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INTRODUCTION 
 

Let A  denote the class of functions 
 f z

 of the form

 
2

,n
n

n

f z z a z




 
                                                     

which are analytic in the open unit disk 
  U

 

Further, by S  we shall denote the class of functions 

which are univalent in U . Since univalent functions are one
to-one, they are invertible and the inverse functions need not be 

defined on the entire unit disk U . However, the famous Koebe 

one-quarter theorem ensures that the image of the unit disk 

under every function 
f A

 contains a disk of radius

Thus every univalent function 
f

 has an inverse 

 1 ( )f f z z 
, 

( )zU
 

and 

 1
0 0

1
( ) , ( ), ( )

4
f f w w w r f r f  

   
   
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f z
of the form 

                                                  (1.1) 

: 1 .z z  �
 

we shall denote the class of functions 
f A

 

Since univalent functions are one-
one, they are invertible and the inverse functions need not be 

. However, the famous Koebe 

quarter theorem ensures that the image of the unit disk U  

contains a disk of radius1 / 4 . 

has an inverse 
1f 

 satisfying 

600 005, Tamilnadu, India. 

 

where 
1 2 2 3

2 2 3

3 4
2 2 3 4

( ) (2 )

(5 5 ) .

f w w a w a a w

a a a a w

   





  

A function 
f A

 is said to be bi

 f z
 and 

1( )f z

 are univalent in
 

We let   to denote the class of bi

given by (1.1). If 
 f z

 is bi-
the boundary of the domain and such that it can be continued 

across the boundary of the domain so that 

and analytic throughout
1.w 

class   are 
 , 1

1

z
log z

z
 

 and so on.

The coefficient estimate problem for the class 
Bieberbach conjecture, is settled by de

proved that for a function 
f z z a z

na n
, for 2,3,n  , with equality only for the rotations of 

the Koebe function 
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and ( , ) C  of bi-univalent functions 

Furthermore, we find upper bounds for the second and 

third coefficients for functions in these new subclasses using differential operator. 
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1 2 2 3
2 2 3

3 4
2 2 3 4

( ) (2 )

(5 5 ) .

f w w a w a a w

a a a a w



  
                    (1.2) 

is said to be bi-univalent in U  if both 

are univalent in U . 

to denote the class of bi-univalent functions in U  

-univalent, it must be analytic in 
the boundary of the domain and such that it can be continued 

across the boundary of the domain so that 
1( )f z

 is defined 

1.
 Examples of functions in the 

log z
and so on. 

The coefficient estimate problem for the class S  known as the 
Bieberbach conjecture, is settled by de-Branges [4], who 


2

,n
n

n

f z z a z




 
 in the class ,S

, with equality only for the rotations of 
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( ) .

(1 )

z
K z

z



 

 

In 1967, Lewin [8] introduced the class   of bi-univalent 

functions and showed that 2 1.51a 
 for the functions 

belonging to . It was earlier believed that for
f 

, the 

bound was 
1na 

 for every n  and the extremal function in 

the class was 1

z

z . E.Netanyahu [10] in 1969, ruined this 

conjecture by proving that in the set  , 
2 4ax / 3m

f
a




. In 

1969, Suffridge [13] gave an example of 
f 

 for which 

2 4 / 3a 
 and conjectured that 2 4 / 3.a 

 In 1981, Styer and 

Wright [12] disproved the conjecture that 2 4 / 3a 
. Brannan 

and Clunie [2] conjectured that 2 2a 
. Kedzierawski [6] in 

1985 proved this conjecture for a special case when the 

function 
f

 and 
1f 

 are starlike functions. Brannan and Clunie 

[2] conjectured that 2 2a 
.Tan [14] in proved that 

2 1.485a 
 which is the best known estimate for functions in 

the class of bi-univalent functions. 
Brannan and Taha [3] introduced certain subclasses of the bi-

univalent function class   similar to the familiar subclasses 

 S 

 and 
 C 

 of the univalent function class  . 
Recently, Ali et al. [1] extended the results of Brannan and 
Taha [3] by generalising their classes using subordination. 

An analytic function 
f

 is subordinate to an analytic function
g ,written 

( ) ( )f z g z
, provided there is a Schwarz function 

w  defined on U  with 
(0) 0w 

 and 
( ) 1w z 

 satisfying

   ( )f z g w z
. Ma and Minda [9], unified various 

subclasses of starlike and convex functions for which either of 

the quantity 

( )

( )

zf z

f z



 or 

( )
1

( )

zf z

f z





 is subordinate to a more 

general superordinate function. For this purpose, they 

considered an analytic function   with positive real part in the 

unit disk U ,
(0) 1 

, 
(0) 0 

 and   maps U onto a region 
starlike with respect to 1 and symmetric with respect to the real 
axis. Such a function has a series expansion of the form 
 

2 3
1 2 3 1( ) 1 , ( 0).z B z B z B z B      

                     (1.3) 

In this paper, for
( )f z A

. Let a new differential operator be 
defined [5] on a class of analytic functions of the form (1.1) as 
follows: 
 

   0 ,F f z f z
 

 

     1 :F f z zf z Ff z  
 

and in general 
 

       1
0 0 .n nF f z F F f z n   � �

 
 

We easily find that 
 

   0
2

.k n
nk n

n

F f z z C a z n




   �
                                  

(1.4) 
 

where 

!

| ( ) | !
n k

n
C

n k



 

 

Definition: 1.1.  Let   be a non-zero complex number. A 

function
 f z

given by (1.1) is said to be in the class 
 , S

 
if the following conditions are satisfied: 
f 

 and 

  
 

'

1
1 1 ,

( )

j

j

z F f z
z z

F f z




 
   
 
 

 U

                             (1.5) 
and 

  
 

1
1 1 , ,

( )

j

j

w F g w
w w

F g w




 
   
 
 

 U

                        (1.6) 
 

where the function g  is given by (1.2). 
 

Definition: 1.2. Let   be a non-zero complex number. A 

function
 f z

given by (1.1) is said to be in the class 
 , C

 
if the following conditions are satisfied: 
f 

 and 

  
 

 
1

1 ,
( )

j

j

z F f z
z z

F f z








 
  
 
 

 U

                                     (1.7) 
and 

  
 

 
1

1 , ,
( )

j

j

w F g w
w w

F g w








 
  
 
 

 U

                                 (1.8) 
 

where the function g  is given by (1.2). 
 
2. Coefficient estimates 
 

Lemma: 2.1. [11] If p P , then 
2kc 

 for each k , where 
P  is the family of functions p  analytic in U  for which 

 Re 0p z 
, 

  2
1 21p z c z c z   

 for zU . 
 

Theorem: 2.2. Let the function 
 f z A

 be given by (1.1). If 

 ,f   S
, then 

   

1 1

2
2 2 2

3 2 1 1 2 22 j j j

B B
a

C C B B B C






  
 

and 
 

 1 2 1

3 2
3 2

.
2 j j

B B B
a

C C

 



                                                      (2.1) 
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Proof: Since
 ,f   S

, there exists two analytic functions

, :r s U U , with
(0) 0 (0),r s 

such that 

  
 

1
1 1 ( )

( )

j

j

z F f z
r z

F f z




 
   
 
   

and 

  
 

1
1 1 ( ) .

( )

j

j

w F g w
s z

F g w




 
   
 
                                      (2.2) 

 

Define the functions p  and q  by 
 

  2
1 2

1 ( )
1

1 ( )

r z
p z p z p z

r z


    




 
and 

  2
1 2

1 ( )
1 .

1 ( )

s z
q z q z q z

s z


    




                                   (2.3) 
Or equivalently,  

 

2
21

1 2

2
31 1 1 2

3 2

( ) 1

( ) 1

21

2

2 2 2

p z
r z

p z

p
p z p z

p p p p
p p z






  
    
  

  
             



                    (2.4) 
and 

 

2
21

1 2

2
31 1 1 2

3 2

( ) 1

( ) 1

21
.

2

2 2 2

q z
s z

q z

q
q z q z

q q q q
q q z






  
   
  

  
              



                  (2.5) 
 

It is clear that p  and q  are analytic in U  and
(0) 1 (0)p q 

. 

Also p  and q  have positive real part in U  and hence 
2ip 

 

and 
2.iq 

 
 
In the view of (2.3), (2.4) and (2.5), clearly, 

  1 ( ) 1
1 1

( ) 1( )

j

j

z F f z p z

p zF f z




 
         

   
and 

  1 ( ) 1
1 1 .

( ) 1( )

j

j

w F g w q w

q wF g w




 
         

                               (2.6) 
 
Using (2.5) and (2.6) together with (1.3), one can easily verify 
that 

2
2 21 1 1 1

2 2 1

( ) 1 1
1

( ) 1 2 2 2 4

B p B pp z
z p B p z

p z


   
              



  (2.7) 
 
and 

2 2
21 1 1 1 2 1

2

( ) 1
1 .

( ) 1 2 2 2 4

B q B q B qq w
w q w

q w


   
              



(2.8) 
 

Since 
f 

 has the Maclaurin series given by (1.1), 

computation shows that its inverse 
1g f 

 has the expansion 
given by (1.2). It follows from (2.6), (2.7) and (2.8) that 

2 2 1 1

1
,

2
jC a B p 

                                                                  (2.9) 
 

2 2 2 2
3 3 2 2 1 2 1 2 1

1 1 1
2

2 2 4
j jC a C a B p p B p 

 
    

                   (2.10) 
 
and 

2 2 1 1

1
,

2
jC a B q 

                             (2.11) 

 2 2 2 2
3 2 2 3 3 1 2 1 2 1

1 1 1
4 2 .

2 2 4
j j jC C a C a B q q B q 

 
     

    (2.12) 
 
From (2.9) and (2.11), it follows that 
 

1 1.p q 
                                                                           (2.13) 

  
Now (2.10), (2.12) and (2.13) gives 
 

 

    

3
1 2 22

2 2 2 2
3 2 1 2 1 2

.
4 2 j j j

B p q
a

C C B C B B








  
                       (2.14) 

 

Using the fact that 2 2p 
 and 2 2q 

 gives the desired 

estimate on 2a
, 

 

   

1 1

2
2 2 2

3 2 1 1 2 2

.
2 j j j

B B
a

C C B B B C






  
 

 
From (2.10)-(2.12), gives 
 

    

 

2 2 21
3 2 2 2 2 3 1 2 1

3 2 2
3 3 2

4
2 .

4 2

j j j j

j j j

B
C C p C q C p B B

a
C C C


   




 
 

Using the inequalities 1 2p 
, 2 2p 

 and 2 2q 
 for 

functions with positive real part yields the desired estimation of

3a
. 

For a choice of 
 

1

1

Az
z

Bz





 , 1 1B A    , we have the 
following 
 

Corollary: 2.3. Let 1 1B A    . If 

1
,
1

Az
f

Bz


 
  

 
S

, then 
 

 

     
2

2 2
3 2 22 1j j j

A B
a

C C A B B C








   
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and 

 
 3 2

3 2

1 1
.

2 j j

A B B
a

C C

  



 

If we let
  2 21

1 2 2
1

z
z z z

z



  
 

     
 


, 0 1  , in 

the above theorem, we get the following: 
 

Corollary: 2.4. Let 0 1  . If 
 ,f   S

, then 
 

   
2

2 2
3 2 2

2

2 2 1j j j

a
C C C

 

  


  
 

 
and 
 

 
3 2

3 2

1 1 2
.

2 j j

a
C C

   



 

 

Theorem: 2.5. Let the function 
 f z A

 be given by (1.1). If 

 ,f  C
, then 

 

   

1 1

2
2 2 2

3 2 1 1 2 22 3 2 2j j j

B B
a

C C B B B C






  
 

and 
 

 1 2 1

3 2
3 2

.
2(3 2 )j j

B B B
a

C C

 



                                                    (2.15) 

 

Proof: Since
 ,f  C

, there exists two analytic functions

, :r s U U , with
(0) 0 (0)r s 

, such that 

  
 

 
1

1 ( )
( )

j

j

z F f z
r z

F f z








 
  
 
   

and 

  
 

 
1

1 ( ) .
( )

j

j

w F g w
s z

F g w








 
  
 
                                        (2.16) 

 
Using (2.3), (2.4), (2.7) and (2.8), one can easily verified that 
 

2 2 1 1

1
2 ,

2
jC a B p 

                                                             (2.17) 
 

2 2 2 2
3 3 2 2 1 2 1 2 1

1 1 1
6 4

2 2 4
j jC a C a B p p B p 

 
    

               (2.18) 
 
and 
 

2 2 1 1

1
2 ,

2
jC a B q 

                                                            (2.19) 
 

 2 2 2 2
3 2 2 3 3 1 2 1 2 1

1 1 1
12 4 6 .

2 2 4
j j jC C a C a B q q B q 

 
     

    (2.20) 
From (2.17) and (2.19), it follows that 
 

1 1.p q 
                                                                            (2.21) 

 
Now (2.18), (2.20) and (2.21) gives 
 

 

    

3
1 2 22

2 2 2 2
3 2 1 1 2 2

.
8 3 2 2j j j

B p q
a

C C B B B C








  
                    (2.22) 

 

Using the fact that 2 2p 
 and 2 2q 

 gives the desired 

estimate on 2a
, 

 

   

1 1

2
2 2 2

3 2 1 1 2 2

.
2 3 2 2j j j

B B
a

C C B B B C






  
 

 
From (2.18)-(2.20), gives 
 

    

 

2 2 2 21
3 2 2 2 2 2 1 1 3

3 2
3 3 2

12 4 4 3
2 .

24 3 2

j j j j

j j j

B
C C p C q B B p C

a
C C C


   




 
 

Using the inequalities 1 2p 
, 2 2p 

 and 2 2q 
 for 

functions with positive real part yields 
 

 
 
1 2 1

3 2
3 2

.
2 3 2j j

B B B
a

C C

 



 

 

For a choice of
 

1

1

Az
z

Bz





 , 1 1B A    , we have the 
following corollary. 

Corollary: 2.6.  Let 1 1B A    . If 

1
,
1

Az
f

Bz


 
  

 
S

, then 
 

 

    
2

2 2
3 2 22 3 2 2 1j j j

A B
a

C C A B B C








   
 

 
and 
 

 
 3 2

3 2

1 1
.

2 3 2j j

A B B
a

C C

  



 

 

If we let 
  2 21

1 2 2
1

z
z z z

z



  
 

     
 


, 0 1  , in 

the above theorem, we get the following: 
 

Corollary: 2.7. Let 0 1  . If 
 ,f   S

,  then 
 

   
2

2 2
3 2 23 2 1j j j

a
C C C

 

 


  
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and 

 
 3 2

3 2

1 1
.

3 2j j

a
C C

   



 

Remark: 2.1. If we let 1, 0j   , Theorem: 2.2 and Theorem: 
2.5 reduce to the result of R.M.Ali et.al [1], corollary 2.1 and 
corollary 2.2. 
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