

International Journal of Current Research Vol. 9, Issue, 11, pp.60523-60525, November, 2017

RESEARCH ARTICLE

AN ELECTROCHEMICAL CHARACTERISTICS OF PROMETHAZIE HCL USING ION SELECTIVE ELECTRODES

Sarma, B. K. and *Seema Rani

Mewar University Chittorgarh Rajasthan - 312901, India

ARTICLE INFO

Article History:

Received 28th August, 2017 Received in revised form 20th September, 2017 Accepted 21st October, 2017 Published online 30th November, 2017

Key words:

Promethazine HCl., Sensor and ionophore

ABSTRACT

The highly selective and sensitive PVC based membrane sensor was fabricated by using 1,3,5-tris [(2,3-dihydroxybenzylamino) amino methyl]cyclohexane (L) as a neutral membrane carrier for the potentiometric determination of Promethazine HCl. The membrane with the composition of33% PVC, 64% Plasticizer, 3% PM-PMD(Ionophore) and 1% NaTPB was found to be best in terms of response characteristics of sensor assembly. The proposed membrane sensor has very low detection limit of 2.0 x 10-8 M, within the concentration range of 5.0 x 10-8 – 1.0 x 10-2 M, and has fast response time of about 10s. The proposed sensor was used for the selective determination of Promethazine HCl. in different synthetic as well as real sample.

Copyright©2017, Sarma and Seema Rani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Sarma, B. K. and Seema Rani, 2017. "An electrochemical characteristics of Promethazie HCL using ion selective electrodes", *International Journal of Current Research*, 9, (11), 60523-60525.

INTRODUCTION

Antihistamine (Histamine antagonist) is a pharmaceutical drug that inhibits action of histamine by blocking it from attaching to histamine receptors. There are several types of antihistamine drugs. H₁ antihistamines are used to treat symptoms of allergy, such as runny nose and watery eyes, H2 antagonists (cimetidine), which are widely used for the treatment of acid reflux and stomach ulcers, because they decrease gastric acid production (Sade, 1980). The H₃ and H₄ do not yet have a defined clinical use, although a number of drugs are currently in human trials (wikipedia.org/wiki/Histamine antag). The increasing use of ion sensors in the fields of environmental, agricultural and medicinal analysis is stimulating analytical chemists to develop new sensors for the fast, accurate, reproducible and selective determination of various species. In the past few decades, considerable efforts have led to the development of selective sensors for various medicinal compounds (Ni, 2001). Histamine is derived from the decarboxylation histidine (amino acid). The decarboxylation is catalyzed by an enzyme histiminase, which is also involved in the metabolism of the bioactive amines. They cause the tissues in our nose to swell, our nose and eyes to run and our eyes, nose and sometime mouth to itch. Sometime they also cause itchy rash on our skin, called hives (Wang, 1996).

*Corresponding author: Seema Rani,

Mewar University Chittorgarh Rajasthan – 312901, India.

Ion Selective Electrodes

An ion selective electrode (ISE) measure the activity of an ion in a solution by measuring the electric potential formed across a membrane when the electrode is submerged in the solution. In order to measure the electrode potential developed at the ion-selective membrane the ISE/pH electrode must be immersed in the test solution together with a separate reference system and the two must be connected via a millivolt measuring system. At equilibrium, the electrons added or removed from the solution by the ISE membrane (depending on whether it is cation or anion sensitive) are balanced by an equal and opposite charge at the reference interface. This causes a positive or negative deviation from the original stable reference voltage, which is registered on the external measuring system (Correia dos Santos, 2002). The relationship between the ionic concentration (activity) and the electrode potential is given by the Nernst equation:

$$E = E^{0} + (2.303RT/nF) \times Log(A)$$

Fig. 1. Decarboxylation of histidine to histamine

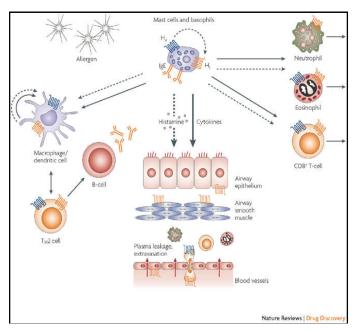


Fig. 2. Mechanism of action of antihistaminic drugs

Table 1. Ion selective electrodes in pharmaceutical analysis

Drug	Ionophore	Concentration	References
Tetracycline	Tetracycline	$1.0 \times 10^{-2} - 3.0 \times 10^{-5}$	Yao et. al.
	silicotungstate		(1989)
Benzyl	Benzyl penicillin	$5.0 \times 10^{-1} - 5.0 \times 10^{-3}$	Dumkiewic
penicillin	& quaternary		s (1992)
	amine		
Methadone	Dinonyl	$1.0 \times 10^{-5} - 1.0 \times 10^{-6}$	Valsami et.
	naphthalene		al. (1989)
	sulphonic acid		
Naproxen	Tetraheptyl	1.0 x 10 ⁻¹ -1.0 x 10 ⁻⁴	Valsami et.
•	ammonium		al. (1989)
	napronate in p-		
	nitro cumene		

Experimental: (Determination of Promethazine HCl)

Reagents and Equipments

Ammonium phosphomolybdate Promethazine HCl PVC (Poly Vinyl Chloride) DBP, DBBP OA CN

THF

Ion analyzer, pH meter and Saturated calomel electrodes.

Preparation of ion pair- compound

Composition:

Promethazine HCl 20ml (0.01M) Ammonium phosphomolybdate 20ml (0.01M)

Steps: 1

20 ml solution of Promethazine Hcl+20ml of amm. Phosphomolidbate

(at room for temp. 1hr)
Precipitate of (PM-PMD) was obtained

Precipitate filtered off wash with water and dried

Step: 2 Promethazine Selective PVC Membrane Electrode (Ionophore)

PM-PMD: Plasticizers: PVC

3: 64: 33

(dissolved in THF)

Resulting solution transferred into glass dish of 2cm diameter

Solvent was allowed to evaporate until conc. Mixture was obtained

A pyrex tube dipped into conc. Mixture for 10sec

A transparent membrane about 0.3mm thickness was formed

Glass then pulled out and kept at room temp. for 5 hr

Tube was filled with an internal solution of 0.001M

Promethazine HCl solution

The electrode was conditioned for 24h by soaking in a 1.0x10-2M of Promethazine solution.

Step: 3 Cell assembly for potential measurements:

Ag/AgCl, 0.1M | Internalreferencesolution0.001M | testsolution | 1MKCl,(KCl) Ag/AgCl

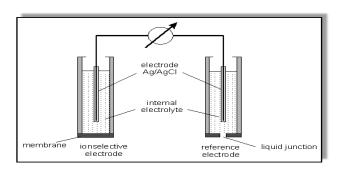


Fig. 3. Cell Assemblely

RESULT AND DISCUSSION

The membrane electrode (no. 1) based on DBP as plasticizer has a detection limit of $1.0 \times 10^{-6} \,\mathrm{M}$ in a linear working concentration range of $1.0 \times 10^{-6} \,\mathrm{M} - 1.0 \times 10^{-1}$ with slope of $50.5 \pm 0.3 \,\mathrm{(mV/dec.}$ of activity). It was observed that 62 - 65% of the plasticizer as membrane components gives the best posible response. It was observed that the ionophore more than $3\% \,\mathrm{(w/w)}$ as membrane component does not improved the detection limit and linear concentration range. pH effect: It was observed that the potential of electrode assembly remains almost same in a pH range of $2.5 \,\mathrm{to} \,6.0$.

Conclusion

A promethazine phosphomolibdate (PM-PMD) ion-pair compound was used as electroactive material for construction of promethazine selective electrode. The electrode of the composition of PVC: PM-PMD: DBP of 33: 3: 64 (%, w/w) has a detection limit of 1.0×10^{-6} M in a liner concentration range of $1.0 \times 10^{-6} - 1.0 \times 10^{-1}$ M with a slope of calibration curve of 50.5 ± 0.3 (mV/decay of activity). The electrode can

be used in a pH range of 2.5 - 6.0 for a period of 4 weeks and has fast response time of about 5 s. The selectivity coefficient calculated by MPM method indicates that the electrode can be alllied for the determination of promethazine in presense of other interfering ions.

REFERENCES

Correia dos Santos, M., Famila, V., Goncalves, M. 2002. Square-wave voltametric techniques for determination of psychoactive 1,4 benzodiazepine drugs, *Anal. Bioanal. Chem.* 374, 1074–1081.

- Ni, Y., Wang, L., Kokot, S. 2001. Voltametric determination of chlorpromazine hydrochloride and promethazine hydrochloride with the use of multivariate calibration, *Anal. Chim. Acta* 439, 159–168.
- Sade W., M. Beelen G., 1980. Drug Level Monitoring. Analytical Techniques, Metabolism, and Pharmacokinetics, ed. A Wiley-Interscience Publication, New York 1980.
- Wang, J., Rivas, X., Shiraishi, H., Farias, P., Dontha, N., Luo, D. 1996. Acumulation and trace measurements of phenotiazine drugs at DNA-modified electrodes, *Anal. Chim. Acta.*, 332, 139–144.

wikipedia.org/wiki/Histamine antag...
