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INTRODUCTION 
 
The classical method of Lyapunov for studying stability and 
asymptotic stability is based in a suitable function satisfying 
some properties (called Lyapunov Functions). This method, 
usually named Direct or Second Method, was originated in the 
fundamental memoir of the russian mathematician Alexander 
Mijailovich Lyapunov, published in russian in 1892, translated 
into french in 1907 (reprinted in the forty) and in english years 
later, see (Liapounov, 1949). Since that time 
extensively (perhaps even exhaustively) investigated. 
Statements and proofs of mathematical results underlying the 
method and numerous examples and references can be found in 
the books of Antoisewicz (1958), Barbashin 
(1959), Demidovich (1967), Hahn (1963), Yoshizawa 
and bibliography listed therein.  
 
The problem of the continuability of solutions is of paramount 
importance in the study of qualitative properties. For example, 
in Nápoles Valdés (1995) some properties of the system 
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was studied under suitable assumptions. A particular case of 
above system is the well known Lienard equation
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where f(x), g(x) are continuous functions (f, g : R 
g(0) = 0, is the subject of detailed studies of many authors due 
to many applications in various domains in science and 
tecnology, see for example (Ha
2007; Hricisákova, 1990; LaSalle
Nápoles Valdés, Juan, 1996; Nápoles Valdés, Juan, 
Peng, Lequn and Huang, Lihong, 1994
(Lienard, 1928; Van der Pol, 1922
 

Letting F(x) = 
x

0
ds)s(f  we obtain an equivalent system to 

equation (2): 
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So, is raise in natural way the study of more general system 
than (1), therefore we shall study the following system: 
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than (1), therefore we shall study the following system:  
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where E(x, y) = a(x, y) H(x, y) with H(x, y) = 

 )x(F)y()y(H   and functions involved in (4) are 

continuous real functions in their arguments.  
 
Throughout this paper we will use the following notations (F(x) 
as above): 
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Our aim in this paper is to obtain sufficient conditions under 
wich we can ensure the continuability of solutions of (4) in the 
future. Our results are not only valid for the system (4), but for 
the systems (1) and (3), and hence, for equation (2).  

 
RESULTS 
 
Theorem 1. Under the following assumptions:  
 
i) E(x, y) is a differentiable function with  
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ii)   p(y) > 0 for all y  R 
 
iii)  There exists a positive constant  such that g(x) F(x)  –  
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iv)  a  C1, 0(R2) such that a(x, y) > 0 for all x and y, and  

)y,x(asuplim
x 

 < + for all y.  

 
then the solutions of system (4) can be defined for all t.  
 
Proof. Suppose on the contrary, there is a solution (x(t), y(t)) 
of (4) and some    T > 0 such that 
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and define the following Lyapunov’s Function: 
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From definitions of G(x) and )y(E p,a
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 it follows that V(0, 0) = 

0 and V(x, y) > 0 for all x, y  0.  
 
Differentiating V(x, y) with respect to t along the solutions of 
system (4) we find:  
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so we obtain in turn  
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taking into account the Mean Value Theorem 
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where 0 < x1 < x.  
 

From i) there is a positive constant M such that 0  
x

E
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in R2. Integrating (7) on (0, T) gives 
 

V(x, y) – V(x0, y0) =  

T

0
1 ds)s(x))s(y,x(E

x
))s(x(g   

≤  M,  
 
with (x0, y0) = (x(0), y(0)). So, we have 
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Therefore it follows that 
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From last assumption in i) and (8) we have 
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(5) implies that )t(xlim
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 ≤  + but from iii) and iv) it is 

easy to see that there exists N > 0 such that 
td

)t(xd
 = 

)y,x(E   N, for all t  (0, T).  

Applying again the Mean Value Theorem we have 
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for all t  (0, T) and 0 <  < T. (9) and (10) contradicts the 
supposition (5). This completes the proof of Theorem.  
 
In similar way, we can prove the following result. 
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Theorem 2. In addition to i) and iv) suppose that the following 
assumptions are satisfied: 
 

ii) p(y) > 0 for all y  R, P() = , with P(y) = 
y

0 )s(p
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iii) there exists a positive constant  > 0 such that g(x) F(x) > 

–  for all x  R and )y(E p,a


  –  for all y  R.  

Then all the solutions exist in the future.  
 
Remark 1. The above results allow us to obtain new conditions 
for the boundedness of the solutions of (1) and (2). Thus, for 
example, for the system (1) the following result is easily 
obtained from Theorem 1:  
 
Theorem 3. Under the following assumptions: 
 

i) F’(x) > –  and )y(lim
y
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ii) there exists a positive constant  > 0 such that g(x).F(x) > – 

,   
t

0
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then all the solutions of system (1) can be defined for all t. The 
Theorem 3 extends those obtained in (Nápoles Valdés, Juan 
1995; Nápoles Valdés, Juan 1996).  
 
Remark 2. When a(x, y)  1 and   1, our results agree with 
the Theorems 2.1 and 2.2 obtained in (Huang, Li-hong et al., 
1999).  
 
Remark 3. Our results are consistent with those reported in the 
literature for the Lienard’s Equation, particularly with those 
obtained in (Hara et al., 1985; Hasan and Zhu, 2007; 
Hricisákova, 1990; Lugo et al., 2014; Nápoles Valdés, Juan, 
2000; Peng, Lequn and Huang, Lihong, 1994). 
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