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1. Introduction

This studyis focused on proving the existence of common
fixed points of f-contraction mapping defined on complete
metric spaces endowed with a partial order by using
generalized altering distance functions. I tried to answer the
questions how can we prove the existence of common fixed
points of f-contraction mappings defined on complete metric
spaces endowed with a partial order by using generalized
altering distance functions?

Yan et al. (2012) established a new contraction mapping
principle in partially ordered metric spaces. Su (2014) has
proved some fixed point theorems of generalized contraction
mappings in a complete metric space endowed with a partial
order by using generalized altering distance functions. In recent
years, many results appeared related to fixed point theorem in
complete metric spaces endowed with a partial ordering
(Amini-Harandi and Emami, 2010; Ciri et al., 2008; Naidu,
2003; Suzuki, 2008; Yan et al., 2012).I inspired and motivated
by the results mentioned on (Yan et al., 2012) and (Su, 2012), I
extend the main theorem of (Su, 2012) to f-contraction
mapping in a complete metric space endowed with a partial
order by using generalized altering distance functionswith
examples. In (Arvanitakis, 2003; Amini-Harandi and Emami,
2010; Babu et al., 2007; Beg et al., 2006; Boyd and Wong,
1969; Chidume et al., 2007; Choudhury et al., 2000),

the authors proved some types of weak contractions in
complete metric spaces. In particular the existence of a fixed
point for weak contraction is extended to partial ordered metric
spaces in (Amini-Harandi and Emami, 2010; Choudhury et al.,
2000; Harjani and Sadarangni, 2009).

2. Basic Facts and Definitions

Definition 2.1. (Khan et al, 1984) A function 1:[0, ) —
[0,0) is called an altering distance function if the following
properties are satisfied:

a.nis continuous and monotonically non-decreasing.
b.n(t) = Oif and only if t = 0.

Example 2.1.1. The following function is an altering distance
function

0, t=0
n(t) = {at’ [ > 1 Wherea > 1.

Theorem 2.1. (Khan e al., 1984) Let (X,d )be a complete
metric space, let n be an altering distance function, and
let f: X — X be a self-mapping which satisfies the following
inequality:

n@(fx fy)) < en(d(x,y))
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for all x,y € Xand for some 0 < ¢ < 1. Then fhas a unique
fixed point.

Definition 2.2. (Ciri et al, 2008) We shall say that the
mapping S is f-non-decreasing (resp. f-non-increasing) if
fx < fy = Sx < Sy (respectively fx < fy = Sy < Sx) holds
for each x,y € X.

Definition 2.3. Consider a function S: R - R and a point x, €
R. The function S is said to be upper (resp. lower) semi-
continuous at the point x, if

S(xg) = lim,_,,; supS(x), (resp. S(x,) < lim,_,, infS(x)).

Theorem 2.2. (Su, 2014) Let(X, <) be a partially ordered set
and suppose that there exists a metric din X such that (X, d)is a
complete metric space. Let T : X = X be a continuous and non-
decreasing mapping such that

n(d(Tx, Ty)) < (p(d(x, y)), Vy <X,

where nis a generalized altering distance function
and¢g: [0, ©) — [0, 0)is a right uppersemi-continuous function
with the condition: n(t) > ¢(t)for allt > 0.If there existsx, €
Xsuch that xy < Txg,then T has a fixed point.

Definition 2.4 Let fand Sbe self maps of a metric
space (X,d). The pair (f,S) is called occasionally weakly
compatible (OWC) if there exists x € Xwhich is a coincidence
point for f and S at which f and S commute (i.e. if

f(S(x)) = S(f(x)) for some x € C(f,S)).
3. Main result

Definition 3.1. Let (X, d)be a metric space and S, f: X = X be
two self-maps. A mapping S is said to be f-contraction with
generalized altering distance function if there exist n € H
and ¢ € ® such that

n(d(Sx,Sy)) < o(d(fx, fy))forall x,y € X.

Definition 3.2. A point y € Xis called point of coincidence of
two mappings f,S:X — Xif there exists a point x € X such
that y = fx = Sx. In this case x is called the coincidence point
of f and S and the set of coincidence points of f and S is
denoted by C(f, S).

Definition 3.3. Let (X, d) be a metric space and f,S be two
self-mappings on (X, d). A point z € Xis said to be a common
fixed point of fand Sif fz = Sz = z.

Theorem 3.1. Let (X, <) be a partially ordered set and suppose
that there exists a metric don Xsuch that (X,d) is a complete
metric space. Let f,T: X — X be two continuous self-maps on
X satisfying the following conditions:

DTX c fX;

i) fX is closed;

iii)T is f-non-decreasing;

iv) there exists x, € X such that fx, < Tx,;
v)ifz € C(f,T), then fz < f(f2).

Such that

n(d(Tx,Ty)) < (d(fx, fy)), Vx,y € X with, fy < fx(1)

wheren is a generalized altering distance function and
@:[0,0) - [0,0) is a right upper semi-continuous function
with the conditionn(t) > ¢@(t),Vt > 0 andp(t) =0 t = 0.
Then f and T have a coincidence point. Furthermore if f and T
are occasionally weakly compatible maps, then f and T have
common fixed point, in X.

Proof. From condition (iv) we have x, € X such that fx, <
Tx,. Since TX c fX, we can choose x; € X such that fx; =
Tx,. Again fromTX c fX, we can choose x, € X such
that fx, = Tx;. Continuing this process, we can choose a
sequence {y,} which is called Jungck sequence in X such that

frner =Txy = Y, Y0 2 0. (2)

Since fxy < Txy and fx; = Tx,, we have fx, < fx;. Then
by (iii), we have

Txy < Tx;. (3)
Thus by (2) we obtainfx; < fx,. Again by (iii), we have

Tx; < Tx,. “)
That is fx, < fx3. Continuing this process we obtain

Txg < Tx; <Txy, <Txz <

STx, < Txpyq < oo )

Now considering (2) (i.e. y,, = Tx, = fxp41), from (5) we
note that y,, and y, ., are comparable n > 0.

Case (i) Suppose y,, = Yn,+1 for somen, € N.

Since  yn, = fxng+1 = Txp,and Yy 41 = TXp 11, We get
fXng+1 = TXpyyq. This implies x, ;4 is a coincidence point of
f and T and hence x, 41 € C(f,T) so that C(f,T) # @.

Since f and T are occasionally weakly compatible, there exist
p € C(f,T) such that fTp =Tfp. Now let g =fp =Tp.
Then we have fq = Tq.

Next we show that Tq = fq = q.

Suppose that Tq # q.Then by condition (v), we have fp <
f(fp) = fq and hence using the contraction condition (1) we
obtain

n(d(Tq,q)) =n(d(Tq,Tp)) < ¢(d(fa.fp)) = ¢(d(Tq,q))
<n(d(Tq, ),

which implies

n(d(Tq,q)) < n(d(Tq,)),
a contradiction, since d(Tq, q) > 0. Thus, q = Tq = fq.

Case (ii) Suppose that y, # y,,.1,Vn € N.

Now from the contractive condition (1), we obtain

Tl(d(Yn+1, yn)) = n(d(Txn+1'Txn)) < ¢(d(fxn+1ﬂfxn))
= (dWVn Yn-1)) < 1@V Yn-1))-

This implies that

n(dn+1,Yn)) <AV Yn-1)) (6)
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By the non-decreasingness ofn, from (6) we get

dWn+1,Yn) < AYn Yn-1) (7)

Hence, the sequence {d(V,, Vn4+1)} is a decreasing sequence
and consequently there exists r = 0 such that

AdWn+1,Yn) = T,a8N > ©

Now we claim that r = 0. Suppose r > 0.

U(d(Tan' Txn)) < (p(d (fxn+1r fxn)) (8)

Considering the non-decreasingness of 7 and the upper semi-
continuity of¢, and letting n — oo in (8) we get

n() < limy,y, sup n(dVns1, ¥n)) <
limy,_.... sup@(d Y, Yn-1)) < @ (7).

Hence, we have
n(r) < o(r).

Consequently, we obtain
n() <n(),

which is impossible since r > 0. Thus r = 0.Hence
d(yn+1: Yn) -0 (9)

Here we claim that {y,,} is a Cauchy sequence.

Now, suppose that {y,,} is not a Cauchy sequence. Then there
exists a positive real number ¢ such that for a given N € N
there exists m,n € N such that m > n > N and d(y,,,, Y1) = €.
Since {d(Vy41,¥n)} converges to zero, it follows that there
exist strictly increasing sequences {n,}and{m,}, k=1 of
positive integers such that 1 < n;, < my,

AV Yn,) =6 Vk=1 (10)
and
d(ymk—llynk) <e (11)

Using the triangular inequality and the conditions (10) and (11)
we have

£< d(ymkIYnk) < d(ymk'Ymk—l) + d(Ymk—l'Ynk) <
d(ymk'Ymk—l) +¢€

Letting k — o and using (7), we obtain
limyro d(Vimyo ) = € (12)
Using the triangular inequality, we obtain

A(Ymye-1 Yn-1) < AWmye-1, Ymy,) + Ao Yn,.) + Ao Y1),
and

dVmpo V) < dmp Ymy-1) + A1 Yn=1) + d (V-1 9m,)-

Now letting k — o« in the above two inequalities and using
(12), we have

limye, d(Vimy-1 Yje—1) = € (13)
Since 1 is non-decreasing on [0, «0), from (10) we have,
n(&) <1 (O Ymy) ), VK = 1, (14)

As my >mny, by (5), ¥m,_, and y,, ., are comparable. So
from the condition (1), using (5) and the upper semi-continuity
ofep, we have

n(e) < lirEsup n (d(ymk,ynk)) = lirzlsup n (d(Txmk, Txnk))

< limsupe (d(ymk_l.ynk_l)) < ¢(e).

This implies
n(e) < @(e) <n(e),

which is impossible sincee > 0.
Thus the sequence {y, } is a Cauchy sequence in X.

Since (X,d) is a complete metric space, there exists y € X
such that y,, = y asn — oo,

By 2).{y,} € fX wherey, = fx,,1, for each n=1,2,3,-
and fX is closed then there exists p € X such thaty = fp.

Next we show that Tp = y.

Now by the continuity of fand T, we obtain
n(d(Tp,y)) =1 (d (p. lim Txn))

=7 (d (Tp, T(}E_{?fn)))

<o (a(fp.rimx))

= o (4(fplim fx.))

= (d(fp, fr)) =0.

This implies that n(d(Tp,y)) = 0 and henced (Tp,y) = 0. As
a result we have

(15)

Thus p is a coincidence point of f and T, which
implies C(f,T) # @. Since f and T are occasionally weakly
compatible pair of self maps, f and T commute at some z €

C(f,T).

Tp=y=fp

Now setw = fz = Tz. Since f and T are occasionally weakly
compatible,

fw=f(Tz) =T(fz) = Tw,

which implies

fw=Tw (16)
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Next we claim that fw = Tw = w. Suppose Tw # w. By the
condition (v), we have

fz<f(fz) = fw.

Then

n(d(Tw,w)) =n(d(Tw,T2)) < p(d(fw, f2)) =
@(d(Tw,w)) < n(d(Tw,w))

which implies that

n(d(Tw,w)) <n(d(Tw,w)),

a contradiction. Thus Tw = w. And hence by (15), we have
fw=Tw=w.

Thus, we have proved that f and T have a common fixed
pointin X.

The following is an example in support of Theorem 3.1.

Example 3.1.1. Let X = {-2,—1,0,1}. We define a partial
order “<” on X by

<={(-2,-2),(-1,-1),(0,0),(1,1),(0,—1),(1,0), (1, —1)}.

Let d be the usual metric on X. Define f,T: X — Xby

f(_l) = 1'f(0) = O!f(l) = —Z,f(—Z) = _1: and
T(-=1) = 0,T(0) = 0,T(1) = 1,T(=2) = 0.

Then T(X)=1{0,1} and f(X) ={-2,-1,0,1} and hence
T(X) c f(X) and f(X) = {—2,—1,0,1} is closed.

Next we show that T is f-non-decreasing.

2=fD<f)=-2=21=TA)<TA) =1;
“1=f(-2)<f(-2)=-1=20=T(-2) < T(-2) =0;
0=£(0)<f(0)=0 =0=T(0) =< T() =0;
1=f(-D<f(-D)=1=20=T(-1) < T(-1) = 0;
0=f0)<f(-2)=-1=20=T(0) <T(-2) =0;
1=f(-1)<f(0)=0 =0=T(-1) <T(0) = 0; and
1=f(-D<f(-2)=-120=T(-1) < T(-2) = 0.

This shows that T is f-non-decreasing. We also observe that
f()<T(A)andz=0€ C(f,T) such that fz < ffz.

Now we show that f and T satisfy the contraction condition of
Theorem 3.1 with n(t) = %t and @(t) = gt.

n(a(T(0),7(-2))) =0<
= (d(
7 (a(T(=1),T()) =0 <3 = p(d(1,0)) =

¢ (d(f (=D, £(0))sand n (A(T(=1), T(-2))) =0 < 2 =
9(d(1,-1) = ¢ (d(f (-1, £(-2)).

1
3
(0, £(=2)));

Thus, the pair of mappings f and T satisfy all conditions of
Theorem 3.1 and 0 is the common fixed point of f and T.

Remark 1: If we choose f = Iy=The identity map on X,
Theorem 2.1 follows as corollary to Theorem 3.1.

Note that the map T in Example 3.1 is a non-decreasing map,
since

—2%-2=0=T(-2) < T(-2) = 0;
—1x-1=0=T(-1) < T(-1) = 0;
0<0 =0=T(0) < T(0) =0;
151 =21=TA<TA) =1
0s-1=0=T(0)<T(-1)=0;
1<0 =1=T(1) < T(0) = 0;and
1x-1=1=T1) < T(-1) =0.

So in Example 3.1, if we choose f = Iy=The identity map on
X, one can observe that for x =1 and y = 0, where (1,0) €
<, we get (1) < (1) which absurd and hence the selfmap T
cannot satisfy the contraction condition of Su [26] for any ¢
and 1 such that n(t) > @(t)vt > 0.

4. Conclusion

In this work I developed f-contraction mappings and obtained
a new common fixed point theorem for f-contraction mapping
in a complete metric space endowed with a partial order by
using generalized altering distance functions and common
fixed point theorems obtained are proved. This theorem will
help us to develop many theorems in further development of f-
contraction mappings.
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