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All classical statistical methods rely explicitly or implicitly on parametric models based on number of assumptions. 
The most widely used assumption is that the observed data have normal distribution. This assumption about the 
structural and the stochastic parts of the model have been present in statistics for two centuries, and have been the 
framework for all the classical methods.   Classical methods perform well if the data obeys the assumptions. Now-
a-days data collected and stored at enormous speed (GB/TB/hr) and pressure to provide better customized service 
for an edge. The data does not follow the so-called assumptions then the result using classical methods get 
affected. In this context traditional techniques are infeasible due to enormity of data, high dimensionality of data 
and heterogeneous of data. The robust methods can be seen as extensions to the classical ones which can cope with 
deviations from the stochastic assumptions. Classification and data reduction techniques play an important role 
while handling large data. A reliable and precise classification aspect is essential in analyzing multivariate data. 
This paper presents the evaluation aspects such as apparent error rate of various classical and robust discriminant 
methods on a simulation study using R package.  
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INTRODUCTION 
 
Classical statistical methods try to give a better classification result as 
well as possible. The usual criterion is discriminant analysis, is 
classified or predicted in the data. If the data set contains vulnerable, 
the classification may deviate strongly from those obtained from the 
non – vulnerable data. For instance, outliers can deviate discrimination 
classification analysis. Since all data have same weight in the 
discriminant criterion, large deviation is distributed over all the 
residuals, often making them hard to detect.  Robust statistics is to 
reduce the impact of outliers, robust discriminant analysis methods try 
to give correct classification the bulk data, which assumes that the good 
observations outnumber the vulnerable data. Outliers can then be 
identified by looking at the residuals, which are large in the robust 
analysis. In this paper we have discussed the classical and robust 
discriminant analysis. The necessary preliminaries concerning this 
paper are briefly furnished in this section. The comparisons of classical 
and robust discriminant analysis are discussed in the forthcoming 
sections. 
 
Linear Discriminant analaysis 
 
Discriminant Analysis usually means classification by linear functions. 
The objective of discriminant analysis is to classify the sample objects 
into two or more groups. This is done with the help of linear 
combination of predictors or explanatory variables. The basic principle 
to determine the group with which an object is identified is that the 
misclassification error of that object is not maximum. The optimality of 
classification depends on the assumption of data, these are the predictor 
variables follow multivariate normal distribution and the covariance 
matrices of different groups of data are homogeneous. As the 
mathematical methods used in discriminant analysis are complex, they 
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are described here only in general terms. The tendency of an individual 
to become a high performer can be written as a linear equation is, 
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where D is the discriminant function score, βi is the discriminant 
function coefficient relating, independent variable i to the discriminant 
function score, xi is the value of independent variable i. 
 
Maximum Likelihood Estimator (MLE) 
 
The principle of maximum likelihood estimation (MLE), originally 
developed by R.A Fisher in the (1920). The standard estimates are the 
maximum likelihood estimates or their unbiased variants. The sample 
mean vectors for the provision of the estimates of i̂  are given by 
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for the hetroscedastic case, each ∑I is estimated by its training sample 
analogue usually after correction for bias, to give 
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For the homoscedastic discriminant analysis model the standard 
estimate of the common covariance matrix ∑ is the pooled within – 
group sample covariance matrix 

)/().(.)(ˆ
11

gniYYiYYS ijij

n

j

g

i

i




, 

where n=∑ni is the total sample size across a groups. 
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Robust Linear Discriminant Analysis 
 
The robust linear discriminant analysis towards outliers depends 
completely on the estimator for the group center and common 
covariance matrix. There are two very popular ways to measure the 
robustness of an estimator is by mean of its breakdown value 
(Rousseeuw and Leroy, 1987) and its influence function. It is well 
known that sample averages and sample covariance matrix are very 
sensitive to outlying in the training sample may have an unduly large 
influence on the LDA. The influence of outliers on the discriminant 
warrants careful scrutiny by researchers, fortunately Huber (1977 b) 
and Maronna (1976) have developed the basic tools for identifying 
outliers and modifying the estimators to reduce their effects. Their 
theory deals with the robust estimation of a mean vector and covariance 
matrix of a single multivariate population. Randles et,al. (1978) used 
the robust estimates from each of two groups to define the two group 
discriminant function. Harner and Billings (1983) reviewed Huber’s 
techniques for determining robust M-estimates of multivariate location 
and dispersion and also discussed robust discriminant analysis. 
 
Minimum Covariance Determination Estimators 
 
The multivariate location and diffusion estimation in high breakdown 
principles is based on the determinant of the covariance matrix. If the 
covariance matrix nxn  positive semi-definite matrix, p eigenvalues 
are positive, the determinant of covariance matrix equals the product of 
eigenvalues. Thus, a small value in the determinant reflects some linear 

patterns in the data. Consider all n
hC  subsets, and compute the 

determinant of the covariance matrix for each subset. The subset with 
smallest determinant is used to calculate the usual 1xp  mean vector, 
and corresponding pxp covariance matrix, these estimators are called 
minimum covariance determinant estimators.  The Fast MCD algorithm 
was developed by Rousseeuw P.J. Driessen K. (1999), sample of size 
h. we can evaluate the similarity between data points in the full set and 
our randomly simulated sample subset. In particular the Mahalanobis 
distance is used here, let M be the mean of the random subset and S be 
the standard covariance of random subset. 
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The algorithm is as follows: 
 
1. choose a random subset of H0 of x, with size h, 
2. repeat 

a. Determine covariance S and mean M of the subset H0 
b. Determine distances d(xi) or all xi relative to H with the 

Mahalanobis distances 
c. Choose the h smallest distances and create a new subset H1 
d. Repeat with 10 HH  until H0 and H1 are equal or 0. 

3. Evaluate from 1 for k times and determine the selection that had 
the smallest volume. 

 
Minimum Covariance Determinant in all Group (MCD – A) 
 
Minimum covariance determinant procedures in all groups was 
developed Todorov et al. (1990),  Rousseeuw et al. (1992), Croux and 
Dehon (2001) all are applied this procedure for robustifying linear 
discriminant analysis based on S estimates. A drawback of this method 
is that the same trimming proportions are applied to all groups which 
could lead to a loss of efficiency if some groups are outliers free. 
 
Minimum Covariance Determinant in each one of the Group 
(MCD – B) 
 
Minimum covariance determinant analysis in each one of the group 
was proposed by He and Fung (2000) for the S estimates and modified 
algorithm was developed in Hubert and VanDriessen (2004), as a 
replacement for pooling the group covariance matrices, the 

observations are centered and collective to obtaining the each one of 
the individual group location estimates as the reweighted minimum 
covariance determinant location estimates of each group. 
 
Minimum covariance Determinant in individual group (MCD – C) 
 
This method is generally modifying algorithm of high breakdown point 
estimation in order to contain the individual sample or group. In this 
method was discussed in Valentin Todorov (2007), this algorithm 
taking advantages of the FAST-MCD, but it is still to compute the 
MCD for each individual group. 
 
Feasible Solution Algorithm (FSA) using Minimum Covariance 
Determination (MCD) 
 
The FSA for MCD method is using by Douglas M. Hawkins. (1994), it 
is clear from the definition that the MCD estimator satisfies the 
following necessary condition.  The MCD estimator for  and  is 
the sample mean vector and covariance matrix of a subset of size

hn  . The determinant of ̂ cannot be decreased by any case wise 
exchange exchanging one of the trimmed cases for one of the retained 
cases. This condition is satisfies the following algorithm.  Start from a 
trial subset some random subset of hn   of the cases retaining these 
cases and trimming the other h and find their mean vector and 
covariance matrix. Investigate all possible pairwise exchanges in which 
one of the determinants of the covariance matrix of the resulting new 
subset is smaller than that of the old subset could not be the MCD 
solution and may be replaced by the new one. Implement this 
exchange, getting a new trial subset and its mean vector and covariance 
matrix. If there is more than one exchange  that will lead to a reduction 
in the determinant, than make that exchange that will lead to the 
greatest reduction. Repeat the process of investigating pariwise case 
exchange with the new trial subset. If there is no possible pairwise 
exchange that would lead to a reduction in the covariance determinant, 
then the current trial subset satisfies the necessary condition for the 
MCD optimum, this subset and its mean vector and covariance matrix a 
feasible set and a feasible solution respectively. Repeat this process 
with many different random trial subsets, following each to a feasible 
solution. Take as the estimated global optimum MCD the feasible 
solution with smallest determinant. The FSA properties consider the all 
values satisfy the necessary condition for the MCD. The properties of 
this implementation of the algorithm discussed as follows. The kernel 
of the algorithm is testing whether the determinant would be reduced 
by a pairwise case exchange. This test is conveniently implemented by 
augmenting each Xi with a 1, defining 
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Consider a trial partition of the cases into trimmed and retained cases. 
Let },...,,{ 21 hniiiJ  be the set of indices of the currently 
retained cases and write the partitioned matrix 
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where JX  represents the mean vector of the retained cases in the 

partition .J  The determinant of A  can be written using partitioned 
matrix results as 
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where SJ  is the sample covariance matrix of the retained cases. It 
follows at once that the minimum of the MCD criterion is given by  
 

,)/( 1 p
J hnAS  

 

which is just a rescaling of A  by a constant. Thus JS may be 

minimized by minimizing A . The FSA involves evaluating pairwise 

exchange between a retained case and a trimmed case. This can be 
facilitated the determinate identify that for column vector u and v  
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Here u and v  represents the Z vector of the cases to be respectively 
trimmed and restored. The pairwise swap will lead to a reduction in the 
covariance determinant if the term in brackets is less than 1, and the 
swap to make is that for which the bracketed term is a minimum. 
 
Simulation Study  
 
For this paper purpose we have simulated multivariate random variable 
in different mean, and covariance matrix with and without 
contaminated data presented in the simulation study. The different 
proposals through a simulation study as in He and Fung (2000), there 
are three different type of comparison made in this simulation study, 
first one is location contamination µ1= (0,0,0) , µ2(1,1,1) and 
covariance matrix ∑ is identity matrix (1,0,0,0,1,0,0,0,1) with three 
variables X1,X2,X3 , and also we simulate the contaminated mean 
vector is as follows 1̂ = (-4,-4,-4) , 2̂  (5,5,5), but the ∑ is same and 
number of group is 2. The second type is scale contamination in this 
case we simulate the same with and without contamination mean vector 
but the covariance matrix is differ identity matrix multiple (0.0252) in 
contamination case, the last one is location and scale contamination in 
this type we mixed the location and scale contamination, with their 
study comparison the no of sample size in the all type of method is 50 
and 100.  There are many method comparisons in V.Todorov and Ana 
M. Pries (2007), but we have study some of the classical and robust 
discriminate methods and their apparent error rates. Table 1 is display 
the estimated over all apparent error rates as a function of the 
contamination proportion  in different types of contamination. We  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
will regard as all type of comparison the classical method is affected in 
the contamination situation but the robust methods are correctly 
classified when the data is affected in 20% of outliers 

 
Conclusion  
 
The classical and robust discriminant analysis produces the same result 
when the data contains no contaminated observations called vulnerable. 
The contaminated data encountered, it is observed from the table 1, the 
apparent error rate (or) misclassification of data is not more affected in 
the case of Robust Linear Discriminant analysis (RLDA). The robust 
discriminant procedures perform well when the data contains extreme 
observations. Robust procedure are not affected that much when the 
data contains outliers. 
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