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INTRODUCTION 
 
The notion of fuzzy set was introduced by Zadeh
A.Rosenfeld (1971) defined fuzzy groups 
theory results have been extended to fuzzy groups. The idea of 
level subgroups of a fuzzy group was initiated by 
Sivaramakrishna Das (1981). Prabir Bhattacharya
analyzed the level subgroups of a fuzzy group in more detail 
and investigated whether the family of level subgroups of a 
fuzzy subgroup determine the fuzzy subgroup uniquely or not. 
Vasantha Kandasamy (2003) studied about Smarandache fuzzy 
semigroups. Sharma (2013) introduced the notion of α
set, α-fuzzy group, α-fuzzy coset and 
properties. Gowri and Rajeswari (2015) 
concept of  S-α fuzzy semigroups, S-α fuzzy left, right cosets 
and S-α fuzzy normal subsemigroups and derived their 
characterizations. They have also introduced the concept of S
α level subgroup of an S-α fuzzy semigroup 
Rajeswari, 2016). In this paper, S-α fuzzy semigroups having 
an identical family of S-α level subgroups are investigated. It is 
also derived a necessary and sufficient condition for two S
fuzzy semigroups with an identical family of  S
subgroups to be equal. Throughout this paper, α will always 
denote a member of [0,1]. 
 

Definition 1.1. Let �  be a non empty set. A 
�  is a function � ∶ 	� → 	 [0,1]. 
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The notion of fuzzy set was introduced by Zadeh (1965).  
 and many group 

theory results have been extended to fuzzy groups. The idea of 
level subgroups of a fuzzy group was initiated by 

Prabir Bhattacharya (1987) 
analyzed the level subgroups of a fuzzy group in more detail 

ated whether the family of level subgroups of a 
fuzzy subgroup determine the fuzzy subgroup uniquely or not. 

Smarandache fuzzy 
introduced the notion of α-fuzzy 

 determined their 
2015)  introduced the 
α fuzzy left, right cosets 

α fuzzy normal subsemigroups and derived their 
They have also introduced the concept of S-

α fuzzy semigroup (Gowri and 
α fuzzy semigroups having 

α level subgroups are investigated. It is 
ufficient condition for two S-α 

fuzzy semigroups with an identical family of  S-α level 
subgroups to be equal. Throughout this paper, α will always 

A fuzzy subset � of  
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Definition 1.2. A fuzzy subset 
subgroup of  � if  
 
(i) �(��) ≥ min{	�(�), �(�)}                                                                                                  
(ii) �(���) = �(�), for all �, �
 
Definition 1.3. Let � be a fuzzy subset of a set 
	[0,1], the set �� = {� ∈ �/�(�
of �. 
 
Definition 1.4. Let � be a group and 
�. The subgroups ��, � ∈ [0,1]
subgroups of �. 
 
Definition 1.5. A semigroup �
semigroup (�-semigroup) if there exists a proper subset 
�	which is a group under the same binary operation in 
 
Definition 1.6. Let � be a fuzzy subset of a group 
� ∈ [0,1]. Then an �-fuzzy subset of 
fuzzy set �), denoted by 
	���{�(�), �}, for all � ∈ �. 
 
Definition 1.7.  Let 	� be an �
subset of � and let � ∈ [0,1]. 
fuzzy semigroup (�-� fuzzy semigroup)
proper subset � of � which is a group and the restriction of 
to �	(��: � → [0,1]) is such that  
Definition 1.8. Let � be an �-
a fuzzy subset of �.	For � ∈
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A fuzzy subset � of a group � is called a fuzzy 

( )}                                                                                                  
� ∈ 	�. 

be a fuzzy subset of a set �. For � ∈
�) ≥ �}	 is called a level subset 

be a group and � be a fuzzy subgroup of 
] and � ≤ 	�(�), are called level 

� is said to be a Smarandache 
there exists a proper subset � of 

which is a group under the same binary operation in �.  

be a fuzzy subset of a group �. Let 
fuzzy subset of �(with respect to a 

), denoted by ��, is defined as ��(�) =

�-semigroup.  Let � be a fuzzy 
. � is called a  Smarandache-	� 

fuzzy semigroup) if there exists a 
which is a group and the restriction of � 
is such that  ��

� is a fuzzy group. 
-semigroup. Let �: � → [0,1] be 
[0,1], a Smarandache-� level 

 

INTERNATIONAL JOURNAL  
OF CURRENT RESEARCH  

α level subgroups”, International Journal of 



subset (�-� level subset) of the fuzzy subset A, denoted by 
A��

�,  is defined as  A��

� = {x ∈ P/	A�
�(�) ≥ �}, where � is a 

proper subset of � which is a group. 
 
Definition 1.9. Let � be an �-� fuzzy semigroup of an �-
semigroup � relative to a group �	in �. If � ∈ [0,1] and 
� ≤ ��

�(�), then the subgroups ���

� are said to be 

Smarandache-� level subgroups (�-�	level subgroups) of � 
with respect to �. 
 
Result 1.10[11]. Let �	be an �-� fuzzy semigroup of an �-
semigroup	�	relative to a finite group P. Let ��(��

�) =
{��/��

�(�) = ��, for some � ∈ �}.	Then ����

�		's are the only 

�-� level subgroups of �	with respect to �. 
 
Result 1.11[11] Let � be an �-semigroup. Then any 
subgroup	� of a group	� in � can be realised as an �-� level 
subgroup of some 	�-�	fuzzy semigroup of � relative to �. 
 
Some Characterizations of �-� fuzzy semigroups by their 
�-� level subgroups 
 
In this section	, �-� fuzzy semigroups having an identical 
family of  �-� level subgroups are analysed. It is also derived a 
necessary and sufficient condition for two �-� fuzzy 
semigroups with an identical family of 	�-� level subgroups to 
be equal. A relation is defined on the set of all �-�	fuzzy 
semigroups and it is also investigated. 
 
Theorem 2.1. Let � be an	�-�emigroup and � be an �-� fuzzy 
semigroup of � relative to a finite group � in �. If ��	and �� are 

in ��	(��
�) such that ����

�		 = ����

�		then �� = ��	.     

 
Proof 
 
Let ��	be a preimage of ��	 under ��

�. Then ��
�		(��)=	��	 

which implies that �� ∈ ����

�		, since ����

�		 = ����

�		. 

Therefore ��
�		(��) ≥ ��	which implies that �� ≥ ��. Similarly 

it is easy to see that �� 	 ≥ ��	and hence   �� = ��	. 

 
Remark 2.2.   Two �-� fuzzy semigroups of an �-semigroup 
� relative to a finite group � in � may have an identical family 
of 	�-� level subgroups with respect to �, but the �-� fuzzy 
semigroups need not be equal. This is illustrated in the 
following example. Let � = {�, �, �, �, �, �, �, �} which is a 
semigroup by the following table. 
 

* e a b c d f g 
e e a b c d f g 
a a e c b a a a 
b b c e a b b b 
c c b a e c c c 
d d a a a d f g 
f f b b b d f g 
g g c c c d f g 

 

Let	� = {�, �, �, �} which is the klein four group and hence � 
is an �-semigroup. 
 

Let �: � → [0,1] be defined as   �(�) = �

t�,							if		x = e	
t�,				if		x = a, b
t�	,					if		x = c	
0, otherwise

� 

where �� ∈ [0,1], 0 ≤ � ≤ 	2		and �� > �� > ��.	 Choose 
� ≥ 	 ��. Then for � ∈ �, 	��

�(�) = ���{��(�), �} = �(�).  
Clearly ��

� is a fuzzy group and hence �	is an 	�-� fuzzy 
semigroup relative to �.  Also 	��	(��

�) = {��, 	t�, t�}. Then 
the only �-�	 level subgroups of  � with respect to � are 
����

�		 = {�}, 	����

�		 = {�, �, �}  and  ����

�		 = �. Now we 

take ��, ��, �� ∈ 	 [0,1] such that �� > �� > ��		and {��} ∩
{��} = ∅ 
 

Let �: � → [0,1] be defined as   �(�) = �

s�,							if		x = e	
s�,				if		x = a, b
s�	,					if		x = c	
0, otherwise

� 

 
Let � ≥ 	 ��. Then 	��

� is a fuzzy group and hence � is an �-� 
fuzzy semigroup relative to �. Thus the only �-� level 
subgroups of  � with respect to � are 	����

�		 = {�}, 	����

�		 =

{�, �, �}  and  ����

�		 = �. Thus � and � have the same family 

of �-� level subgroups relative to � and it is clear that  � is not 
equal to �. 
 
Theorem 2.3. Let � and � be two �-� fuzzy semigroups of an 
�-semigroup � relative to a finite group � ⊂ �. Assume that 
�	and � have identical family of 	�-� level subgroups with 
respect to 	�. If ��(��

�) = {��, 	��, … , ��}	���		��(��
�) =

{��, 	��, … , ��}	, where �� > �� > … > ��  and �� > �� > ⋯ >
��, then   
(i)	� = �   
(ii)	����

�		 = ����

�		, 0	 ≤ �	 ≤ �		                                                                                                       

(iii) if  ��	� such that ��
�(�) = ��, then ��

�(�) = �� , 
									0 ≤ 	� ≤ �. 
 
Proof 
 
Since ��(��

�) = {��, 	��, … , ��}	and ��(��
�) =

{��, 	��, … , ��}, the only �-� level subgroups of  � and  � with 
respect to � are the two families 

�	����

�		, 	����

�		, . . . , ����

�	�	and �	����

�		, 	����

�		, . . . , ����

�	�  

respectively (by theorem 1.10). But by assumption, 

�	����

�		, 	����

�		, . . . , ����

�	� = �	����

�		, 	����

�		, . . . , ����

�	�. 

Therefore � must be equal to � which proves (i).                                                                                                            
(ii) Since �� > �� > … > ��   and �� > �� > ⋯ > ��, by [ 10, 
remark 2.13], we have the following two chains of �-� level 
subgroups of � and � with respect to �: 
{�} = 	 ����

�		 < 	����

�		 <	. . . < 	 ����

�	 = �	and		����

�		 <

	����

�		 <	. . . < 	 ����

�	 = P.  Therefore, if  �� < ��, then 

����

�	 > ����

�	 and if �� < ��, then ����

�	 > ����

�	. Clearly, 

����

�		 = {�} = ����

�		.		By assumption,		����

�		 = 	����

�		,  for 

some � > 0. Suppose that  � > 1. Then �� > ��	which implies 

that 	����

�		 < 	����

�		. Also 	����

�		 = 	����

�		, for some � > 1. 

Therefore 	����

�				< ����

�		. Now 	����

�			 = 	 	����

�		 <

		����

�	,		since 	� > 1. This implies that 	����

�		 < 	����

�			 which 

contradicts 	����

�			 < 	����

�			. Therefore 	����

�		 = 	����

�		. 

Similarly, it can be easily proved that 	����

�			 = 	 ����

�		
, where 

� = 2	��	�.                          
(iii) Suppose that � ∈ � such that  ��

�(�) = �� and ��
�(�) =

��. Then � ∈ ����

�		and 	� ∈ ����

�		. By (ii), 	����

�			 = 	 ����

�		
 

which implies that ��
�(�) ≥ ��. Therefore �� ≥ ��	which 
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implies 	����

�			 ≤ 	����

�			.  Moreover, by (ii), 	����

�			 = ����

�	 

which gives  ��
�(�) ≥ ��. This implies that �� ≥ �� and hence 

����

�	 < ����

�	.  Now by (ii), ����

�	 < ����

�	. Therefore 

����

�	 = ����

�	.   By theorem 2.1, �� = �� and hence ��
�(�) =

��. 
 
Theorem 2.4. Let � and  � be two �-� fuzzy semigroups of an 
�-semigroup � relative to a finite group � ⊂ 	�. Let � and � 
have identical families of �-� level subgroups with respect to 
�. Then ��

� = ��
�	if and only if  ��	(��

�) = ��	(��
�). 

 
Proof 
 
Suppose that ��	(��

�) = ��	(��
�). Let ��(��

�) =
{��, 	��, … , ��}	���		��(��

�) = {��, 	��, … , ��}	, where 
�� > �� > … > ��  and �� > �� > ⋯ > �� . Since �� ∈
��	(��

�), �� ∈ ��	(��
�) which implies �� = ���

 for some ��. 

If ���
≠ ��, then ���

< ��. �� ∈ ��	(��
�) ⇒ �� = ���

 for some 

��. Also  �� > �� ⇒ ���
> ���

. If we proceed in this way, we 

have ���
> ���

> ⋯ > ���
, where ���

< �� which contradicts 

��	(��
�) = ��	(��

�). Therefore ���
= ��  and hence �� = ��. 

A similar argument will lead to �� = ��, 0 ≤ � ≤ �. Now let 
� ∈ �. Then ��

�(�) = ��	for some �. Using theorem 2.3, 
��

�(�) = �� which implies that  ��
�(x) =	��

�(x), since 
�� = ��, for all �. Therefore ��

� = ��
�. Converse part is 

trivial. 
 
Definition 2.5. Let � be an �-semigroup and ��

� denotes the 
set of all �-� fuzzy semigroups of � relative to a finite group 
�	in �. For	�, � ∈ ��

�, we define � ∼ � if and only if � and � 
have the same family of 	�-� level subgroups of � with respect 
to �. 
 
Remark 2.6. By remark 2.2, two elements � and � in  ��

� 
may satisfy the condition � ∼ �, but they need not be equal. 
 
Theorem 2.7. The relation ∼, defined in 2.5, is an equivalence 
relation. 
 
Proof 
 
It is obvious that ∼ is reflexive and symmetric. If � ∼ � and 
� ∼ �, then clearly A and C will have the same family of �-� 
level subgroups and hence � ∼ �. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Corollary 2.8. If � is an �-semigroup, then the number of 
distinct equivalence classes in ��

�, under the relation  ∼ 
defined in 2.5, is finite. 
 
Proof 
 
Since � is finite and each �-� level subgroup with respect to � 
is a subgroup of �, the number of �-� level subgroups with 
respect to � is finite. By theorem 1.11, any subgroup of  � can 
be realised as an �-� level subgroup of some �-� fuzzy 
semigroups of  � relative to �. Thus it follows that the number 
of possible chains of �-� level subgroups is also finite. Since 
each equivalence class is characterized completely by its chain 
of �-� level subgroups with respect to �, the number of 
distinct equivalence classes in ��

� is finite. 
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