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INTRODUCTION 
 
The theory of Diophantine equations offers a rich variety of 
fascinating problems. In particular biquadratic Diophantine 
equations, homogeneous and non-homogeneous have aroused 
the interest of numerous mathematicians since antiquity 
(Carmichael, 1959; Dickson, 1952). In this context one may 
refer (Gopalan and Sangeetha, 2010; Gopalan
2010; Gopalan and Sangeetha, 2011; Manju Somanath
2011; Manju Somanath et al., 2012; Gopalan
2013; Gopalan and Geetha, 2013; Sangeetha
Gopalan and Geetha, 2015; Gopalan et al., 
problems on the biquadratic Diophantine equations. However, 
often we come across homogeneous biquadratic equations and 
as such one may require its integral solution in its most general 
form. This paper concern with the non
biquadratic equation with five unknowns for determining 

3 3 3 3 412x y z w t    its infinitely many non
solutions. Also a few interesting properties among the solutions 
are presented.
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ABSTRACT 

The biquadratic  Diophantine equation with five unknowns represented by 

analysed for finding its non-zero distinct integral solutions.  Introducing the linear transformations 

1, 1, 1, 1x u y u z v w v         and employing the method of factorization different patterns of 

non zero distinct integer solutions of the equation under the above equation are obtained. A few 
interesting relations between the integral solutions are exhibited.  
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2.   METHOD OF ANALYSIS
 
The biquadratic diophantine equation with five unknowns to be 
solved for getting   non-zero integral 
 

3 3 3 3 412x y z w t                    

 
On substituting the linear transformations
                                 

1, 1, 1, 1x u y u z v w v       
 
in (1), it leads to the equation 
 

2 2 42u v t                                                           
 
It is noted that the following sets of integers satisfy  (1)
 

2 2 2 2(6 1,6 1, 2 1, 2 1, 2 )T T T T T   
3 3 3 3(8 1,8 1,8 1,8 1,2 )T T T T T T T T T       
4 4 4 4(8 2,8 ,8 ,8 2,2 )T T T T T 
3 3 3 3(4 2 1, 4 2 1, 4 2 1, 4 2 1, 2 )T T T T T T T T T       

we present below different methods of solving (3) and thus 
obtain different pattern of integral solutions to (1).
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2.   METHOD OF ANALYSIS 

The biquadratic diophantine equation with five unknowns to be 
zero integral solution is 

3 3 3 3 412x y z w t                                               …(1) 

On substituting the linear transformations 

1, 1, 1, 1x u y u z v w v                          ……(2) 

                                              …….(3) 

It is noted that the following sets of integers satisfy  (1) 

2 2 2 2(6 1,6 1, 2 1, 2 1, 2 )T T T T T    ,
3 3 3 3(8 1,8 1,8 1,8 1,2 )T T T T T T T T T        , 

(8 2,8 ,8 ,8 2, 2 )T T T T T  ,
3 3 3 3(4 2 1, 4 2 1,4 2 1, 4 2 1, 2 )T T T T T T T T T        . 

we present below different methods of solving (3) and thus 
obtain different pattern of integral solutions to (1). 
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Pattern I 
  
Rewrite equation (3) as   
 

2 2 42u v t                                                                   …..(4) 
 

Assume 
2 2( , ) 2u a b a b                                            …..(5) 

 
Substituting (5) in (4) and employing the method of 
factorization, define 
 

2 2( 2 ) 2a i b v i t  
 

 
Equating real and imaginary parts, we have 
 

2 2( , ) 2v a b a b   

2 ( , ) 2t a b ab  
 

Choosing  
2 12a b  , the values of , &u v t  are 

 

   

2 2 2

2 2 2

( ) (2 2)

( ) (2 2)

u b b

v b b









  


  
                                          ……..(6)            

                                              

  
 ( ) 2t b b                                                               …….(7)              

                                                                                                                                                                                            
Substituting the values of (6) in (2), we get the non-zero 
distinct integer solutions  
 

                        
4 2 2( ) (2 2) 1x b b     

                        
4 2 2( ) (2 2) 1y b b    

                        
4 2 2( ) (2 2) 1z b b     

                        
4 2 2( ) (2 2) 1w b b     

 
Thus, these values along with (7) represent non-zero distinct 
integer solutions of (1). 
 
Properties: 
 
1. Each of the following expression is a nasty number. 
 

             i)  6 ( ) ( ) ( ) ( )x b y b z b w b    

            ii)  6 ( ( ) ( ))( ( ) ( )) 4x b z b y b w b    

           iii)  6 ( ) ( ) ( ) ( )x b y b z b w b    

           iv)  6 ( ) ( ) 1x b y b   

           v)  6 ( ) ( ) 1z b w b   

2. 
 

 
24

4 ( ( ) ( ))( ( ) ( ))

64 ( ( ) ( ) ( ) ( )

x b y b z b w b

b x b y b z b w b

  

   
 

3. 
 

 4

8 ( ( ) ( ) ( ) ( )

2 ( ( ) ( ) ( ) ( )

x b y b z b w b

x b y b z b w b

  

   
  

4.    
2 28 ( ( ) 2 ( ( ) ( ) ( ) ( )t b x b y b z b w b     

5. 
 

   
2 2

4 ( ( ) ( )) ( ( ) ( ))

( ( ) ( ) ( ) ( )

x b y b z b w b

x b y b z b w b



   
  

 
Pattern II 
 
Rewrite equation (4) as 
 

2 4 22 1v t u                                                         ……...(8) 
 
Write 1 as 
 

(1 2 2)(1 2 2)
1

9

i i 
                                         …….(9)   

   
Substitute  (5) and (9) in (8) and employing the method of 
factorization, define 
 

   
2 2 (1 2 2)

2 ( 2 )
3

i
v i t a i b


            

 
Equating real and imaginary parts, we get                              
  

 
2 21

( , ) 2 8
3

v a b a b ab                                      …...(10)      

 

 
2 2 22
( , ) 2

3
t a b a b ab                                      …..(11) 

 
Since our aim is to find  integral solutions,  substituting 

3 & 3a A b B  in (5), (10)  
 

and (11) then the values of 
2, &u v t  are  

 

     

2 2

2 2

( , ) 9 18

( , ) 3 6 24

u A B A B

v A B A B AB

  


   
                         …..(12) 

 

     
2 2 2( , ) 6 12 6t A B A B AB                              ….(13) 

 

Treating (13) as quadratic in A and solving for A , we get   
                              

    
2 2 2 26 2 & 6A R S B R S                            …..(14) 

 

     ( , ) 18t R S RS                                                      …..(15)      

                                                                              
Substituting (14) in (12) and using (2) the values of , , ,x y z w  

are  
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4 4

4 4

4 4

4 4

( , ) 54 18 1

( , ) 54 18 1

( , ) 54 18 1

( , ) 54 18 1

x R S R S

y R S R S

z R S R S

w R S R S

     
     


      


       

                       …….(16) 

 
Thus, (16) and (15) represent the non-zero distinct integer 
solutions to (1).    
                              
Properties 
 

1. 
( , ) ( , ) ( , )

( , ) 0(mod 216)

x R S y R S z R S

w R S

 

 
 

 2. 3,( , 1) 36 0Rt R R t    

3. 

 4 ( , ) ( , ) 1

( ( , ) ( , ))

( ( , ) ( , ))

0(mod 2916)

x R S y R S

x R S y R S

z R S w R S



 
   



  

 

4. 

 4 ( , ) ( , ) 1

( ( , ) ( , ))

( ( , ) ( , ))

0(mod 419904)

x R S y R S

x R S y R S

z R S w R S

 

 
  



  

5. 

 68 ( , ) ( , ) 1

( ( , ) ( , ))
19

( ( , ) ( , ))

0(mod 419904)

x R S y R S

x R S y R S

z R S w R S

 

 
  



  

6.
254 ( , ( 1) ( , ) 1 0(mod 27)t R R R x R S     

7.
318 ( , ) 54 ( , ) 1 0(mod17496)y R S t S S    

8.
3 4( , ) ( , ) 108( ( , ) ) 0z R S w R S t R R S     

9. ( ( , ) ( , ))( ( , ) ( , ))x R S y R S z R S w R S   
can be written as difference of two squares 
 
10.Each of the following expression is a nasty number. 
 

 i)  18 ( , ) ( , ) ( , ) ( , )x R S y R S z R S w R S    

 ii)
3648 ( , ) ( , ) 108 ( , )z R S w R S t R R     

 
Remark 1 
 
It is to be noted that (13) is satisfied by the following three 

choices of &A B       
 

   i) 
2 2 2 212 & 6A R S B R S        

  ii)
 

2 2 2 2
1 112 4 & 12 2A R S B R S      

  iii) 
2 2 2 2

1 112 4 & 6 4A R S B R S        

                    
Following the procedure as above, the corresponding integer 
solutions to (1) are exhibited below 
 
Solution for Choice 1 
 

4 4( , ) 27 72 1x R S R S      

4 4( , ) 27 72 1y R S R S      

4 4( , ) 27 72 1z R S R S      

4 4( , ) 27 72 1w R S R S      

( , ) 18t R S RS  
 
Solution for Choice 2 
 

4 4
1 1( , ) 216 18 1x R S R S      

4 4
1 1( , ) 216 18 1y R S R S      

4 4
1 1( , ) 216 18 1z R S R S       

4 4
1 1( , ) 216 18 1w R S R S       

1 1( , ) 36t R S RS
 

 
Solution for Choice 3 
 

4 4
1 1( , ) 216 9 2 1x R S R S      

4 4
1 1( , ) 216 9 2 1y R S R S      

4 4
1 1( , ) 216 3 1z R S R S      

4 4
1 1( , ) 216 3 1w R S R S      

1 1( , ) 36t R S RS
 

 
Remark 2 
 
In addition to (9), we have the following representations for 1 
 

(1 12 2)(1 12 2)

289

(7 6 2)(7 6 2)
1

121

(17 6 2)(17 6 2)

361

i i

i i

i i

  


  

 

  

   

 
Repeating the analysis presented above, we obtain the other 
patterns of integer solutions to (1).    
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Conclusion 
 
To conclude one may consider biquadratic equation with 
multivariables (5) and search for  their non-zero distinct 
integer solutions along with their corresponding properties.  
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