

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 5, Issue, 12, pp.4151-4155, December, 2013 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

INCIDENCE OF SEED BORNE MYCOFLORA ON MAIZE AND ITS EFFECT ON SEED GERMINATION

^{1,*}Shirurkar Deepavali, D. and ²Dr. Wahegaonkar Nilima, K.

¹Annasaheb Magar Mahavidyalaya, Hadapsar, Pune 411028, India ²Vasantrao Naik Mahavidyalaya, Aurangabad, Maharashtra, India

ARTICLE INFO

ABSTRACT

Article History: Received 18th September, 2013 Received in revised form 10th October, 2013 Accepted 15th November, 2013 Published online 25th December, 2013

Key words:

Seed Mycoflora, Germination percentage, Infection percentage, Fungal frequency.

Seed-borne fungi are a serious problem during storage in India. Seed infection reduces seed viability, productivity and food value. Maize is one of the most important cereal crops in the world. It has a nutritional value for both animals and humans. Isolation of seed borne mycoflora of maize varieties was studied by using blotter and agar plate methods. During isolation eight fungal species were recovered. Agar plate method yielded highest number of fungi as compared to blotter method. Frequency occurrence of *Aspergillus niger* and *A. flavus* was very high in all varieties of maize. Infection percentage was higher in non-surface sterilized seeds as compared to surface sterilized seeds.

Copyright © Shirurkar Deepavali, D. and Dr. Wahegaonkar Nilima, K. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

India is one of the world's largest agricultural countries. Seedborne fungi are a serious problem during storage in India. Seed infection reduces seed viability and productivity in crops, as well as adds contamination to the edible grains. Maize is one of the most important cereal crops in the world. Maize is grown all over the world, in more than 100 countries. It is one of the major crops in America, Africa and Asia. Varieties of Maize are Sweet corn, Dent corn, Flint corn, Popcorn, Flour corn and Pod corn. In India considerable work has been done for development of specialty corns such as sweet corn, pop-corn, baby-corn, quality protein maize with high lysine and tryptophan, green-eared corn, high oil corn, waxy-corn, fodder maize, etc. Hybrid maize is one the variety of maize which generally has a high yield level and that is why it is most favored by the farmers. The importance of Corn is due to its wide diverse use. It is used both as food for human and feed for animals (Krishnamurthi, 1969). Corn is directly consumed as feed and as an edible table vegetable. It is also fractionated by either dry or wet milling into food and industrial ingredients. Starch, the major constituent of the corn kernel, is used in its native form or after chemical or enzymatic modification, in foods and industrial products. Starch is also converted into glucose or fructose for use as food sweetener. Glucose can be fermented in to ethanol for beverages or into many other chemicals. Recently, it has been discovered that maize or corn can also be used in the production of fuel. During harvesting and storage, seeds may be infested by various pathogenic fungi

and that often reduce both the yield and the quality of grains. Literature review indicated that fungi play an important role in the deterioration of stored grains. Seed borne fungi cause large destruction of agricultural crops. Infected seeds become intoxicated, affect germination and seedling growth in various crop and plants. Lot of seed is wasted due to contamination and it also creates pollution. This problem is very serious globally including India. To understand the nature and severity of the effect of the seed borne fungal flora, especially on germination of seeds an attempt was made to isolate the fungi associated with the grains.

MATERIALS AND METHODS

Collection of seed samples: The seed samples were collected from store houses, market places and from farmers and preserved in cloth bags at room temperature during the studies as described by Neergaard (1973).

Determination of seed Mycoflora: Blotter technique (ISTA, 1976) and agar plate methods using five different media like Potato Dextrose Agar (PDA), Malt extract agar (MEA), Czepek's Dox agar (CZA), Rose Bengal agar (RBA) and Seed extract agar (SEA) was carried out. For isolation of seed borne mycoflora, pre-sterilized corning glass Petri-plates of 9 cm diameter were poured with 25 ml of autoclaved medium. 05 seeds per Petri-plate were spaced at equal distance aseptically. Fifty seeds were tested for each treatment. The plates were incubated at room temperature (25 ± 2^0c) under natural day night conditions. Seeds were examined after seven days of incubation and fungi were identified under microscope.

^{*}Corresponding author: Shirurkar Deepavali, D. Annasaheb Magar Mahavidyalaya, Hadapsar, Pune 411028, India.

Seed sample was divided into two groups. The first group was untreated seeds and was used directly for determination of surface borne mycoflora of seeds. The second group was surface sterilized by soaking in 0.1 % solution of HgCl₂ for 2 minutes, subsequently thoroughly washed twice with sterile distilled water and placed on agar plates and blotter test method plates for determination of seed borne fungi. (Embaby *et al.*, 2006; Amer Habib *et al.*, 2007). The incidence (%) of dominant mycoflora was calculated as follows :- (Gachande and Mukadam, 2001).

Frequency (fungal occurrence) was calculated as follows :- (Embaby *et al.*, 2006).

Total count of fungal species (TC) Fungal frequency = ------ X 100 Sum of Total count of all occurred fungal species

RESULTS AND DISCUSSION

Determination of seed Mycoflora

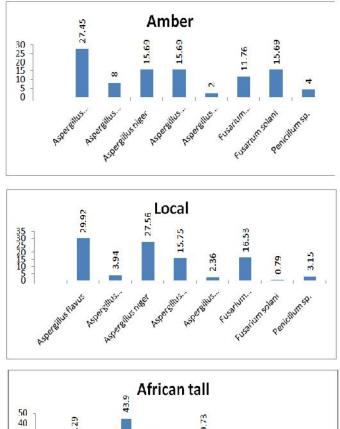
Eight species of fungi were found to be associated with seeds of three different maize varieties like Amber, Local, and African Tall (Table 1). Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus and Fusarium moniliforme were isolated from blotter technique from Local variety. Aspergillus flavus, Aspergillus oryzae, Aspergillus niger, Aspergillus terreus, Fusarium moniliforme and Penicillium sp. were isolated on PDA, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Fusarium moniliforme and Fusarium solani were found on MEA. CZA medium recovered all above mentioned fungi except Aspergillus oryzae and Penicillium sp. For African tall variety Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Fusarium solani and F. moniliforme were isolated from on MEA, Aspergillus flavus, Aspergillus oryzae and Aspergillus niger occurred on RBA and Aspergillus flavus, Aspergillus niger and Aspergillus terreus on SEA and PDA.

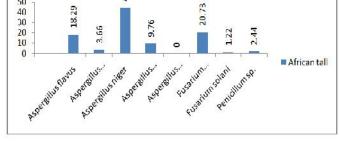
Penicillium sp. was isolated only on CZA. F. moniliforme, Aspergillus flavus, Aspergillus oryzae, Aspergillus niger were isolated by blotter technique. Amber variety yielded Aspergillus flavus, Aspergillus niger and Aspergillus terreus by blotter method, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus, Fusarium moniliforme, Fusarium solani and Penicillium sp. on MEA, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus and Fusarium moniliforme on RBA and only Penicillium sp. was recovered from CZA medium. No fungal species were recovered on SEA medium. PDA, MEA, CZA, RBA were found to be more favourable for the growth of seed borne fungi. SEA and blotter technique were less favourable for the isolation of seed borne fungi (Table 1). Similar results have been reported by other workers (Noble and Richardson, 1968; Esuruoso et al., 1975; Neergaard, 1977; Abou-Heilah, 1984; Al Kassim, 1996; Al Kassam and Monawar, 2000). The present results show that, potentially, all seeds of the tested maize varieties were liable to attacks by the seed-borne fungi. Many of the isolated fungi were reported to be toxigenic, carcinogenic and mutagenic in animals and humans (Abramson. 1997; Eriksen G.S. and Aleksander, 1998; Pieckova and Jesenka, 1999; Baliukoniene et al., 2003). Bakan et al. (2002); Verga et al. (2005) and Ishrat and Dawar, (2009) reported Fusarium and Aspergillus species as the common toxic fungal contaminants of maize where as Montes et al. (2009) reported Fusarium, Penicillium, and Aspergillus species as major fungi encountered in maize.

Fungal frequency on maize seeds: (Table – 2)

Total 260 isolates were recovered from 3 varieties of maize. Amber variety yielded 51 isolates, Local variety yielded 127 isolates, and African Tall variety yielded 82 isolates. Frequency of occurrence was highest in Local variety followed by African Tall variety and then by Amber variety. *Aspergillus flavus* and *Aspergillus niger* were the most frequently occurring species and isolated from all varieties of maize.

S.No.	Name of the fungus	В	LOTTE	R		MEA			CZA			RBA			SEA			PDA	
		А	L	Т	А	L	Т	А	L	Т	А	L	Т	А	L	Т	А	L	Т
1	Aspergillus flavus	*	*	*	*	*	*	-	*	-	*	*	*	-	*	*	*	*	*
2	Aspergillus oryzae	-	_	*	_	_	-	_	_	-	_	_	*	_	_	-	*	*	-
3	Aspergillus niger	*	*	*	*	*	*	_	*	_	*	*	*	_	*	*	*	*	*
4	Aspergillus terreus	*	_	_	*	*	*	_	*	-	*	*	-	_	*	-	*	*	*
5	Aspergillus fumigatus	_	*	-	*	_	_	_	*	_	*	_	_	_	_	_	_	_	-
6	Fusarium moniliforme	-	*	*	*	*	*	_	*	-	*	*	-	_	_	-	*	*	-
7	Fusarium solani	_	-	-	*	*	*	_	*	_	_	_	_	_	_	_	*	_	-
8	Penicillium sp.	-	-	-	*	-	-	*	-	*	-	-	-	-	-	*	-	*	-


Table 1. Mycoflora associated with seeds of maize varieties

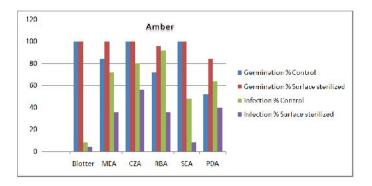

* Present A – Amber L – Local T – African tall


Tabl	le 2.	Frequen	су	(fungal	occurrence) of	' seed	l born	fungi	i of	f maize varie	ties
------	-------	---------	----	---------	------------	------	--------	--------	-------	------	---------------	------

Sr. No.	Name of the fungus	Amber		L	Local		can tall	Total		
	-	TC	%	TC	%	TC	%	TC	%	
1	Aspergillus flavus	14	27.45	38	29.92	15	18.29	67	25.76923077	
2	Aspergillus oryzae	4	8	5	3.94	3	3.66	12	4.615384615	
3	Aspergillus niger	8	15.69	35	27.56	36	43.9	79	30.38461538	
4	Aspergillus terreus	8	15.69	20	15.75	8	9.76	36	13.84615385	
5	Aspergillus fumigatus	1	2	3	2.36	0	0	4	1.538461538	
6	Fusarium moniliforme	6	11.76	21	16.53	17	20.73	44	16.92307692	
7	Fusarium solani	8	15.69	1	0.79	1	1.22	10	3.846153846	
8	Penicillium sp.	2	4	4	3.15	2	2.44	8	3.076923077	
	Total	51	100	127	100	82	100	260	100	

Frequency of *Aspergillus flavus* was 27.45 % in Amber variety, 29.92% in local variety, 18.29 % in African Tall variety and total frequency percentage was 25.77. Percent frequency of *Aspergillus niger was* 15.69 % in Amber *variety*, 27.56 % in Local variety, 43.90 % in African Tall variety and total frequency was 30.38 %.

Graph 1 - Mycoflora associated with seeds of maize varieties

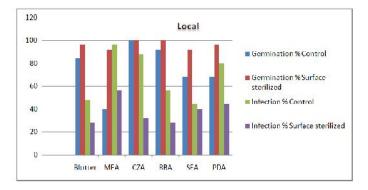

Aspergillus oryzae, Aspergillus fumigatus, Penicillium sp. And Fusarium solanioccurred in lesser frequency in all varieties of maize. Frequencies of A. terreus and F. Moniliforme were moderate. Ishrat Niaz and Shahnaz Dawar (2009) reported that A. niger, A. flavus, A. wentii, Fusarium oxysporum, F. solani, *Penicillium citrinum, Macrophaminaphaseolina* and *Rhizopus* oryzae as the most frequent species. Similar results were obtained in different plant seeds by Ibeth *et al.*1991; Tseng *et al.*1995; Ruiz *et al.* 1996; Embaby *et al.*, 2006. Montes *et al.* (2009) reported infestation of *Fusarium, Penicillium* and *Aspergillus* species in northern Mexico maize.

Germination and infection percentage of maize varieties

Amber variety: - (Table 3A):100 % seed germination was recorded in Amber variety under surface sterilized and nonsurface sterilized grains when studied on CZA and SEA medium and blotter test. Germination percentage of nonsterilized grains was recorded 52 % to 84 % and 84% to 100% for surface sterilized grains on MEA, RBA and PDA.

Table 3A. Germination and infection percentage of amber variety on different media

	Variety : Amber											
Media		Ge	rminatio	on		Ι	nfection					
	Co	ntrol	surfac	e sterilized	con	trol	surface sterilized					
	TC	%	TC	%	TC	%	TC	%				
Blotter	25	100	25	100	2	8	1	4				
MEA	21	84	25	100	18	72	9	36				
CZA	25	100	25	100	20	80	14	56				
RBA	18	72	24	96	23	92	9	36				
SEA	25	100	25	100	12	48	2	8				
PDA	13	52	21	84	16	64	10	40				

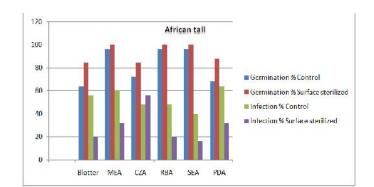

Graph 3A: Germination and infection percentage of amber variety on different media

Infection percentage was recorded 08% to 92% in untreated seeds and 40% to 56% in surface sterilized seeds. Thus infection percentage appeared to decrease when seeds were surface sterilized.

 Table 3B. Germination and infection percentage of local variety on different media

	Variety : Local										
Media		Ger	rmination			Infection					
	Co	ntrol	surface	con	trol	surface sterilize					
	TC	%	TC	%	TC	%	TC	%			
Blotter	21	84	24	96	12	48	7	28			
MEA	10	40	23	92	24	96	14	56			
CZA	25	100	25	100	22	88	8	32			
RBA	23	92	25	100	14	56	7	28			
SEA	17	68	23	92	11	44	10	40			
PDA	17	68	24	96	20	80	11	44			

Local variety: -(Table 3B):100 % germination was recorded under surface sterilized and non-surface sterilized condition on CZA. Germination was recorded between 40% to 92% when seeds were non-surface sterilized and 92% to 100% for surface sterilized grains on blotter test, MEA, RBA, SEA and PDA. Infection percentage in non-surface sterilized seeds of Local variety was recorded from 44% to 96% and 28% to 56% in surface sterilized seeds in all experiments.



Graph 3B. Germination and infection percentage of local variety on different media

African Tall: (Table 3C): Germination was recorded 64 % to 96% when seeds were non-surface sterilized and 84% to 100% when seeds are surface sterilized.Infection percentage in non-surface sterilized seeds of African Tall variety records 40% to 64% while surface sterilized seeds it was 16% to 56% as studied by different methods.

 Table 3C. Germination and infection percentage of african tall variety on different media

	Variety : African tall												
Media		Ge	erminatio	on	Infection								
	Cor	ntrol	surfac	e sterilized	coi	ntrol	surface sterilized						
	TC	%	TC	%	TC	%	TC	%					
Blotter	16	64	21	84	14	56	5	20					
MEA	24	96	25	100	15	60	8	32					
CZA	18	72	21	84	12	48	14	56					
RBA	24	96	25	100	12	48	5	20					
SEA	24	96	25	100	10	40	4	16					
PDA	17	68	22	88	16	64	8	32					

Graph 3C. Germination and infection percentage of african tall variety on different media

Data in Table 3A, 3B and 3C shows that surface sterilized seeds led to higher percentage of germinated seeds in all varieties of maize and infection percentage was reduced when the seeds were surface sterilized. Though the germination percentage was found to be high in both seed groups the seedling development appeared to be reduced due to associated mycoflora of seeds. The higher germination percentage may be attributed to the ability of fungi to produce plant growth

regulators (Ibatsam *et al.*, 2013). The adverse effect of the fungi after germination may refer to the production of toxic substances by them at mycelia stage (Jalander and Gachande, 2012; Subramanyam 1991; Gupta and Chouhan 1970; Dharamvir 1973). The observations also suggest that more colonies were obtained from agar plate method as compared to blotter technique. Similar results were obtained by El-Nagerabi and El-Shafie (2000); Kumud *et al.* (2004); Embaby *et al.* (2006) who reported that for isolation of fungi agar plate was better method than blotter test. Their reports also propose that disinfected seeds gave less fungal species and colonies and gave higher percent of germination compared with non-disinfected seeds.

Acknowledgments

The authors would like to acknowledge UGC, New Delhi, for financial support. We thank MrShinde Genba and Mr. Soyeb for technical assistance.

REFERENCES

- Abou-Heilah, AN. 1984. Seed-bornefungi of wheat and their control by seed treatment. *Indian Phytopath*. 37: 656-659.
- Abramson D., 1997. Toxicans of genus Penicillium. In: D'Mello JPF (Eds): and book of plant and fungal toxicants, 303-317. CRC Press, Boca Raton, FL 1997.
- Al Kassam and Monawar, 2000. Seed borne fungi of some vegetable seeds in Gazan Province and their chemical control., *Saudi. J. Biol. Sci.*, Vol. 7, No. 2.
- Al Kassim M. Y., 1996. Seed- borne fungi of Some vegetables in Saudi Arabia and their Chemical Control. Arab. Gulf. J. Scient. Res., 14 (3), pp. 703-715.
- Amer Habib, Shahbaz TalibSahi, M.U. Ghazanfer and Safdar Ali, 2007. Evalution of some fungicides against seed borne mycoflora of Egg plant and their comparative efficacy regarding seed germination. *Int. J. Agri. Biol.*, Vol. 9, No. 3.
- Bakan, B., D. Richard, D. Molard and B. Cahagnier, 2002. Fungal growth and *Fusarium* mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem., 50(4): 278-731.
- Baliukoniene V, Bakutis B, Stankevicius H, 2003. Mycological and mycotoxicological evaluation of grain. *Ann Agric Environ Med* 2003, 10, 223–227.
- Dharamvir. 1973 Studies on reducing post harvest fungal spoilage of seeds. Pesticides 7, 26.
- El Nagerabi, S.A.F. and A.E. El Shafie, 2000. Composition of mycoflora and aflatoxins in lupine seeds from the Sudan (*Lupinustermis*forrsk.). Phytopathologia- Mediterranea (Italy). V. 39 (2) pp: 257-262.
- Embaby E. M and Mona M. Abdel-Galil, 2006. Seed borne fungi and mycotoxins associated with some legume seeds in Egypt. J. of Applied Sciences Research, 2 (11): 1064-1071,
- Eriksen GS, Aleksander J (Eds) 1998. Fusarium toxins in cereals a risk assessment. Tema Nord 1998, 502. Nordic Council of Ministers, Copenhagen, Denmark 1998, 10-165.
- Esuruoso, O.F., Ogundiran, S.A, Cheda, H.R. and Fatokun, D.O. 1975. Seed-borne fungi and some fungal diseases of *Okra* in Nigeria. *PI. Dis. Reptr.*, 59, (8): 660-663.
- Gachande B. D. and Mukadam D. S., 2001. Seed mycoflora of Gram, Green gram and black gram., Proceedings of

conference held at L.B.S. College, Dharmabad.,20-21 January 2001. Page- 71-75. Name of conf. – Current perspectives in plant and fungal biotechnology.

- Gupta VK, Chouhan JS. 1970. Seed borne fungi and seed health testing in relation to seedling disease of groundnut. Indian Phytopathology 23, 622–625.
- Ibatsam Khokhar, Muhammad Saleem Haider, Irum Mukhtar, Amna Ali, Sobia Mushtaq and Muhammad Ashfaq, 2013. Effect of *Penicillium* species culture filtrate on seedling growth of wheat, *International Research Journal of Agricultural Science and Soil Science*, 3(1), 24-29.
- Ibeh, I.N., N. Uraih and J.I. Ogonor, 1991. Dietary exposure to aflatoxin in Benin City, Nigeria: a possible public health concern. *International Journal of Food Microbiology*. (Amsterdam: Elsevier Science Publishers, B.V) V.14 (2) pp: 171-174.
- Ishrat Niaz and Shahnaz Dawar, 2009. Detection of seed borne mycoflora in maize (Zea mays L.). Pak. J. Bot., 42 (1): 443-451, 2009.
- ISTA ,1976. International rules for seed testing, rules 1976. *Seed Sci. and Technol.*, 4: 3-49.
- Jalander V. and Gachande B. D., 2012. Effect of fungal metabolites of some rhizosphere soil fungi on seed germination and seedling growth of some pulses and cereals, *Science Research Reporter*, 2(3), 265-267.
- Krishnamurthi, A. 1969. The wealth of India. A dictionary of Indian., raw materials Vol. VIII. Publication Information Directorate CSIR. New Dehli. 349 pp.
- Kumud Kumar; Jitendra Singh and Ved Ratan, 2004. Seedbrone fungi of Cowpea, their parasitism and control. Annals of plant protetion sciences. Society of Plant Protection Science, New Delhi, India: 12:1, 80-82.

- Montes, G. N., Reyes, M. C. A., Montes, R. N. and Cantu, A. M. A. 2009. 'Incidence of potentially toxigenic fungi in maize (Zea mays L.) grain used as food and animal feed', CyTA - Journal of Food, 7: 2, 119 – 125.
- Neergaard P., 1973. Detection of seed borne pathogens by culture tests. *Seed Sci. and Tech.*, 1: 217-254.
- Neergaard, P. 1977. Seed pathology. The MacMillan Press Ltd., London and Basigstoke. 1187, p.
- Noble, M. and Richardson, MJ. 1968. An annotated list of seed-borne diseases. Commonwealth Mycological Institute, Kew, Surry, England.
- Pieckova E, Jesenka Z 1999. Microscopic fungi in dwellings and their health implications in humans. *Ann Agric Environ Med* 1999, 6, 1-11.
- Ruiz, J.A. Bentabol, A. Gallego, R.C. Angulo and M. Jodral, 1996. Mycoflora and aflatoxin-producing strains of Aspergillus falvusin greenhouse- cultivated green bean (P.vulgaris L.) Journal of Food Protection. [Des Mimes, Lowa: International Association of Milk, food and Environmental Sanitarians Apr 1996.V.59 (4) pp:433-435.
- Subramanyam P. 1991. Control of seedling disease of groundnut. Nigerian Tropical Pest Management 37, 118–119.
- Tseng. T.C., J.C. Tu- and S.S. Tzean, 1995. Mycoflora and mycotoxins in dry bean (*Phaselous vulgaris*) produced in Taiwan and in Ontario, Canada. *Botanical- Bulletin-of-Academic-Sinica*. 36: 4, 229-234; 29 ref.
- Verga, B. Toth and J. Teren. 2005. Mycotoxin producing fungi and mycotoxins in foods in Hungary. *Journal of Acta Alimentaria/Akademiai*, 267-275.
