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INTRODUCTION 
 
Fixed point theorems are very important tools for providing 
evidence of the existence and uniqueness of solutions to 
various mathematical models. Fixed point theory focuses on 
the strategies for solving non-linear equations of the kind T x = 
x in which T is a self-mapping defined on a subset of a metric 
space, a normed linear space, a topological vector space or 
some pertinent framework. But when T is not a self
it is possible that T x = x has no solution. Subsequently, one 
targets to determine an element x that is in so
proximity to T x. In fact, best approximation theorems and best 
proximity point theorems are suitable to be explored in this 
direction. A well-known best approximation theorems, due to 
Fan (1969), ascertains that if K is a non
convex subset of a Hausdorff  locally convex topological 
vector space E and T : K   E is a continuous non
mapping , then there exists an element x in such a way that 
d(x, Tx) = d ( Tx , K). Several authors, including Prolla 
Reich (1978) and Sehgal and Singh (1988, 1989
accomplished extensions of this theorem in various directions. 
Moreover, a result that unifies all such best approximation 
theorems has been obtained by Vetrivel et al. 
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ABSTRACT 

In this paper, we present some fixed point theorems with best approximation flavor. Our results 
generalize the results of (8) by relaxing the compactness condition of the set X. The original result in 
this direction was due to (1) for a continuous map defined on a compact convex set.
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Fixed point theorems are very important tools for providing 
evidence of the existence and uniqueness of solutions to 
various mathematical models. Fixed point theory focuses on 

linear equations of the kind T x = 
mapping defined on a subset of a metric 

space, a normed linear space, a topological vector space or 
some pertinent framework. But when T is not a self-mapping, 
it is possible that T x = x has no solution. Subsequently, one 

element x that is in some sense close 
. In fact, best approximation theorems and best 

proximity point theorems are suitable to be explored in this 
known best approximation theorems, due to 

, ascertains that if K is a non-empty compact 
convex subset of a Hausdorff  locally convex topological 

E is a continuous non-self 
mapping , then there exists an element x in such a way that 

Tx , K). Several authors, including Prolla (1982), 
1988, 1989), have 

accomplished extensions of this theorem in various directions. 
Moreover, a result that unifies all such best approximation 

. (1992). Let E be  
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a Linear Hausdorff topological vector space and E* the dual of 
E.  
Let H, X be non-empty subsets of E, we put
 
��� = �� ∩ � ��������� and ��� = �

where A is the closure of A⊂
A.��� and ��� are boundary and interior respectively of X 
relative to H. 
 
1991 Mathematics Subject Classification. Primary 47A15
Secondary 46A32, 47D20. Key words and phrases
approximation, fixed point, Topological vector space.
 
Main Results 
 
Relaxing the compactness of X in Theorem 5 of Takahashi
we prove the following 
 
Theorem 2.1 Let X be a non-
subset of a Linear Hausdorff topological vector space E and T 
be a continuous mapping of X into E. Then, either there exist 
�� ∈ � such that �� and ��
continuous linear functional, or there exist 
such that 

�(�� 	���)< 0 ≤
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ctness of X in Theorem 5 of Takahashi(8), 

-empty weakly compact convex 
subset of a Linear Hausdorff topological vector space E and T 
be a continuous mapping of X into E. Then, either there exist 

��� can not be separated by a 
continuous linear functional, or there exist �� ∈ � and � ∈ �  

≤
���

� ∈ �
	�(�� �).	 
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In order to prove if we need the following Lemma (2.1) for a 
topological vector space. It was proved by Ganguly and 
Wadhwa (1994) in Theorem 2 for a normed Linear space, 
based upon the results of Sehgal, Singh and Whitfield (1992). 
 
Lemma 2.1 Let X be a non-empty, weakly compact subset of a 
Hausdorff topological vector space E and Let F be a real 
valued function on � × � satisfying: 
 

(i) For each � ∈ �, the function �(�,�) of X is upper semi 
continuous; 

(ii) For each � ∈ �, the function �(�,�) of y is convex; 
(iii)�(�,�)≥ �for every � ∈ � for some real C. 

 
Then, there exists �� ∈ � such that �(��,�)≥ � for all � ∈ �. 
 
Proof of Theorem 2.1. Suppose that for each � ∈ �, there 
exists � ∈ �  such that �(� ��)< 0. Setting	�� = {� ∈

�:	�(� ��)< 0} for each� ∈ � ,we have  
X = ���∈� . Since  X is weakly compact, there exist a finite 

family {��,��,…..,��} in E* such that � = ���
�
��� . Let 

{��,��,…..,��} be a partition of unity corresponding to this 
covering {���} of X. Define a real valued function F on � × � 

by setting. 
 
�(�,�)= ∑ ��(�)��(� �)�

��� . Then by Lemma 2.1, 
 
there exists �� ∈ � such that 
 
�(��,�)= ∑ ��(��)��(�� �)≥ 0�

��� for all � ∈ �. 
 

On the other hand, we know that  
 
�(��,��)= ∑ ��(��)��(�� ���)< 0

�
��� . 

 
By putting,� = ∑ ��(��)��

�
��� , we complete the proof. 

2 
As direct consequences of Theorem 2.1, we have the following 
two theorems. 
 
Theorem 2.2 Let X be a non-empty weakly compact convex 
subset of a locally convex topological vector space E and T be 
a continuous mapping of X into E. If for each � ∈ �, there 
exists �� ∈ �and � ≥ 0 such that �� � = �(�� �), then T 
has a fixed point. 
 
Proof. Suppose T has no fixed point. By Theorem 2.1, there 
exists �� ∈ � and � ∈ �  such that  
 

�(�� 	���)< 0 ≤
���

� ∈ �
	�(�� �). 

 
For this	��, we can choose �� ∈ � and � ≥ 0 such that 
 
	��� 	�� = �(�� 	��). Since T has no fixed point, � > 0. 
 
Hence we have 
 

�(�� 	���)< 0 ≤
�

�
�(�� 	���), a contradiction,  

 
therefore, we have a fixed point. 
 
 

Theorem 2.3 Let H be a closed convex subset of a locally 
convex topological vector space E and T be a continuous 
mapping of H into H. If there exists a weakly compact convex 
subset X of H such that for each� ∈ ���, there exists  �� ∈ � 
and � ≥ 0 with 						�� 	� = �(�� 	�), then T has a fixed 
point in H. 
 
Proof. Consider the restriction to X of T. If T has no fixed 
point in X, by Theorem 2.1, there exists �� ∈ � and � ∈ �  
such that  
 

�(�� 	���)< 0 ≤
���

� ∈ �
	�(�� �). 

 
Let�� ∈ ���. Since��� ∈ �, we can choose�(0 < � < 1) 
small enough is that			� = ���� + (1 �)�� lies in X.Hence 
we obtain 
 
		�(�� 	���)< 0 ≤ 	��(�� ���), a contradiction. 
 
Similarly, we obtain a contradiction for the case of �� ∈ ���. 
Therefore, T has a fixed point.  
For a normed vector space, we have from Lemma 2.1. 
 
Theorem 2.4 Let X be a non-empty weakly compact convex 
subset of a normed linear space E and T be a continuous 
mapping of X into E. Then, there exists�� ∈ �such that 
 

���

� ∈ �
‖��� �‖ ≥

���

� ∈ �
‖�� �‖ 

3 
Proof. Define a real valued function F on � × �by�(�,�)=
‖�� �‖. The result follows from Lemma 2.1. 
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