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Non response is becoming a grooming concern in survey research. Non response is the phenomenon 
from the population do not provide the requested information or provide information that is not usable. Two types of non resp
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answered, but no answer is given to other, possibly sensitive questions. So, the questionnaire form has been partially
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persons could also have accidentally skipped a question. Item non response can also occur as a consequence of a data editing 
procedure, when an incorrect value is detected and no correct value is available.
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ABSTRACT 

In this article, a problem of bivariate stratified sample surveys in presence of partial responses has 
been considered. The population in each stratum is divided into three 
respondents, respondents of questions of category I or partial respondents and complete respondents. 
It is assumed that the respondents of the questions of category II always reply the questions of 
category I but not necessarily the vice versa. The problem of finding optimum allocations is 
formulated as Bi-objective Nonlinear Programming Problem (BONLPP). Since the problem is bi
objective the optimum solution cannot be obtained because the optimum solution of one objective 
may or may not be optimum for the second objective, so we obtain compromise optimum solutio
using four different methods i.e. Value function, Fuzzy programming, Goal programming and 
Chebychev approximation. For the demonstration purpose an illustrative example has been solved and 

an R simulation study has been carried out to show the efficiency of the methods. 
the solutions obtained by four different methods is shown graphically in the figure.
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Non response is becoming a grooming concern in survey research. Non response is the phenomenon 
from the population do not provide the requested information or provide information that is not usable. Two types of non resp
can be distinguished. First is unit non response. This occurs when a selected person does not ans
questionnaire form remains completely empty. Second is item non response. This occurs when some questions have been 
answered, but no answer is given to other, possibly sensitive questions. So, the questionnaire form has been partially
Item non response or partial non response may occur when persons refuse to answer a question (e.g., because they do not want 
answer a sensitive question) or when they do not know the answer. If a paper questionnaire is used for data 
persons could also have accidentally skipped a question. Item non response can also occur as a consequence of a data editing 
procedure, when an incorrect value is detected and no correct value is available. Non response problem has been fi

and in 1956 El-Badry extends his technique. After that several authors discuss the problem of 
complete non response in univariate as well as in multivariate case such as Khare (1987), 

) etc. Recently, problem of complete non response formulated as mathematical programming by some 
Varshney et al. (2011), Raghav et al. (2012), Gupta et al. (2012)

sponse i.e. partial non response was first discussed by Tripathi and Khare (1997). They estimate the population mean in presence 
Maqbool and Pirzada (2005) discuss it in two variate stratified sample surveys and find out 

sampling fraction for a fixed budget. In this article, problem of stratified sample surveys in presence 
of partial response is considered which is formulated as Bi-objective nonlinear programming problem in section 2. Sectio
describes four different optimization techniques to obtain the compromise allocations of the formulated BONLPP. In section 4 
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Chebychev approximation. For the demonstration purpose an illustrative example has been solved and 
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Non response is becoming a grooming concern in survey research. Non response is the phenomenon where persons in the sample 
from the population do not provide the requested information or provide information that is not usable. Two types of non responses 
can be distinguished. First is unit non response. This occurs when a selected person does not answer any question. The 
questionnaire form remains completely empty. Second is item non response. This occurs when some questions have been 
answered, but no answer is given to other, possibly sensitive questions. So, the questionnaire form has been partially completed. 
Item non response or partial non response may occur when persons refuse to answer a question (e.g., because they do not want to 
answer a sensitive question) or when they do not know the answer. If a paper questionnaire is used for data collection, some 
persons could also have accidentally skipped a question. Item non response can also occur as a consequence of a data editing 
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his technique. After that several authors discuss the problem of 

, Fabian and Hyunshik (2000), 
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illustrative numerical example has been solved whereas in section 5, a simulation study has been carried out. Finally section 6 
concludes the work with some suggestions for future work. 
 
2  Problem Formulation of sample surveys in presence of partial response 

 
The sampling scheme used in formulation is as in Maqbool and Pirzada (2005). However, for the sake of continuity they are 
reproduced here.  
 

Let LhpjYYY
hhjNhjhj ,,2,1;,2,1;,,, 21   be the measurement of N

h
 units who respond to j

th
 character in h

th
 

stratum. Questionnaire is assumed to have the questions of two categories. Character I are measured by questions of category I and 
character II by those of category II. 
 
First of all in phase one select a random sample from each stratum and send a mail questionnaire to all of the selected units in each 
stratum. After that identify the partial respondents (those who reply the questions of category I only) and the complete respondents 
(those who reply the questions of both the categories) in each stratum. Now by personnel interview or through some additional 
efforts collect data from the selected non-respondents and the partial respondents from each stratum in the sub sample. To make 
sure that a respondent to questions of category II always responds to questions of category I, it is assumed that the questions of 
category I are simple. Therefore the whole population is divided into three groups viz. non response, partial response and complete 
response. In second attempt it is assumed that through extra efforts information from non respondents and partial respondents in 
each stratum are collected and each unit of the sub sample yields information on both the categories. 
 
Here subscripts designate the attempts 1 and 2 while superscripts designate characters. The superscripts with bar will stand for the 
character under study corresponding to non respondents.  
 

We take a random sample of size ),,2,1( Lhnh  from h
th

 stratum using simple random sampling without replacement, 

which is partitioned as 
)2,1(

1
)2,1(

1

)1(

1 hhhh nnnn  , say  

 
where  

)1(

1hn → number of respondents to questions of category I only in h
th

 stratum at first phase which is also non-respondents to 

category II questions in h
th

 stratum at first phase ,  
 

)2,1(
1hn → number of complete respondents to questions of categories I and II both in h

th
 stratum at first phase,  

 
)2,1(

1hn → number of complete non-respondents in h
th

 stratum at first phase. 
 
In second phase by personnel interview or through other extensive methods information is collected from the complete non-
respondents and partial respondents to both the category questions.  
 

)2,1(
2hn → sub-sample in h

th
 stratum out of 

)2,1(

1hn  (complete non respondents), all of which respond to questions of both the 

categories at second attempt.  
 

Let 
)2,1(

2

)2,1(

1

h

h

h
n

n
k    

h

h

h
k

n
n

)2,1(

1)2,1(
2   

Also  

h

h

h
k

n
n

)1(

1)2(
2  → sub-sample out of 

)1(

1hn , all of which respond to questions of category II at second attempt.  

 

Numbers of units who respond to questions of category I in the h
th

 stratum are:  
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)say(*
1

)2,1(
1

)1(

1 hhh nnn  at phase I  

)2,1(
2hn  at phase II  

 
)2,1(

1hn  non respondents at phase I.  
 
Numbers of respondents to questions of category II are:  
 

)2,1(
1hn at phase I  

 
)2,1(

2
)2(

2 hh nn  at phase II  

 

)say(*
2

)1(

1

)2,1(

1 hhh nnn  non respondents only at phase I.  

 
Here proportion of units viz k

h
 selected for second attempt out of the partial respondents and the total non respondents are assumed 

to be same.  
 

Let us denote the population mean of characters I and II by Ȳ
(1)

 and Ȳ
(2)

. We define the estimators of  Ȳ
(1)

 and Ȳ
(2)

 respectively 
by  
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where  

ȳ
h1

 = mean of respondents to questions of category I for character I based on 
)2,1(

1

)1(

1 hh nn   units at Ist attempt.  

)*2,1(

1hy  = sub-sample mean of respondents to questions of category I at second attempt based on 
)2,1(

2hn  units taken out of 
)2,1(

1hn  

non-respondents.  

2hy = mean of respondents to questions of category II (character II) based on 
)2,1(

1hn  at first attempt.  

)*2(

2hy = sub-sample mean of respondents to questions of category II at second attempt based on 
)2,1(

2hn  units.  

Then the variances of the two estimators ȳ
(1)

 and ȳ
(2)

 corresponding to the character I and II are given by  
 

V(ȳ
(1)

)= 
h=1

L
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

 








 
N

h
−n

h
N

h
n
h

+ 








 
k
h

−1

n
h

w
h3

P
2
hS

2
h1           (1) 

 

V(ȳ
(2)

)= 
h=1

L
  








 








 
N

h
−n

h
N

h
n
h

+ 








 
k
h

−1

n
h

w
h4

P
2
hS

2
h2           (2) 

 

where P
h

=N
h

/N and S
2
h1,S

2
h2 are the variances of the non-response classes for the characters I and II respectively.  

After ignoring the terms independent of n
h
 in variances of two estimators (1) and (2) can be written as:  
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The cost function is defined as:  
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where c

0
= overhead cost  

 

c
h

= cost of including a unit in the sample in h
th

 stratum.  

c
(1)
h1 = cost incurred/unit in enumerating questions of category I in h

th
 stratum in first attempt.  

c
(2)
h1 = cost incurred/unit in enumerating questions of category II in h

th
 stratum in first attempt.  

c
h2

= cost incurred/unit in h
th

 stratum in enumerating both the characters in second attempt.  

 

It is understood that the values of 
)1(

1hn  and 
)2,1(

1hn  are not known until the first attempt is made, the expected cost is used in 
planning the sample. Therefore the expected values of  
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where w
hj

 are the proportion of respondents and non respondents in h
th

 stratum to questions of both the categories such that 

  
 

 


In order to obtain the optimum allocation (n
*
h) and sub sampling fraction (k

*
h) for the characteristics under study, we formulate a 

Bi-Objective Nonlinear programming Problem (BONLPP) as follows:  
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3  Several optimization techniques to solve BONLPP 

 
3.1  Value function 

 
Many authors studied multi objective optimization in detail such as Kish, Miettinen etc. The problem (7) expressed under value 
function technique as (see Diaz-Garcia and Ulloa, 2008):  
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         (8) 

 
where ϕ(.) is a scalar function that summarizes the importance of each of the variance of the p characteristics. ϕ(.) may take 
different forms for different problems amongst them one particular forms used here is weighted sum. Now under this approach the 
problem (8) can be expressed as: 
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where pjj ,,2,1;0   are the weights according to the relative importance of the characteristics. Without loss of 

generality we can take 
j=1

p
 λ

j
=1.  

 
3.2  Fuzzy programming 

 

Let V
⋆
j  be the optimal value of V

j
 obtained by solving the BONLPP (7). Further let jV

~
 denote the variance under compromise 

allocation, where Lhnh ,,2,1;   are to be worked out.  

 

Obviously, pjVVorVV jjjj ,,2,1;0
~~ **  will give the increase in the variance due to not using the individual 

optimum allocation for 
thj  characteristic.  

 

To obtain a fuzzy solution, we first compute the upper and lower tolerance limits for each objective i.e., )(min *
hjk

j
k nVL   and 

)(max *
hjk

j
k nVU  , where n

⋆
hj denote the optimum allocation in the 

thh  stratum for the 
thj  characteristic. 

 

The differences of the maximum and minimum values of V
k
 are denoted by .,2,1; pkLUd kkk   

 
Now the fuzzy programming formulation of the BONLPP is given as:  
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3.3  Goal programming 

 
To solve the following BONLPP using goal programming, we first solve each objective subject to the system constraints 
separately  
 

pj

Lhn

kNn

C
k

w

k

w
nc

wncwncnc

iSPw
n

k

n

h

hhh

h

h

h

h
L

h
hh

L

h
hhh

L

h
hhh

L

h
hh

hjh

L

h
hi

h

h

h

,,2,1;

.,,2,1;integersareand

0;2

toSubject

4,3;
11

Minimize

0
43

1
2

1
2

)2(
1

1
1

)1(
1

1

22

1


























































 





















(10) 

 

Let V
⋆
j  be the optimum value of V

j
 with the solution to the 

thj
 
NLPP as ).,,,( **

2
*
1

*

jLjjj nnnn   

 

Further let jV
~

 the optimal value under compromise solution with ).,,,( **
2

*
1

*

Lcccc nnnn   the vector of optimum compromise 

allocations for the 
thj characteristics.  

 
Obviously,  
 

pjVVorVV jjjj ,,2,1;0
~~ **   (11) 

 
A reasonable criterion to work out a compromise allocation may be to minimize the sum of increases in the variances, 

pjV j ,,2,1;   due to the use of the compromise solution. The goal is to find the compromise allocation 

),,,( **
2

*
1

*

Lcccc nnnn   such that the increase in value of 
thj  variance due to the use of a compromise allocation should not 

exceed pjx j ,,2,1;  , where 0jx  are the unknown goal variables.  

 
To achieve these goals x

ij
 must satisfy  

 

 pjxVV jjj ,,2,1;
~ *  

or  
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The value of 
j=1

p
 x

j
 will give us total increase in the variances by not using the individual optimum allocations.  

 
This suggests the following Goal Programming Problem (GPP) to solve:  
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The GPP (13) may be solved by using the optimization software LINGO (LINGO- User’s Guide). For more information one can 
visit the site: http://www.lindo.com  
 
3.4 Chebyshev approximation 

 
Here we consider the problem given by equation (7). For using Chebyshev Approximation we have to convert the problem into 

convex programming problem so by making the transformation Lh
x

n
h

h ,,2,1;
1

  and 

   4,3;11 22  iSPwka hjhhihhj  then the problem (8) is equivalent to minimizing the linear form (see Khan et al., 2011)  
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Now the objective functions are linear and the single constraint is convex (see Kokan and Khan (1967)). So eq. (14) represents 
convex programming problems. The problem (14) is now equivalent to minimizing the linear form (see Ali et al., 2011)  
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where a

j
 are the weights assigned to the variances according to their importance. 

 
4  Illustrative example 

 
The following example illustrates the four methods discussed in above section. The data are taken from Maqbool and Pirzada 
(2005) in which a population is considered which is divided into four strata. The total amount available for conducting the survey 

is assumed to be C=3000 units with an expected overhead cost units.10000 c This gives units.200000  cCC The 

proportion of respondents are w
h1

=0.4    and    w
h2

=0.3 and the proportion of non-respondents are w
h3

=0.6    and    w
h4

=0.7 for 

the character I and II respectively (Table 1).   
 

Table 1. Input data for two characteristics and four strata 

 
h N

h
 P

h
 

S
2
h1 S

2
h2 

c
h
 

c
(1)
h1  c

(2)
h1  

c
h2

 

1 20 0.2 3.5 3.2 0.5 8.5 8.7 25 
2 30 0.3 5.5 4.8 0.7 7.4 7.6 20 
3 40 0.4 6.5 6.2 0.4 7 7.2 18 
4 10 0.1 5.5 5.3 0.6 9 9.2 25 

 
 For j=1 BONLPP takes the form:  
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Above problem is solved by an optimizing software LINGO-13 and obtain the optimum solution as: 
 
n

1
=12,k

1
=1.8660,n

2
=29,k

2
=1.7111,n

3
=40,k

3
=1.4210,n

4
=9,k

4
=1.7812   

 
with the corresponding value of variance V

1
=0.4570349 

 
For j=2 BONLPP takes the form:  
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Above problem is solved by an optimizing software LINGO-13 and obtain the optimum solution as: 
 
n

1
=10,k

1
=1.5160,n

2
=23,k

2
=1.3861,n

3
=40,k

3
=1.3279,n

4
=8,k

4
=1.4646   

 
with the corresponding value of variance V

1
=0.4058625 

 
To obtained the compromise allocations four methods used and according to the procedure discussed in the section 3 problems are 
formulated and solved by an optimization software LINGO (2013). LINGO is a user’s friendly package for constrained 
optimization developed by LINDO System Inc. A user’s guide-LINGO User’s Guide (2013) is also available. For more 
information one can visit the site http://www.lindo.com. And the results are summarized in Table 2 below:  
 

Table 2. Compromise optimum solutions obtained by four different methods 

 
 Allocations Variances 

Approaches n
1

 k
1
 n

2
 k

2
 n

3
 k

3
 n

4
 k

4
 V

1
 V

2
 Trace=V

1
+V

2
 

Value function 11 1.6850 26 1.5455 40 1.3702 8 1.5187 0.4579560 0.4067659 0.8647220 
Fuzzy programming 11 1.6853 26 1.5467 40 1.3697 8 1.5179 0.4579706 0.4067673 0.8647379 
Goal programming 11 1.6850 26 1.5455 40 1.3702 8 1.5187 0.4579560 0.4067659 0.8647220 
Chebychev approximation 12 1.8243 29 1.7082 40 1.4189 9 1.7644 0.4570259 0.4090924 0.8661183 

   
5 R simulation study 

 
For comparing the efficiency of the methods discussed in section 3, a simulation study has been carried out. The R language 
(2011) has been used to perform the simulations and data analysis. We have generated a population of size N=1050. From this 
population four strata are randomly generated. The characteristics for the two populations have generated in the following way:  



 

∼∼ 


Data obtained by simulation study is shown in table 1. In addition to the above, it is assumed that the relative value of the variances 

of the non-respondents and respondents, that is, 4,3,2,1and2,1for25.022
2  hjSS jhjh . Further, let the total amount 

available for the survey be C
0
=1700 units for the problem (7). The proportion of respondents is w

h1
=0.4    and    w

h2
=0.3 and the 

proportion of non-respondents is w
h3

=0.6    and    w
h4

=0.7 for the character I and II respectively.  

  
Table 3. Input data for two characteristics and four strata 

 
h N

h
 P

h
 

S
2
h1 S

2
h2 

c
h
 

c
(1)
h1  c

(2)
h1  

c
h2

 

1 306 0.291429 5800.17 2385.23 0.5 8.5 8.7 25 
2 205 0.195238 555.248 160.637 0.7 7.4 7.6 20 
3 353 0.33619 1592.11 684.948 0.4 7 7.2 18 
4 186 0.177143 5464.03 1749.39 0.6 9 9.2 25 

 
For j=1 BONLPP takes the form:  
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Above problem is solved by an optimizing software LINGO-13 and obtain the optimum solution as: 
 

731488.1,17,687236.1,20,815039.1,7,802684.1,30 44332211  knknknkn  

with the corresponding value of variance V
1

=14.01262. 

 
For j=2 BONLPP takes the form:  
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Above problem is solved by an optimizing software LINGO-13 and obtain the optimum solution as: 
 

365949.1,13,351395.1,18,406972.1,5,476810.1,27 44332211  knknknkn  

 
with the corresponding value of variance V

1
=5.560957. 

 
To obtained the compromise allocations four methods used and according to the procedure discussed in the section 3 problems are 
formulated and solved by an optimization software LINGO (2013). LINGO is a user’s friendly package for constrained 
optimization developed by LINDO System Inc. A user’s guide-LINGO User’s Guide (2013) is also available. For more 
information one can visit the site http://www.lindo.com. And the results are summarized in table 4 below:  
 

Table 4. Compromise optimum solutions obtained by four different methods 

 
 Allocations Variances 

Approaches n
1

 k
1
 n

2
 k

2
 n

3
 k

3
 n

4
 k

4
 V

1
 V

2
 Trace=

V
1
+V

2
 

Value function 29 1.695526 6 1.592187 20 1.629516 16 1.645804 14.03011 5.597118 19.627228 
Fuzzy programming 29 1.657579 6 1.648854 19 1.502105 15 1.571902 14.0666 5.579078 19.645678 
Goal programming 29 1.695526 6 1.592187 20 1.629516 16 1.645804 14.03011 5.597118 19.627228 
Chebychev approximation 30 1.824339 7 1.708236 20 1.706003 17 1.764377 14.09261 5.674545 19.767155 
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6 Conclusion and Future work 

 
In this article a Bi-objective nonlinear programming problem is formulated from bivariate stratified problem under partial 
responses. The problem of finding optimal allocations has been solved using four different methods viz. Value function, Fuzzy 
programming, Goal programming and Chebyshev approximation. Optimum compromise solution (Table 2) obtained by real life 
data shows that the value function and goal programming methods provides the most efficient solution. To check the efficiency of 
the results a simulation study has been carried out which also conclude that the value function and gaol programming methods give 
the most efficient solution. The comparison of the results has been graphically shown in the figure given below. In future one can 
check the efficiency of the methods for more than one population and can also try to formulate the problem under partial responses 
as a multi objective programming problem i.e p≥2.  
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