RESEARCH ARTICLE
 INVERSE CLOSED DOMINATION IN THE CORONA OF GRAPHS

*Edward M. Kiunisala

Mathematics Department, College of Arts and Sciences, Cebu Normal University, 6000 Cebu City, Philippines

ARTICLE INFO

Article History:

Received $04^{\text {th }}$ January, 2023
Received in revised form
$10^{\text {th }}$ February, 2023
Accepted $16^{\text {th }}$ March, 2023
Published online $25^{\text {th }}$ April, 2023

Key words:

Dominating Set, Closed Dominating Set, Independent Dominating Set, Inverse Closed Dominating Set, Inverse
Dominating Set.
*Corresponding Author:
Edward M. Kiunisala

Abstract

In this paper, we investigate the inverse closed domination in the corona of graphs. Some interesting relationships are known between closed domination, independent domination and inverse closed domination.

Copyright©2023, Edward M. Kiunisala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Edward M. Kiunisala. 2023. "Inverse Closed Domination in the Corona of Graphs". International Journal of Current Research, 15, (04), 2445124453.

INTRODUCTION

Throughout this study, we only consider graphs which are finite, simple and undirected. The symbol $V(G)$ denotes the vertex set and $E(G)$ denotes the edge set of G. The order of G refers to the cardinality of $V(G)$ and the size of G refers to the cardinality of E (G). The symbol $|V(G)|$ denotes the order of G and $|E(G)|$ denotes the size of G. If $|E(G)|=0$, then G is an empty graph. An empty graph of order n is denoted by Kn. If $V(G)$ is singleton, G is called a trivial graph

Any graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \square E$ (G). For a non-empty $S \subseteq V(G), \quad\langle S\rangle$ denotes the subgraph H of G for which $|E(H)|$ is the maximum size of a subgraph of G with vertex set S. An edge e of G is said to be incident to vertex v whenever $e=$ $u v$ for some $u \in V(G)$. The symbol $G-v$ denotes the resulting subgraph of G after removing v from G and all edges in G incident to v. If $u, v \in V(G)$, the symbol $G+u v$ denotes the graph obtained from G by adjoining to G the edge $u v$.

The closed neighborhood $N G[v]$ of a vertex v of G is the set consisting of v and every neighbor of v in G. Any $S \subseteq V(G)$ is a dominating set in G if $t v \in S N G[v]=V(G)$. A dominating set in G is also called a γ-set in G. The minimum cardinality $\gamma(G)$ of a γ-set in G is the domination number of G. Any γ-set in G of cardinality $\gamma(G)$ is referred to as the minimum γ-set in G.

A dominating set is an independent dominating set if $u v / \in E(G)$ for all $u, v \in S$. The minimum cardinality of an independent dominating set is called the independence domination number of G, denoted by γi (G). Any independent dominating set in G of cardinality $\gamma i(G)$ is referred to as a γi-set in G. Two distinct vertices u and v of G are neighbors in G if $u v \in E(G)$.

A dominating set is called a closed dominating set if given a graph G, choose $v 1 \in V(G)$ and put $S 1=\{v 1\}$. if $N G[S 1] /=V(G)$, choose $v 2$ $\in V(G) \backslash S 1$ and put $S 2=\{v 1, v 2\}$. Where possible, $k \geq 3$, choose $v k$ $\in V(G) \mid N G[S k-1]$ and put $S k=\{v 1, v 2, \ldots, v k\}$. There exists a positive k such that $N G[S k]=V(G)$. The smallest cardinality of a closed dominating set is called the closed domination number of G, and denoted by $\gamma(G)$. A closed dominating set of cardinality $\gamma(G)$ is called γ-set of G. A closed dominating set S is said to be in its canonical form if it is written as $S=\{v 1, v 2, \ldots, v k\}$, where the vertices $v j$ satisfy the properties given above.
Therefore,
Let D be a minimum dominating set in G. The dominating set $S \square V$ $(G) \mid D$ is called an inverse dominating set with respect to D. The minimum cardinality of inverse dominating set is called an inverse domination number of G and is denoted by $\gamma-1(G)$. An inverse dominating set of cardinality $\gamma-1(G)$ is called $\gamma-1$-set of G. Motivated by the definition of inverse domination in a graph, we define a new domination parameter.

Let C be a minimum closed dominating set in G. The closed dominating set $S \subseteq V(G) \backslash C$ is called an inverse closed dominating set with respect to C. The minimum cardinality of an inverse closed dominating set is called an inverse closed domination number of G and is denoted by $\gamma-1(G)$. An inverse closed dominating set of cardinality $\gamma-1(G)$ is called γ-1-set of G.

Domination is one of the most well-studied concepts in graph theory. The reader is referred to (Canoy et al, Chartrand et al 2012, Cockayne et al 1977, Go et al 2011) for the fundamental concepts and recent developments of the domination theory, and to (Berge 1962, Haynes et al 2002, Walikar et al 1979) for its various applications. Inverse domination is studied further in (Jude Annie Cynthia et al 2018, Kiunisala et al 2014, Tamizh Chelvan et al 2013).

RESULTS

A classical result in the domination theory which was introduced by Ore in 1962 is the following theorem:

Theorem 2.1 Let G be a graph with no isolated vertex and S a minimum dominating set. Then $V(G) \backslash S$ is a dominating set in G.

This motivates a new domination parameter, the inverse closed domination in graphs. Theorem 2.1 guarantees the existence of a $\gamma-1-$ set in a graph G. Since the inverse closed dominating set of any graph G of order n cannot be $V(G)$, it follows that $\gamma-1(G) /=n$ and hence γ $1(G)<n$. Since $\gamma-1(G)$ does not always exist in a connected nontrivial graph G, we denote by $G-c 1$ the family of all graphs with an inverse closed dominating set. Thus, for the purpose of this study, it is assumed that all connected nontrivial graphs considered belong to the family $G-c 1$. From the definitions, the following result is immediate.

Remark 2.2 Let G be a connected graph of order $n \geq 2$. Then
(i) $1 \leq \gamma-1(G)<n$;
(ii) $\gamma(G) \leq \gamma(G) \leq \gamma-1(G) \leq \gamma-1(G)$.

Consider, for example, the graph G in Figure 1. We have the set $\{\mathrm{f}, \mathrm{g}, \mathrm{h}\}$ as a minimum dominating set, thus $\gamma(G)=3$. The set $\{a, i, g$, $h\}$ is the minimum closed dominating set, thus $\gamma(G)=4$. The set $\{b, c$, $d, e, f, j, k, l, m\}$ is the minimum inverse closed dominating set, thus γ $1(G)=9$ and the set $\{a, b, c, d, e, i, j, k, l, m\}$ is the minimum inverse dominating set, thus $\gamma-1(G)=10$.

Figure 1. Graph \boldsymbol{G} where $\gamma(\boldsymbol{G}) \leq \gamma(\boldsymbol{G}) \leq \gamma-1(G) \leq \gamma-1(G)$
Since any independent dominating set is a closed dominating set, it follows that the inequality $\gamma(G) \leq \gamma(G) \leq \gamma i(G)$ holds. From Figure 1, $\{a, e, g, i, m\}$ is the minimum independent dominating set, thus $\gamma i(G)$ $=5$. The following remark holds.

Remark 2.3 Let G be a connected nontrivial graph of order $n \geq 2$. Then $\gamma i(G) \leq \gamma-1(G)$.

Recall that by an independent set we mean any $S \subseteq V(G)$ such that $u v / \in E(G)$ for all $u, v \in S$, and the symbol $\beta(G)$ denotes the maximum cardinality of an independent set in G. An independent set S with $|S|=\beta(G)$ is called a β-set.

CORONA OF GRAPHS

The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining the $i t h$ vertex of G to every vertex in the $i t h$ copy of H. We denote by $H v$ that copy of H whose vertices are adjoined with the vertex v of G. In effect, $G \circ H$ is composed of the subgraphs $H v+v=H v+\langle\{v\}\rangle$ joined together by the edges of G.

Theorem 3.1 (Canoy, S.R. Jr. and M.A. Labendia) Let G be a connected graph and H be any graph. Then $C \subseteq V(G \circ H)$ is an independent dominating set in $G \circ H$ if and only if $C \cap V(G)$ is an independent set in G and $C \cap V(H v+v)$ is an independent dominating set in $H v+v$ for every $v \in V(G)$.

Theorem 3.2 (Canoy, S.R. Jr. and M.A. Labendia) Let G be a connected graph of order n and H be any graph with $\gamma(H)=1$. If $C \subseteq$ $V(G \circ H)$ is a γi-set in $G \circ H$, then $C \cap V(G)$ is a β-set in G.

Theorem 3.3 (Go C.E. and S.R. Canoy Jr. 2011) Let G be a connected graph and H be any graph. Then $C \subseteq V(G \circ H)$ is a dominating set in $G \circ H$ if and only if $C \cap V(H v+v)$ is a dominating set in $H v+v$ for every $v \in V(G)$.

Theorem 3.4 (Tacbobo, T.L. and F.P. Jamil 2012) Let G and H be any two graphs, with $\gamma(H) \geq 2$, and let $S \subseteq V(G \circ H)$. If S is a minimum closed dominating set in $G \circ H$, then $S \cap V(G)$ is a closed dominating set in G. In this case, if $S \cap V(G)$ is nonindependent (resp. independent) dominating in G, then $S \cap V(G)$ is a maximum non-independent (resp. independent) closed dominating set in G.

In particular, Theorem 3.1, Theorem 3.2 and Theorem 3.4 yield the following corollary.

Corollary 3.5 Let G and H be connected graphs with $\gamma(H) \geq 1$, and let $S \subseteq V(G \circ H)$. Then S is a γ-set in $G \circ H$ if and only if $S \cap V(G)$ is a β-set in G and $S \cap V(H v)$ is a γ-set in $H v$ for all $v \in V(G) \backslash S$

Proposition 3.6 Let G and H be any graphs. Then

$\gamma-1(G \circ H)=(\gamma(H)-1) \beta(G)+|V(G)|$.
Proof: Verify that the claims are true for $|V(G)|=1$ or $\gamma(H)=1$. Now we assume that $|V(G)|>1$ and $\gamma(H)>1$. Let $S \subseteq V(G \circ H)$ be a γ-1-set in $G \circ H$, and let $D \subseteq V(G \circ H) \backslash S$ be a γi-set in $G \circ H$. By Theorem 3.2, $D \cap V(G)$ is a β-set in G and for each $v \in V\left(G{ }^{\circ}\right.$ $H) \backslash D, D \cap V(H v)$ is a γ-set in $H v$. For each $v \in D \cap V(G)$, choose a γ-set $S v$ in $H v$, and define $S *=(v v \in D \cap V(G) S v) \cup(V(G) \backslash D)$. By Theorem 3.3, $S *$ is a dominating set in $G \circ H$. Since $S * \cap D=\varnothing$, $S *$ is an inverse close dominating set in $G \circ H$. Thus, $|S| \leq|S *|$. On the other hand, for each $v \in D \cap V(G), v / \in S$ so that $S \cap V(H v+v)$ $=S \cap V(H v)$. By Theorem 3.1, $S \cap V(H v)$ is a dominating set in $H v$, and thus, $|S v| \leq|S \cap V(H v+v)|$ for all $v \in D \cap V(G)$. Thus,

$$
|S| \geq \sum_{v \in D \cap V(G)}\left|S_{v}\right|+|V(G) \backslash D|=\left|S^{*}\right| .
$$

Therefore, $|S|=\gamma(H) \beta(G)+|V(G)|-\beta(G)=(\gamma(H)-1) \beta(G)+\mid V$ $(G) \mid$.

REFERENCES

Berge, C. 1962. Theory of Graphs and its Applications, Methuen, London.
Canoy, S.R. Jr. and M.A. Labendia, Independent domination in graphs under some binary operations, to appear.
Chartrand G. and P. Zhang. A First Course in Graph Theory, Dover Publication, Inc., New York, 2012.

Cockayne, E.J. and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, (1977) 247-261.
Domke, G.S. J.E. Dunbar and L.R. Markus, The inverse domination numberof a graph, Ars Combin., 72 (2004): 149-160.
Go C.E. and S.R. Canoy Jr., Domination in the corona and join of graph, International Mathematical Forum, 6 (2011), no. 16, 763-771.
Haynes, T.W. S.T. Hedetnimi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker inc., New York, NY, 1998.

Haynes, T.W. S.T. Hedetnimi and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker, Inc. New York (1998).
Haynes, T. S. Hedetniemi and M. Henning, Domination in graphs applied to electrical power networks, J. Discrete Math, 15 (2002), no. 4 519-529.

Jude Annie Cynthia V. and A. Kavitha, Inverse Closed Domination Num- ber of Cyclic Split Graph, International Journal of Pure and Applied Math- ematics, Vol. 120, 2018, no. 8, 21-29.
Kiunisala E.M. and F.P. Jamil, Inverse domination Numbers and disjoint domination numbers of graphs under some binary operations, Applied Mathematical Sciences, Vol. 8, 2014, no. 107, 5303-531.
Kiunisala E.M. and F.P Jamil, On Pairs of Disjoint Sets in a Graph, International Journal of Mathematical Analysis, Vol 10, 2016, no. 13, 623-627.

Kiunisala, E.M. Inverse Closed Domination in Graphs, Global Journal of Pure and Applied Mathematics, Vol. 12, Number 2 (2016), 1845-1851.

Kiunisala, E.M. On Pairs of Disjoint Dominating Sets in the Composition of graphs, Journal of Global research in Mathematical Archives Vol. 6 (2), 2019.
Kiunisala E.M. and C.S. Rosero, Inverse Closed Domination on the Unitary Cayley Graphs, Journal of Global Research in Mathematical Archives 6 (1),2019.
Kulli V.R. and S.C. Sigarkanti, Inverse Domination in Graphs, Nat. Acad.Sci. Letters, 14 (1991) 473-475.
Ore. O. Theory of Graphs. American Mathematical Society, Provedence, R.I., 1962.
Tacbobo, T.L. and F.P. Jamil. Closed Domination in Graphs, InternationalMathematical Forum, Vol.7, 2012, no. 51, 2509 2518.

Tamizh Chelvan, T. T. Asir and G.S. Grace Prema, Inverse dominationin graphs, Lambert Academic Publishing, 2013.
H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent Developments in the Theory of Domination in Graphs and its Applications, MRI Lecture Notes in Mathematics 1, Allahabad, 1979.

