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INTRODUCTION  
 

Coronaviruses, such as HCoV 229E and HCoV OC43, were 
identified in the early 1960s and considered to be responsible 
for minor diseases such as the common cold. They are 
enclosed viruses, which have a single-stranded positive
RNA genome and cause sickness in humans and animals 
(1).This coronavirus causes the most severe acute respiratory 
illnesses. SARS is a coronavirus that has been connected to a 
respiratory illness in the Middle East (MERS). SARS
a recently identified coronavirus that cause
respiratory syndrome. COVID-19. Coronaviruses affect 
animals and humans' respiratory and digestive systems, 
including the SARS pandemic in 2002 and the MERS 
epidemic in 2012 (2). These are zoonotic illnesses that resulted 
in death rates of more than 10% and 35%, respectively. Cases 
of pathogenic viral pneumonia caused by a SARS
identified as SARS-CoV-2 in Wuhan, Hubei Province, China, 
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ABSTRACT  

Coronaviruses, such as HCoV 229E and HCoV OC43, were identified in the early 1960s. This 
coronavirus causes the most severe acute respiratory illnesses. SARS is a coronavirus that has been 
connected to a respiratory illness in the Middle East (MERS). The o
disease (COVID-19) was initially noticed in mid December, 2019,To improve the success rate of 
COVID-19treatment, several pharmacological approaches are proposed, and some clinical data are 
reviewed in the literature. Comorbid patients require many pharmacological therapies. Multiple 
medication use (polypharmacy) dramatically increases pharmacological adverse effects. As a result, 
diagnosis and treatment of drug-drug and disease-drug interactions are critical. When prescribing n
drugs to COVID-19patients, clinicians should examine the likelihood of drug
interactions. Detecting drug-drug and disease-drug interactions of the medications utilized will thus 
be critical in the treatment of COVID-19. This article will concentrate on the drug
drug interactions of COVID-19 therapeutic medicines. Variations in the expression of a transporter 
are well recognized to result in changes in the PK/PD of the prescribed medication; hence, 
prescription medicine during inflammation may be a major contributor to inter
in drug efficacy and toxicity. It also highlighted the possibility of drug
interactions of the specified medicine in the treatment of COVID
individuals with co-morbidities and providing better therapy with fewer adverse effects.
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identified in the early 1960s and considered to be responsible 
for minor diseases such as the common cold. They are 
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have been confirmed to the World Health Organization (WHO) 
(3). The outbreak of Novel corona virus disease (COVID
was initially noticed in mid December, 2019, has now spread 
to 215 countries worldwide.On January 30, 2020, the WHO 
declared this pandemic a "Public Health Emergency
International Concern" in compliance with international health 
laws (PHEIC). COVID-19was declared a pandemic by the 
World Health Organization on March 11, 2020. The average 
incubation time is 5.1 days (range 1
the findings of the study, infectivity begins two days before the 
onset of symptoms and rapidly decreases within the first week 
following symptom onset(4). 
Fever, dry cough, dyspnea, chest discomfort, tiredness, and 
myalgia (5–7). The severity of ill
to critical, and risk factors for severe illness include older age 
(65 years) and comorbidities such as diabetes mellitus, heart 
disease, lung disease, hypertension, and obesity. One of the 
problems to consider before recommend
patient and after therapy is the drug's adverse effects.
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World Health Organization (WHO) 
The outbreak of Novel corona virus disease (COVID-19) 

was initially noticed in mid December, 2019, has now spread 
to 215 countries worldwide.On January 30, 2020, the WHO 
declared this pandemic a "Public Health Emergency of 
International Concern" in compliance with international health 

19was declared a pandemic by the 
World Health Organization on March 11, 2020. The average 
incubation time is 5.1 days (range 1–14 days). According to 

study, infectivity begins two days before the 
onset of symptoms and rapidly decreases within the first week 

 The most common symptoms 
Fever, dry cough, dyspnea, chest discomfort, tiredness, and 

. The severity of illness can range from moderate 
to critical, and risk factors for severe illness include older age 
(65 years) and comorbidities such as diabetes mellitus, heart 
disease, lung disease, hypertension, and obesity. One of the 
problems to consider before recommending a medicine to a 
patient and after therapy is the drug's adverse effects. 
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The side effects of a medication should be evaluated both 
before and after treatment. Multiple medication use 
(polypharmacy) dramatically increases pharmacological 
adverse effects (8, 9). Polypharmacy is more common in elderly 
people. However, studies clearly demonstrate that as the 
number of medications used grows, so may the number of 
adverse effects noticed in patients (10–12). As a result, predicting 
drug-drug interactions (DDI) and adverse drug responses 
(ADR) for medications employed in illness therapy is crucial 
(9, 13). Understanding the adverse effects and DDI of the 
COVID-19treatment drugs is crucial to the process's 
effectiveness. Changes in the expression and activity of 
transporters in extremely frequent acute and chronic 
inflammatory settings may affect the pharmacokinetics (PK) 
and pharmacodynamics (PD) aspects of COVID-19treatment. 
To improve the success rate of COVID-19treatment, several 
pharmacological approaches are proposed, and some clinical 
data are reviewed in the literature. Comorbid patients require 
many pharmacological therapies. Drug-drug and disease-
medication interactions can have a detrimental impact on 
patient therapy and generate adverse drug effects, although 
they are avoidable. The intensity, methods, start of effect, and 
clinical importance of drug-drug and disease-drug interactions 
may differ. As a result, diagnosis and treatment of drug-drug 
and disease-drug interactions are critical. When prescribing 
new drugs to COVID-19patients, clinicians should examine the 
likelihood of drug-drug and disease-drug interactions. 
Detecting drug-drug and disease-drug interactions of the 
medications utilized will thus be critical in the treatment of 
Covid-19. This article will concentrate on the drug-drug and 
disease-drug interactions of COVID-19therapeutic medicines. 
 
POTENTIAL DRUGS USED IN TREATMENT OF 
COVID-19 
 
Chloroquine Phosphate: Chloroquine Phosphate is also 
known as chloroquine, which is approved by the U.S FDA to 
treat malaria and extraintestinal parasites. It's a crystalline 
white material with no odour that's taken orally in 150 mg and 
300 mg doses (14-16). Chloroquine excretion is delayed because 
only a tiny percentage of the dosage supplied is detected in 
stools, while the remaining is absorbed in the gastrointestinal 
tracts (17). 
 
Mechanism of action: Chloroquine has the ability to inhibit 
particular enzymes, enabling deadly heme to accumulate 
within the parasite. It also inhibits nucleic acid synthesis by 
inhibiting DNA and RNA polymerase. It may also influence 
the parasite enzyme heme polymerase. It can also block viral 
fusion, which may result in acidification of the cell's surface 
(18-19). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION 
 
Chloroquine phosphate, an experimental emergency use 
medication for some hospitalized COVID-19patients, remains 
an unapproved therapy for coronavirus illness. It is an 
investigational drug with little data on its safety and efficacy. 
The FDA has granted an emergency use authorisation (EUA) 
for chloroquine phosphate for COVID-19positive hospitalised 
patients weighing 50kgs or more (20-21). Chloroquine phosphate 
has demonstrated great improvements in patients with 
pneumonia caused by SARS-CoV-2 infection, according to 
research. 

Patients with renal or liver impairment, diabetes, G6PD 
deficiency, porphyria, allergies to chloroquine phosphate, 
chloroquine hydrochloride, or hydroxychloroquine sulphate, 
and pregnancy or breastfeeding are all suggested against using 
it (22-23). 
 
DRUG INTERACTION 
 
Chloroquine phosphate interacts with a number of medications. 
When taking nonsteroidal anti-inflammatory drugs (NSAID), 
antacids, azithromycin, insulin, amiodarone, moxifloxacin, 
treatments for epilepsy or seizures, vitamins, methotrexate, 
digoxin, tamoxifen, vitamins, or herbal items with chloroquine, 
there is a significant interaction (24). Chloroquine increases the 
risk of a prolonged QT interval in COVID-19patients who are 
also taking azithromycin. Chloroquine increases the risk of 
hypoglycemia by enhancing the pharmacodynamic effect of 
oral hypoglycemic medications. Chloroquine is a moderate 
inhibitor of CYP2D6. Therefore, chloroquine could raise the 
serum concentrations of risperidone, metoprolol, aripiprazole, 
iloperidone, haloperidol, Tricyclic Antidepressants, fluoxetine, 
and paroxetine. On the contrary. Chloroquine will reduce the 
serum level of the prodrugs that are dependent on CYP2D6 for 
their activation. For instance, Tramadol and Codeine.  
Chloroquine is an inhibitor of the transport system P-
glycoprotein (P-gp). Therefore, Chloroquine is expected to rise 
the serum level of the cyclosporine (25-36).  
 
Hydroxychloroquine Sulfate: Hydroxychloroquine Sulfate is 
also known as hydroxychloroquine. The FDA has authorised it 
to treat disorders like as malaria, rheumatoid arthritis, and 
lupus erythematosus (37-39). 
 
Mechanism of action: Through its interaction with DNA, 
hydroxychloroquine sulphate can block specific enzymes. It 
has the ability to suppress processes such as virus release, 
particle transport, viral protein glycosylation, and DNA & 
RNA polymerase. It has the potential to block viral fusion by 
acidifying the surface of cell membranes. It also prevents heme 
polymerization (40-42). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION: Hydroxychloroquine Sulfate is 
expected to be authorised for the treatment of COVID-
19individuals weighing 50 kg or more in 2020. According to 
FDA, there is an ideal dose for individuals who test positive 
for COVID-19based on specific factors. However, for COVID-
19positive individuals, it suggests starting with 800 mg of 
hydroxychloroquine sulphate base on the first day and then 
switching to 400 mg base for the next 4-7 days (43, 44). The 
recommended dose may change depending on the outcome of 
current clinical research. It is also advised that patients' QT 
intervals, as well as renal and hepatic functions, be studied and 
monitored. Cardiovascular illness makes hydroxychloroquine 
sulphate contraindicated. 
 
DRUG INTERACTION: QT interval prolongation is still a 
risk factor for persons taking antibiotics such as azithromycin 
and other antibacterials. Such patients' electrocardiograms 
should be closely examined45. Cimetidine, for example, 
inhibits the metabolism of hydroxychloroquine, resulting in a 
rise in hydroxychloroquine levels in the blood plasma. As a 
result, both medications should not be used at the same time. 
Similarly, hydroxychloroquine can raise serum digoxin levels, 
which should be continuously monitored during combination 
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dosage administration. Antacids can also inhibit 
hydroxychloroquine absorption. The FDA recommends that a 
gap of at least 4 hours be maintained between the two 
medications (46, 47). The metabolism of beta-blockers such as 
carvedilol and metoprolol is slowed by hydroxychloroquine. 
Hydroxychloroquine is a transport system inhibitor (P-gp). As 
z result, the blood level of this cellular pump inhibitor's 
substrates rises (such as cyclosporine and digoxin). In 
individuals with COVID-19who are also taking Azithromycin, 
hydroxychloroquine increases the risk of a prolonged QT 
interval. Hydroxychloroquine enhances the impact of other 
drugs that prolong the QTc interval (e.x. Azithromycin & 
Domperidone). Hydroxychloroquine improves the 
pharmacodynamic effect of oral hypoglycemic medications 
and raises the risk of hypoglycemia.  Hydroxychloroquine is a 
moderate inhibitor of CYP2D6. Therefore, chloroquine could 
raise the serum concentrations of risperidone, metoprolol, 
aripiprazole, iloperidone, haloperidol, Tricyclic 
Antidepressants, fluoxetine, and paroxetine. On the contrary. 
Chloroquine will reduce the serum level of the prodrugs that 
are dependent on CYP2D6 for their activation. For instance, 
Tramadol and Codeine.  The risk of peripheral neuropathy may 
be increased if Hydroxychloroquine used concurrently with 
tocilizumab (48, 28, 30–33, 36, 49-52). 
 
Disease-drug interaction: IL-6, a proinflammatory cytokine, 
stimulates CYP2B1 expression through an epigenetic 
mechanism. Because COVID-19infected individuals have a 
greater amount of IL-6 than healthy participants, it's possible 
that IL-6 interacts with the metabolism of HCQ. The point is 
especially important for drugs with a restricted therapeutic 
index, such as HCQ and CQ. 
 
Remdesivir: Remdesivir has been licenced by the FDA for 
emergency use, however clinical trials have yet to be 
completed. It has been proven in animal models in vitro and in 
vivo to be effective against viral infections that cause Middle 
East respiratory syndrome (MERS) and severe acute 
respiratory syndrome (SARS) (SARS) (53-54). 
 
Mechanism of action: Remdesivir is a remdesivir 
triphosphate prodrug (RDV-TP). Remdesivir is an RNA 
dependent RNA polymerase inhibitor (RdRp). It binds to viral 
RNA chains and competes with adenosine triphosphate. 
Remdesivir triphosphate (RDV-TP) does not produce chain 
termination immediately. (55). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION: Remdesivir has begun phase 3 
clinical studies to assess the drug's safety and effectiveness. 
Patients from high-risk COVID-19nations were able to 
participate in this randomised, openlabel trial that was done 
internationally in several sites (56). Remdesivir's role in 
COVID-19positive individuals with severe manifestations such 
as oxygen need, as well as people with no severe 
manifestations, is being studied. Remdesivir is also being 
examined for the treatment of COVID-19positive patients by 
the National Institute of Allergy and Infectious Diseases 
(NIAID) in the United States. Remdesivir may be 
contraindicated if you have renal or hepatic impairment (57). 
 
DRUG INTERACTION: Certain drugs, such as 
metamizole(analgesics), may reduce Remdesivir exposure. 
Antibacterials such as rifabutin, rifampin, and rifapentine can 
drastically reduce Remdesivir exposure.  

Similarly, anticonvulsants such as carbamazepine, 
phenobarbital, phenytoin, oxcarbazepine, primidone, 
rufinamide, and others can lower Remdesivir's potential 
exposure. Antihypertensive medications such as Bosentan can 
also significantly limit Remdesivir's potential (58, 59). 
Remdesivir effect could be reduced by CYP3A4 inducers such 
as rifampicin, dexamethasone (at massive doses or with 
extended duration), phenytoin, carbamazepine, or 
phenobarbital. Chloroquine or Hydroxychloroquine can 
diminish Remdesivir's antiviral activity. Therefore, it is not 
recommended to coadminister such medicines (60, 61). 
 
Disease-drug interaction: In vitro evidence suggests that 
inflammation lowers mRNA expression of various CYP450 
isoenzymes and transporters, including CYP1A2, CYP2B6, 
CYPC9, CYP2C19, CYP2D6, and CYP3A4 (62). As a result, 
inflammation may have an impact on their pharmacokinetics. 
 
Lopinavir and Ritonavir: Lopinavir and Ritonavir are 
antiretroviral medicines that are classed as HIV-1 Protease 
Inhibitors and are prescribed for adults and children over the 
age of 14 days. Kaletra is the brand name for the combination 
of these two medications, Lopinavir and Ritonavir. Adults 
should take 800/200mg once or twice a day, and children 
should take 100/25mg as directed by their pediatrician (63). 
 
Mechanism of action: Kaletra - Lopinavir; Ritonavir may 
decrease coronavirus activity by binding to one of the essential 
enzymes Mpro, according to clinical research. The plasma 
level of lopinavir is raised due to ritonavir-induced suppression 
of lopinavir's CYP3A-mediated metabolism(64). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION: According to animal and in-vitro 
investigations, this combination has significant antiviral action 
against SARS-CoV and MERS-CoV coronaviruses. COVID-
19infected individuals are now undergoing randomised, 
controlled, open-label studies. Kaletra has been shown to be 
effective against coronaviruses in preclinical tests, although 
there is no difference in the length of viral shedding in 
COVID-19positive hospitalised patients (65). Patients with 
hypersensitivity, such as Stevens-Johnson syndrome, toxic 
epidermal necrolysis, urticaria, and erythema multiforme, 
should avoid Kaletra. Kaletra is not recommended for 
individuals with high serum cholesterol and triglyceride levels, 
as well as those with diabetes, Torsades de pointes (TdP), 
cardiomyopathy, and low blood oxygen levels (66). 
 
DRUG INTERACTION: Certain medicines that are possible 
CYP3A inducers, such as lopinavir, can decrease Kaletra's 
potential plasma levels and hence limit virologic response. 
Furthermore, medicines that rely on CYP3A clearance might 
result in excessive amounts of Kaletra in the bloodstream, 
which can have major health implications. Alfuzosin (alpha1-
adrenoceptor antagonist), which might cause hypotension with 
Kaletra owing to elevated alfuzosin concentration (67).is one of 
the medicines that is contraindicated. Antiarrhythmic 
medicines, such as dronedarone, can cause cardiac 
arrhythmias.Similarly, muscle relaxants such as propofol and 
sevoflurane can induce QT and TdP prolongation. Kaletra can 
cause an increase in analgesic concentration. Antipsychotics 
such as pimozide and lurasidone can produce serious life-
threatening responses with life-threatening symptoms. Anti-
gout medications, such as colchicine, can also induce hepatic 
and renal damage (68-70). 
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Disease-drug interaction: Hepatotoxicity is a documented 
side effect of lopinavir/Ritonavir. Kaletra should thus be 
avoided in individuals with hepatic impairment. When 
Lopinavir/Ritonavir is given to haemophilia patients, the risk 
of bleeding increases. The combination of lopinavir/ritonavir 
has been connected to an increase in blood sugar levels. As a 
result, patients with Diabetes Mellitus should exercise caution 
when using it. The use of ritonavir has been associated to 
second and third degree AV block. Individuals having a history 
of conduction irregularities, underlying heart disease, ischemic 
heart disease, or cardiomyopathies should use Kaletra with 
care, since they are more prone to develop cardiac conduction 
abnormalities (71–76). In HIV-positive patients, CYP3A activity 
was roughly 50% lower than in healthy volunteers77. The 
inclusion of booster RTV, which is consistently connected 
with atazanavir to limit its clearance, may have reduced the 
effect of inflammation later in this trial. In recent publications, 
increased plasma concentrations of LPV were found in severe 
COVID-19patients, compared to those seen in HIV patients, 
and this was associated with inflammation. Because COVID-
19patients are given protease inhibitor-based regimens, which 
have a higher risk of interactions than other antiretroviral 
medications (78, 79). 
 
Dexamethasone: Dexamethasone is a potent anti-
inflammatory adrenal corticosteroid that is synthesised. 
Dexamethasone inhibits NF-kB activation and apoptotic 
pathways in addition to binding to particular nuclear steroid 
receptors. Other comparable adrenal hormones have salt-
retaining capabilities, but this one doesn't. It is a glucocorticoid 
agonist, commonly known as dexone or decadron, and belongs 
to the 21-hydroxysteroids class of chemical substances(80, 82). 
 

Mechanism of action: Dexamethasone suppresses neutrophil 
migration and decreases lymphocyte colony growth in the 
body. Corticosteroids have short-term effects such as reduced 
vasodilation and capillary permeability, as well as decreased 
leukocyte migration to inflammatory areas. When vitamin A 
molecules in the serum rise, prostaglandins and some 
cytokines (interleukin-1, interleukin-12, interleukin-18, tumour 
necrosis factor, interferon-gamma, and granulocyte-
macrophage colony-stimulating factor become inhibited. 
Dexamethasone has also been associated with higher surfactant 
levels and improved pulmonary circulation (80-85). 
 

IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION: The COVID-19patient has a high 
level of inflammation. Because SARS-3 CoV-2's C-like 
proteinase prevents Histone deacetylases-2 (HDAC2) from 
entering the nucleus and so impairing the way it regulates 
inflammation and cytokine response, dexamethasone-induced 
histone deacetylase activation may directly counteract SARS-
activity. CoV-2's Patients with systemic fungal infections, 
dexamethasone hypersensitivity, or cerebral malaria should not 
use dexamethasone (86-89). Based on the preliminary report from 
the recovery trial, the COVID19 treatment guidelines 
Panel recommends using dexamethasone 6 mg per day for up 
to 10 days or until hospital discharge, whichever occurs first, 
for the treatment of COVID-19in mechanically ventilated 
hospitalised patients and in hospitalised patients who require 
supplementary oxygen but are not mechanically ventilated (90-

93). 
 
DRUG INTERACTION: When used with NSAIDS, 
dexamethasone increases the risk of peptic ulcers and bleeding, 
as well as gastrointestinal ulceration when combined with 

Nicorandil (90-96). Dexamethasone has the potential to induce 
gastrointestinal bleeding and perforation. In individuals with 
ulcerative colitis, bowel anastomosis, or diverticulitis, 
Dexamethasone should be used with caution or avoided 
altogether. Dexamethasone impedes the immune response. 
Therefore, Dexamethasone should not be commenced in 
actively infected patients or those who develop serious 
infections after its administration. Dexamethasone can raise 
blood glucose levels by inhibiting insulin secretion and 
antagonising its activity, resulting in increased 
gluconeogenesis and decreased peripheral glucose absorption. 
As a result, in individuals with Diabetes Mellitus, 
Dexamethasone should be administered with caution. 
Dexamethasone is primarily processed in the liver, thus 
individuals with hepatic illness may have stronger 
pharmacological effects. Dexamethasone usage in individuals 
who have recently recovered from a myocardial infarction has 
been linked to the development of left ventricular free-wall 
rupture. As a result, in the case of myocardial infarction, 
Dexamethasone should be administered with great caution (96-

106). 
Disease-drug interaction: The inflammatory cytokine's 
potential effect on dexamethasone's PK. Because inflammatory 
cytokines suppress CYPs, which are principally involved in 
dexamethasone metabolism. 
 
Ivermectin: Ivermectin is the most effective anti-parasite 
medicine. The US Food and Drug Administration licenced it 
for human use to treat onchocerciasis, but it also cures 
strongyloidiasis, ascariasis, trichuriasis, and enterobiasis. 
Scientists recognised its potential in a variety of viral diseases, 
including HIV and Dengue Virus 1-4. (DENV), Influenza 
Pseudorabies virus, Venezuelan Equine Encephalitis Virus 
(VEEV), West Nile Virus (WNV), and SARS-CoV-2 virus in 
the present decade due to its safety (107-113). 
 
Mechanism of action: The specific mechanism of action is 
unknown, scientists have discovered a number of mechanisms 
that contribute to its broad-spectrum antiviral activity. 
Inhibition of importin/1/mediated nuclear import of viral 
proteins by RNA viruses (112). Because SARS-CoV-2 is an 
RNA virus, the chances of it having a similar effect are 
increased (113). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION 
 
Despite the lack of reliable evidence, certain Latin American 
nations have approved the use of Ivermectin for the treatment 
of COVID-19patients. An externally controlled pilot 
experiment was conducted to determine the efficacy of 
Ivermectin as a COVID-19add-on medication. A dosage of 0.2 
mg/kg (single dose at once = 2 tablets of 6mg/weekly) was 
given to mild and moderate symptoms with a comorbidity of 
hypertension, diabetes, and asthma in this experiment. In a 
four-week period, all of the patients were effectively treated. 
Furthermore, between March 10th and March 30th 2020, a 
retrospective investigation was conducted at a hospital clinic in 
Barcelona, Spain. A single 200 g/kg dose of Ivermectin did not 
improve clinical or microbiological outcomes in individuals 
with severe COVID-19when compared to a similar group of 
patients who did not receive Ivermectin. Ivermectin should be 
taken with caution in individuals with severe hepatic disease 
due to its high hepatic metabolism. Furthermore, individuals 
with severe asthma should exercise caution when using 
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Ivermectin since systemic Ivermectin has been proven to 
worsen bronchial asthma (114-116). 
 
DRUG INTERACTION 
 
When alcohol is combined with ivermectin, the plasma 
concentrations of ivermectin rise. Due to the powerful 
inhibitory properties of specific drug transporters, orange juice 
lowers the AUC and Cmax of Ivermectin (117). 
 
Disease-drug interaction: The PK of ivermectin in the elderly 
has not been studied. In the elderly, metabolism slows with 
age, resulting in greater ivermectin exposure. Exposure to 
inflammation may have an effect on drug metabolism and 
disposition (118). 
 
Azithromycin: Azithromycin was proven to be efficacious 
against Ebola in vitro (119). In addition, azithromycin is 
regarded to be capable of preventing severe respiratory tract 
infection (120). COVID-19patients were treated with 
azithromycin in conjunction with HCQ (121). 
 
Mechanism of action: Azithromycin is a macrolide antibiotic 
that works by attaching to the 50S ribosomal subunit to 
suppress protein synthesis(122). This antibiotic is given to 
COVID-19patients to protect them against subsequent bacterial 
infections. Azithromycin may have immunomodulatory 
properties by raising interferon b and k expression and 
significantly lowering TNFa production during viral 
respiratory infections (123). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION 
 
Azithromycin is a macrolide antibiotic used to prevent 
secondary infections when combined with COVID-19. It has a 
strong tissue affinity and is widely distributed throughout the 
body. It has a half-life in the body of 2 to 4 days. 
 
DRUG INTERACTION 
 
Azithromycin is a P-gp inhibitor, and when combined with a 
P-gp substrate (such as DigoxIn), it has been shown to raise 
serum levels. It also inhibits CYP3A4 (124), OATP1A2 (125), and 
OATP2B1 (126). COVID-19-related mortality was reduced 
when this drug was used with HCQ (123). The danger of 
probable interactions is pharmacodynamic, rather than 
pharmacokinetic. While prescribing azithromycin as a 
comedication, the impact on QT prolongation was 
demonstrated. The use of azithromycin in combination with 
HCQ enhanced QT prolongation, which raised the risk of heart 
failure and cardiovascular death (126). 
 
Convalescent plasma: Convalescent plasma is plasma 
donated by patients who have recovered from an infection with 
the COVID-19virus. Antibodies in convalescent plasma aid in 
the recovery of COVID-19patients (127-128). 
 
IN COVID-19TREATMENT AND THEIR 
CONTRAINDICATION 
 
Further research into the impact of Convalescent Plasma in 
lowering mortality, morbidity, and length of illness in COVID-
19patients is ongoing. Whether Convalescent Plasma is 
effective against COVID-19is yet unknown.  

Convalescent Plasma has received FDA approval for use in 
hospitalized COVID-19positive patients (129). It might be a risk 
factor for those who have had bad transfusion responses. 
 
DRUG INTERACTION 
 
Convalescent Plasma is usually thought to be safe for 
transfusion and well tolerated by patients. Through emergency 
experimental new medications, a licenced physician can seek 
the use of Convalescent Plasma for a single patient (eIND). It 
also means that Convalescent Plasma is not a bigger risk factor 
than the illness or condition (130-132). 
 
Drug transporter pathways change in response to 
inflammation: Inflammation is linked to a variety of cytokine 
responses. This is a large class of tiny cell-signaling proteins 
that are responsible for immune system homeostasis. 
Cytokines that promote inflammation Tumor necrosis factor 
(TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6). (TNF-
α) are the primary cause of an acute immune response. These 
locally generated cytokines can circulate in the circulation and 
have a systemic influence during an infection by interacting 
with cell membrane receptors, transporters on the vascular 
endothelium, and parenchymal cells from a number of organs. 
Inflammation and immune response play essential roles in 
many acute and chronic illnesses, impacting medication 
clearance by altering the mechanism of drug transporters and 
the activity of drug-metabolizing enzymes. (133).  
 
Drug metabolising enzyme activity changes in response to 
inflammation: As the primary contributor, CYPs are widely 
involved in the metabolic biotransformation of most drugs (134). 
CYP regulation, like drug transporter regulation, has been 
associated to inflammation in a number of metabolic and 
infectious illnesses, including viral infection (135). Cytokines 
released during the inflammation process are primarily 
responsible for inflammatory-induced polymorphisms in 
hepatic CYPs (136). Control is crucial when considering 
pharmaceutical interactions since drug pharmacokinetics will 
eventually be altered dependent on sickness kind and released 
cytokines, as well as the provided dose(137,138). Many 
investigations utilizing hepatocytes and in vivo in mice (139), 
rats (140), and humans (141) have revealed cytokine-induced 
CYPs activity modification. Extrahepatic CYPs were also 
inhibited by inflammatory mediators (142–145).The most 
proinflammatory cytokines include IL-1 (146–148), IL-6, TNF-, 
and IFN-, which have been shown to decrease CYPs 
production and activity (147–151). Other cytokines, such as IL-2 
and IL-10, had the similar impact (152–154). IL-6 is the primary 
inflammatory substance that has been identified to have a 
significant inhibitory effect on the expression and activity of 
various CYPs. In rat hepatocytes, human recombinant IL-6 
reduced phenobarbital-mediated activation of CYP2B1/2 in a 
concentration-dependent manner(155). It inhibited the activity of 
multiple CYPs. Human recombinant IL-6 treatment 
dramatically lowered CYP1A1, CYP1A2, and CYP3A3 
mRNA levels in human hepatoma cell lines (156). The lowering 
of CYPs activity by cytokines is not fully understood. 
However, it is thought that a decrease in CYPs mRNA strongly 
indicated a transcriptional mechanism involving many 
transcriptional factors (157,158). Nuclear factor Kappa B (NF-kB) 
and the aryl hydrocarbon receptor are regulatory transcription 
factors in the inflammatory and immunological response, and 
they impact the gene expression of various CYPs in humans, 
rats, and mice (157–160). Pyrrolidine dithiocarbamate, for 
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example, is an NF-kB inhibitor that can prevent the 
inflammatory drop in CYP1A2 activity.(161,162). The Pregnane 
X Receptor (PXR) is linked to a number of genes, the most 
prominent of which being CYP3A4. PXR is regulated by NF-
kB factors, and NF-kB is regulated by inflammatory stimuli, 
which leads in modulation of Hepatic CYPs expression (163–165). 
 
Conclusion 
  
Variations in the expression of a transporter are well 
recognised to result in changes in the PK/PD of the prescribed 
medication; hence, prescription medicine during inflammation 
may be a major contributor to interindividual variability in 
drug efficacy and toxicity. It also highlighted the possibility of 
drug-drug and disease-drug interactions of the specified 
medicine in the treatment of COVID-19. It will aid in lowering 
risk in individuals with co-morbidities and providing better 
therapy with fewer adverse effects. 
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