 ml. From the reactions we may write that – 1 mol of $O_2 \equiv 2$ mol of $I2 \equiv 4$ mol of $Na_2S_2O_3$ 4 mol of $Na_2S_2O_3 \equiv 1$ mol of O_2 4X158 gm of $Na_2S_2O_3 \equiv 32$ gm of O_2

We know that,

 $\begin{array}{ll} 1000 \mbox{ ml } 1(N) \ Na_2S_2O_3 \ contains \ 158 \ gm \ of \ this \ compound. \\ 1000 \ ml \ 4 \ (N) \ Na_2S_2O_3 \ contains \ 4X158 \ gm \ of \ this \ compound. \\ So, \ 1000 \ ml \ 4 \ (N) \ Na_2S_2O_3 \ = \ 32 \ gm \ of \ O_2. \\ 1000 \ ml \ 1 \ (N) \ Na_2S_2O_3 \ \equiv \ 32/4 \ gm \ of \ O_2 \ = \ 8 \ gm \ of \ O_2. \\ 1000 \ ml \ N/80 \ Na_2S_2O_3 \ \equiv \ 8/80 \ gm \ of \ O_2. \\ 1 \ ml \ N/80 \ Na_2S_2O_3 \ \equiv \ 8/80 \ x1000 \ gm \ of \ O_2 \ = \ 1/10 \ mg \ of \ O_2 \ \equiv \ 8X1000/80X1000 \ mg \ of \ O_2 \ \equiv \ 1/10 \ mg \ of \ O_2 \ \equiv \ 0.1 \ mg \ of \ O_2. \end{array}$

So, 1 ml N/80 Na₂S₂O₃ neutralises 0.1 mg of O₂. 3.5 ml N/80 Na₂S₂O₃ neutralises = 0.1X3.5 mg of O₂ = 0.35 mg of O₂. 50 ml sample water contain 0.35 mg of O₂

1 ml sample water contain = 0.35/50 mg of O₂ 1000 ml sample water contain = 0.35X1000/50 mg of O₂ =7 mg of O₂.

So, the dissolved oxygen in pond water is 7 mg/ litre.

Acknowledgements

Author is thankful to Dr. Asim Kumar Ghosh, senior scientist, Bhaba Atomic Research Centre, Mumbai for his help in preparing the manuscript in present format. Author is also grateful to UGC for financial support by granting a Major Research Project.

REFERENCES

APHA-2005. Standard Methods for the Examination of Water and Waetewater, 21st Edition, ISBN 0-87553-047-8.

Winkler, L.W. 1888. Die Bestimmung des in Wasser gelösten Sauerstoffen. Berichte der Deutschen Chemischen Gesellschaft, 21: 2843–2855.
