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INTRODUCTION 
 
Let   denote the class of functions of the form
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Which are analytic in the punctured open unit disk
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with a simple pole at the origin and residue 1 there.
 

Let k denote the subclass of  consisting of functions f(z) which are convex with respect to the origin, i.e. satisfying the 

condition: 
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Let )(k denote the subclass of  consisting of functions f(z) which are convex of order 

 
*Corresponding author: Dr. Jitendra Awasthi, 
Department of Mathematics, S.J.N.P.G. College, Lucknow

ISSN: 0975-833X 

Article History: 
 

Received 24th February, 2017 
Received in revised form  
21st March, 2017 
Accepted 04th April, 2017 
Published online 31st May, 2017 
 

Citation: Dr. Jitendra Awasthi. 2017. “A new sub class of meromorphically convex functions with negative and fixed second coefficients
Journal of Current Research, 9, (05), 51141-51148. 

Key words: 
 

Meromorphic, Univalent,  
Convex, Analytic, 
Linear combinations. 

 

 

                    

 

 
RESEARCH ARTICLE 

 

A NEW SUB CLASS OF MEROMORPHICALLY CONVEX FUNCTIONS WITH NEGATIVE AND
 FIXED SECOND COEFFICIENTS 

 

*Dr. Jitendra Awasthi 
 

Department of Mathematics, S.J.N.P.G. College, Lucknow-226001
 
 

    

ABSTRACT 

In this paper, we introduce and study a subclass ),,,,(  BAk of meromorphic univalent functions. 

We obtain coefficients inequalities, extreme points, distortion and growth bounds, radii of 
meromorphically starlikeness and meromorphically convexity for this class. Further it is shown that 
this class is closed under convex linear combination. 

is an open access article distributed under the Creative Commons Attribution License, which 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 
 
 

denote the class of functions of the form 

……………………………………(1.1) 

  
Which are analytic in the punctured open unit disk 
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and similar other classes of meromorphically univalent functions have been defined and studied by Altintas et al.[1], Aouf[2,3], 
Ganigi and Uralegaddi[6],Uralegaddi[9],Uralegaddi and Ganigi[10] and others. 
 

Let ),,( BAk  denote the class of functions f(z) in  which satisfy the condition 
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)10;11;10*,(  BBADz   
 

We note that )()1,1,(  Kk  . 

 

Let  denote the subclass of   consisting of functions of the form 
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Now in the following definition, we define a subclass ),,,( BAk  for functions in the class . 
 

Definition 1.1: A function f(z) defined by (1.5) is in the class ),,,( BAk  if it satisfies the condition 
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For the class ),,,( BAk  ,the following characterization was given bySrivastava et al. [8]. 
 

Theorem 1.1: Let the function f(z) defined by (1.5) be analytic in D* .Then ),,,()( BAzf K  if and only if 
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For a function f(z) defined by (1.5) and in the class ),,,( BAk  ,Theorem 1.1 yields 
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Motivated by the works of Aouf and Darwish[4],Aouf and Joshi[5],Sivasubramanian et al.[7], we now introduce the following 
class of functions and use the similar techniques to prove our results. 

Let class ),,,,(  BAk  be the subclass of ),,,( BAk  consisting of functions of the form 
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where .10    
 
In this paper, we obtain coefficient inequalities, extreme points, distortion and growth bounds, radii of meromorphically 

starlikeness and meromorphically convexity for the class ),,,,(  BAk  by fixing the second coefficient. Further it is shown 

that the class ),,,,(  BAk   is closed under convex linear combinations.  

 
2.Cofficients Inequalities 
 

Theorem 2.1:Let the function f(z) is defined by (1.10). then )(zf ),,,,(  BAk
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The result is sharp. 
 
Proof: By putting 
 

)10(,
])([2

)1()(
1 




 





AABB

AB
a .…………………………………………(2.2) 

 
in (1.7),the result is easily derived. The result is sharp for the function 
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Corollary 2.2: If the function f(z) defined by (1.10) is in the class ),,,,(  BAk
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The result is sharp for the function f(z) given by (2.3). 
 
3. DISTORTION THEOREMS 
 

Theorem 3.1: If the function f(z) defined by (1.10) is in the class ).,,,,(  BAk
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Where equality holds true for the function 
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Proof: Since ),,,,()(  BAzf K ,then from theorem (2.1) 
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Thus (3.5) and (3.6) together yield (3.1). 

 

Further more,from theorem 2.1,it follows that 
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Then for 0 <|z| = r < 1 and using(3.7),we obtain 

 

51144                                         Dr. Jitendra Awasthi, A new sub class of meromorphically convex functions with negative and fixed second coefficients 



 
















2

1

2 ])([2

)1(1
)(

n

n

n zna
AABB

AB

z
zf





 

 
...(3.8)....................        

]})(2[3{

)1)(1()(

])([2

)1(1
                

2
r

AABB

AB

AABB

AB

r 

















 

 

 
















2

1

2 ])([2

)1(1
)(       

n

n

n zna
AABB

AB

z
zfand





 

 

 
9).......(3.....................       

]})(2[3{

)1)(1()(

])([2

)1(1
               

2
r

AABB

AB

AABB

AB

r 

















 

 

Thus (3.8) and (3.9) together yield (3.3). 

 

4. CLOSURE THEREMS 

 

Theorem 4.1: If 
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Then ),,,,()(  BAzf K if and only if it can be expressed in the form 
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Proof: From (4.2) and (4.3), we have 
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This complete the proof. 
 

Theorem 4.2: The class ),,,,()(  BAzf K is closed under convex linear combinations. 

 
Proof: Suppose the function f(z) be given by (1.10) and let the function g(z) be given by 
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Assuming that f(z) and g(z) are in the class ),,,,(  BAK , it is enough to prove that the function h(z) defined by    
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5.RADIUS OF STARLIKENESS AND CONVEXITY 
 

Theorem 5.1: Let the function f(z) defined by (1.10) be in the class ),,,,(  BAK ,then we have 

 

(i) f is meromorphically starlike of order 1)(0   in the disk ),,,,,(z 1  BAr where 
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Proof: It is enough to show that 
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Then f(z) is starlike of order δ in ),,,,,(0 1  BArz   provided that 
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We find the value  ),,,,,(11  BArr  and the corresponding integer )( 111 rnn   so that 
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It is the value for which the functionf(z) is starlike in 10 rz  . 
 

(ii) In a similar manner, we can prove our result providing the radius of meromorphically 

convexity of order 1)(0   for the function ),,,,(  BAK
. 
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