
 

 

 
 

 
 

 
 

 
 

COMMON FIXED POINTS OF F-
DISTANCE FUNCTION IN PARTIALLY ORDERED METRIC SPACES

Department of Mathematics, College of Natural 
 

ARTICLE INFO ABSTRACT
 

 

The concept of anf
some fixed and common fixed point theorems for f
distance function in 
 
 
 
 
 
 
 
 
 

 
 

 

Copyright © 2019, Tesfaye Megerssa Oljira. This is an open
use, distribution, and reproduction in any medium, provided
 
 
 

 

 

1. Introduction 
 
This studyis focused on proving the existence of common 
fixed points of f-contraction mapping defined on complete 
metric spaces endowed with a partial order 
generalized altering distance functions. I tried to answer the 
questions how can we prove the existence of common fixed 
points of f-contraction mappings defined on complete metric 
spaces endowed with a partial order by using generalized 
altering distance functions?  
 

Yan et al. (2012) established a new contraction mapping 
principle in partially ordered metric spaces. Su 
proved some fixed point theorems of generalized contraction 
mappings in a complete metric space endowed with a partial 
order by using generalized altering distance functions.
years, many results appeared related to fixed point theorem in 
complete metric spaces endowed with a partial ordering 
(Amini-Harandi and Emami, 2010; Ciri et al., 
2003; Suzuki, 2008; Yan et al., 2012).I inspired and motivated 
by the results mentioned on (Yan et al., 2012
extend the main theorem of (Su, 2012) 
mapping in a complete metric space endowed with a partial 
order by using generalized altering distance functions
examples. In (Arvanitakis, 2003; Amini-Harandi
2010; Babu et al., 2007; Beg et al., 2006; 
1969; Chidume et al., 2007; Choudhury et al., 
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ABSTRACT 

The concept of anf-contraction mapping with generalized altering distance function is introduced, and 
some fixed and common fixed point theorems for f-contraction mapping with generalized altering 
distance function in partially ordered metric spaces are proved. 
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This studyis focused on proving the existence of common 
contraction mapping defined on complete 

metric spaces endowed with a partial order by using 
altering distance functions. I tried to answer the 

questions how can we prove the existence of common fixed 
contraction mappings defined on complete metric 

spaces endowed with a partial order by using generalized 

established a new contraction mapping 
principle in partially ordered metric spaces. Su (2014) has 
proved some fixed point theorems of generalized contraction 
mappings in a complete metric space endowed with a partial 

functions. In recent 
years, many results appeared related to fixed point theorem in 
complete metric spaces endowed with a partial ordering 

et al., 2008; Naidu, 
nspired and motivated 

2012) and (Su, 2012), I 
) to f-contraction 

mapping in a complete metric space endowed with a partial 
stance functionswith 
Harandi and Emami, 

2006; Boyd and Wong, 
et al., 2000),  

 
 
the authors proved some types of weak contractions in 
complete metric spaces. In particular the existence of a fixed 
point for weak contraction is extended to partial ordered metric 
spaces in (Amini-Harandi and Emami
2000; Harjani and Sadarangni, 2009
 

2. Basic Facts and Definitions
 
Definition 2.1. (Khan et al., 
[0, ∞) is called an altering distance function if the following 
properties are satisfied: 
 

a.�is continuous and monotonically non
b.�(�) = 0if and only if � = 0. 
 
Example 2.1.1. The following function is an altering distance 
function 
 

�(�) = �
0,   � = 0    
��,   � ≥ 1,

�where� ≥

 
Theorem 2.1. (Khan et al., 1984) 
metric space, let � be an altering distance function, and 
let �: � → � be a self-mapping which satisfies the following 
inequality:  
 
�(�(��, ��)) ≤ ��(�(�, �)) 
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for all �, � ∈ �and for some 0 ≤ � < 1.  Then �has a unique 
fixed point. 
 
Definition 2.2. (Ciri et al., 2008) We shall say that the 
mapping  � is f-non-decreasing (resp. f-non-increasing) if  
�� ≼ �� ⇒ �� ≼ �� (respectively �� ≼ �� ⇒ �� ≼ ��) holds 
for each  �, � ∈ �. 
 
Definition 2.3. Consider a function �: ℝ → ℝ  and a point �� ∈
ℝ. The function �  is said to be upper (resp. lower) semi-
continuous at the point �� if  
 
�(��) ≥ lim�→��

sup�(�), (resp. �(��) ≤ lim�→��
inf�(�)). 

 
Theorem 2.2. (Su, 2014) Let(X, ≼) be a partially ordered set 
and suppose that there exists a metric din X such that (X, d)is a 
complete metric space. Let T ∶ X → X be a continuous and non-
decreasing mapping such that 
 

���(��, ��)� ≤ ���(�, �)�, ∀� ≼ x, 
 
where   �is a generalized altering distance function 
and�: [0, ∞) → [0, ∞)is a right uppersemi-continuous function 
with the condition: �(�) > �(�)for all� > 0.If there exists�� ∈
�such that  �� ≼ ���,then T has a fixed point.  
 
Definition 2.4 Let �and �be self maps of a metric 
space (�, �). The pair (�, �) is called occasionally weakly 
compatible (OWC) if there exists � ∈ �which is a coincidence 
point for  � and  � at which � and � commute (i.e. if 
�(�(�)) = �(�(�)) for some � ∈ �(�, �)). 
 

3. Main result 
 
Definition 3.1. Let (�, �)be a metric space and �, �: � → � be 
two self-maps. A mapping S is said to be f-contraction with 
generalized altering distance function if there exist � ∈ Η 
and � ∈ Φ such that 
 

�(�(��, ��)) ≤ �(�(��, ��))for all  �, � ∈ �. 
 
Definition 3.2. A point � ∈ �is called point of coincidence of 
two mappings �, �: � → �if there exists a point � ∈ � such 
that � = �� = ��. In this case � is called the coincidence point 
of � and � and the set of coincidence points of � and � is 
denoted by �(�, �). 
 

Definition 3.3. Let (�, �) be a metric space and �, � be two 
self-mappings on (�, �). A point � ∈ �is said to be a common 
fixed point of �and �if  �� = �� = �. 
 

Theorem 3.1. Let (�, ≼) be a partially ordered set and suppose 
that there exists a metric �on �such that (�, �) is a complete 
metric space. Let �, �: � → � be two continuous self-maps on 
� satisfying the following conditions:  
 

i)�� ⊂ ��; 
ii)�� is closed; 
iii)� is f-non-decreasing; 
iv) there exists �� ∈ � such that ��� ≼ ���; 
v)if � ∈ �(�, �), then �� ≼ �(��). 
 

Such that  
 

�(�(��, ��)) ≤ �(�(��, ��)), ∀�, � ∈ �  with,  �� ≼ ��(1) 

where� is a generalized altering distance function and 
�: [0, ∞) → [0, ∞) is a right upper semi-continuous function 
with the condition�(�) > �(�), ∀� > 0 and�(�) = 0 ⇔ � = 0. 
Then � and � have a coincidence point. Furthermore if � and � 
are occasionally weakly compatible maps, then � and � have 
common fixed point, in �. 
 
Proof. From condition (iv) we have �� ∈ � such that ��� ≼
���. Since �� ⊂ ��, we can choose �� ∈ � such that ��� =
���. Again from �� ⊂ ��, we can choose �� ∈ � such 
that ��� = ���. Continuing this process, we can choose a 
sequence {�� } which is called Jungck sequence in � such that  
 
��� � � = ��� = �� , ∀� ≥ 0.                                                   (2) 
 
Since ��� ≼ ��� and ��� = ���, we have ��� ≼ ���. Then 
by (iii), we have 
 
��� ≼ ���.                                                                              (3) 
 
Thus by (2) we obtain��� ≼ ���. Again by (iii), we have 
  
��� ≼ ���.                                                                              (4) 
 
That is ��� ≼ ���. Continuing this process we obtain  
 
��� ≼ ��� ≼ ��� ≼ ��� ≼ ⋯ ≼ ��� ≼ ���� � ≼ ⋯.          (5)   
  
Now considering (2) (i.e. �� = ��� = ��� � �),  from (5) we 
note that ��  and ��� � are comparable � ≥ 0. 
 
Case (i) Suppose ���

= ���� � for some�� ∈ ℕ. 

 
Since ���

= ����� � = ����
and ���� � = ����� �, we get 

����� � = ����� �. This implies ���� � is a coincidence point of 

� and � and hence ���� � ∈ �(�, �) so that �(�, �) ≠ ∅. 

 
Since � and � are occasionally weakly compatible, there exist 
� ∈ �(�, �) such that ��� = ���.  Now let � = �� = ��. 
Then we have �� = ��. 
 
Next we show that  �� = �� = �. 
 
Suppose that �� ≠ �.Then by condition (v), we have �� ≼
�(��) = �� and hence using the contraction condition (1) we 
obtain  
 

���(��, �)� = ���(��, ��)� ≤ ���(��, ��)� = ���(��, �)�

< ���(��, �)�, 
 
which implies  

���(��, �)� < �(�(��, �)),  

a contradiction, since �(��, �) > 0. Thus, � = �� = ��. 
 
Case (ii) Suppose that �� ≠ �� � �, ∀� ∈ ℕ.  
 
Now from the contractive condition (1), we obtain 
 

���(��� �, �� )� = ���(��� � �, ��� )� ≤ ���(���� �, ��� )� 

= �(�(�� , �� ��)) < �(�(�� , ����)). 
 

This implies that 
 

�(�(�� � �, �� )) < �(�(�� , �� ��))                                                (6) 
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By the non-decreasingness of�, from (6) we get 
 
�(�� � �, �� ) < �(�� , �� ��)                                                     (7) 
 
Hence, the sequence {�(�� , ��� �)} is a decreasing sequence 
and consequently there exists  � ≥ 0 such that  
 
�(�� � �, �� ) → �, as � → ∞ 
 
Now we claim that � = 0. Suppose � > 0.  
 

�(�(���� �, ��� )) ≤ ���(���� �, ��� )�                               (8) 
 
Considering the non-decreasingness of  � and the upper semi-
continuity of�, and letting � → ∞ in (8) we get 
 

�(�) ≤ lim�→∞ sup ���(��� �, �� )� ≤

lim�→∞ ������(�� , �� ��)� ≤ �(�). 
 
Hence, we have 
�(�) ≤ �(�).  
 
Consequently, we obtain  
�(�) < �(�), 
 
which is impossible since  � > 0. Thus  � = 0.Hence 
�(�� � �, �� ) → 0                                                                      (9) 
 
Here we claim that {�� } is a Cauchy sequence. 
 
Now, suppose that  {�� } is not a Cauchy sequence. Then there 
exists a positive real number  � such that for a given � ∈ ℕ 
there exists �, � ∈ ℕ such that � > � > � and �(��, �� ) ≥ �. 
Since {�(��� �, �� )} converges to zero, it follows that there 
exist strictly increasing sequences {��}and{��}, � ≥ 1 of 
positive integers such that 1 < �� < ��,  
 

�����
, ���

� ≥ �,        ∀� ≥ 1                                                (10)  

                    
and 
 

�������, ���
� < �                                                                (11) 

 
Using the triangular inequality and the conditions (10) and (11) 
we have  
 

� ≤ �����
, ���

� ≤ �����
, ������ + �������, ���

� <

�����
, ������ + � 

 
Letting � → ∞ and using (7), we obtain 
 

lim�→∞ �����
, ���

� = �                                                       (12) 

 
Using the triangular inequality, we obtain  
 
�������, ������ ≤ �������, ���

� + �����
, ���

� + �����
, ������, 

 
and 
 
�����

, ���
� ≤ �����

, ������ + �������, ������ + �������, ���
�. 

 
Now letting � → ∞ in the above two inequalities and using 
(12), we have   

lim�→∞ �������, ������ = �                                                (13) 

 
Since � is non-decreasing on [0, ∞), from (10) we have, 
 

�(�) ≤ � ������
, ���

�� , ∀� ≥ 1,                                        (14) 

 
As  �� > ��, by (5), �����

 and  �����
 are comparable. So 

from the condition (1), using (5) and the upper semi-continuity 
of�, we have  
 

�(�) ≤ limsup 
�→∞

� ������
, ���

�� = limsup 
�→∞

� �������
, ����

�� 

 

≤ limsup
�→∞

� ��������, ������� ≤ �(�). 

 
This implies 
�(�) ≤ �(�) < �(�), 
 
which is impossible since� > 0. 
 
Thus the sequence {�� } is a Cauchy sequence in �. 
 
Since (�, �) is a complete metric space, there exists � ∈ � 
such that �� → � as � → ∞. 
 
By (2),{�� }⊆ �� where �� = ���� �, for each � = 1,2,3, ⋯ 
and �� is closed then there exists � ∈ � such that y = ��. 
 
Next we show that �� = �.  
 
Now by the continuity of �and �, we obtain  
 

���(��, �)� = � �� ���, lim
�→∞

��� �� 

 

 = � �� ���, �(lim
�→∞

�� )�� 

 

≤ � �� ���, �(lim
�→∞

�� )�� 

 

= � �� ���, lim 
�→∞

��� �� 

 
= �(�(��, ��)) = 0. 
 

This implies that ���(��, �)� = 0 and hence�(��, �) = 0. As 
a result we have  
 
�� = � = ��                                                                         (15) 
 
Thus � is a coincidence point of  � and  �, which 
implies �(�, �) ≠ ∅. Since � and � are occasionally weakly 
compatible pair of self maps, � and � commute at some  � ∈
�(�, �).  
 
Now set � = �� = ��. Since � and � are occasionally weakly 
compatible,  
 
�� = �(��) = �(��) = ��, 
which implies  
 
�� = ��                                                                              (16) 
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Next we claim that �� = �� = �. Suppose �� ≠ �. By the 
condition (v), we have 
 
 �� ≼ �(��) = ��.  
 
Then  
 

���(��, �)� = ���(��, ��)� ≤ ���(��, ��)� =

�(�(��, �)) < �(�(��, �)) 
 
which implies that 
 
�(�(��, �)) < �(�(��, �)),  
 
a contradiction. Thus �� = �. And hence by (15), we have  
 
�� = �� = �. 
 
Thus, we have proved that � and � have a common fixed 
pointin �. 
 
The following is an example in support of Theorem 3.1. 
 
Example 3.1.1. Let � = {−2, −1,0,1}. We define a partial 
order “≼” on � by  
 
≼= {(−2, −2), (−1, −1), (0,0), (1,1), (0, −1), (1,0), (1, −1)}. 
 
Let � be the usual metric on �. Define �, �: � → �by  
 
�(−1) = 1, �(0) = 0, �(1) = −2, �(−2) = −1, and  
�(−1) = 0, �(0) = 0, �(1) = 1, �(−2) = 0. 
 
Then  �(�) = {0,1} and �(�) = {−2, −1,0,1} and hence 
�(�) ⊂ �(�) and �(�) = {−2, −1,0,1} is closed. 
 
Next we show that � is f-non-decreasing. 
 
−2 = �(1) ≼ �(1) = −2 ⇒ 1 = �(1) ≼ �(1) = 1; 
−1 = �(−2) ≼ �(−2) = −1 ⇒ 0 = �(−2) ≼ �(−2) = 0; 
0 = �(0) ≼ �(0) = 0 ⇒ 0 = �(0) ≼ �(0) = 0; 
1 = �(−1) ≼ �(−1) = 1 ⇒ 0 = �(−1) ≼ �(−1) = 0; 
0 = �(0) ≼ �(−2) = −1 ⇒ 0 = �(0) ≼ �(−2) = 0; 
1 = �(−1) ≼ �(0) = 0 ⇒ 0 = �(−1) ≼ �(0) = 0; and 
1 = �(−1) ≼ �(−2) = −1 ⇒ 0 = �(−1) ≼ �(−2) = 0. 
 
This shows that � is f-non-decreasing. We also observe that 
�(1) ≼ �(1) and � = 0 ∈ �(�, �) such that �� ≼ ���.  
 
Now we show that � and � satisfy the contraction condition of 

Theorem 3.1 with �(�) =
�

�
� and �(�) =

�

�
�.   

 

� ����(0), �(−2)�� = 0 ≤
1

3
= ���(0, −1)�  

= � ����(0), �(−2)�� ; 

 

� ����(−1), �(0)�� = 0 ≤
�

�
= ���(1,0)� =

� ����(−1), �(0)�� ;and � ����(−1), �(−2)�� = 0 ≤
�

�
=

���(1, −1)� = � ����(−1), �(−2)��. 

 
Thus, the pair of mappings � and � satisfy all conditions of 
Theorem 3.1 and 0 is the common fixed point of � and �. 
 

Remark 1: If we choose � = ��=The identity map on �, 
Theorem 2.1 follows as corollary to Theorem 3.1. 
 
Note that the map � in Example 3.1 is a non-decreasing map, 
since 
 
−2 ≼ −2 ⇒ 0 = �(−2) ≼ �(−2) = 0; 

−1 ≼ −1 ⇒ 0 = �(−1) ≼ �(−1) = 0; 
0 ≼ 0 ⇒ 0 = �(0) ≼ �(0) = 0; 
1 ≼ 1 ⇒ 1 = �(1) ≼ �(1) = 1; 

0 ≼ −1 ⇒ 0 = �(0) ≼ �(−1) = 0; 
1 ≼ 0 ⇒ 1 = �(1) ≼ �(0) = 0;and 

1 ≼ −1 ⇒ 1 = �(1) ≼ �(−1) = 0. 
 
So in Example 3.1, if we choose � = ��=The identity map on 
�, one can observe that for  � = 1 and � = 0, where (1,0) ∈
 ≼, we get �(1) ≤ �(1) which absurd and hence the selfmap � 
cannot satisfy the contraction condition of Su [26] for any � 
and � such that �(�) > �(�)∀� > 0. 
 

4. Conclusion 
 
In this work I developed f-contraction mappings and obtained 
a new common fixed point theorem for f-contraction mapping 
in a complete metric space endowed with a partial order by 
using generalized altering distance functions and common 
fixed point theorems obtained are proved. This theorem will 
help us to develop many theorems in further development of f-
contraction mappings. 
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