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INTRODUCTION  
 

 

Inverse problems for elliptic equations often arise in various 
scientific and engineering applications such as geophysics, 
medical imaging, and material sciences. These problems are 
typically ill-posed, meaning that solutions may not exist, be 
unique, or depend continuously on the data. This paper extends 
previous studies by considering an inverse problem for an 
elliptic equation with non-linear boundary conditions and 
integral additional information, which are more reflective of 
real-world conditions. 
 
Let  D ⸦ Rn be a convex, bounded domain with a sufficiently 
smooth boundary ∂D. The goal is to determine a pair of 
functions {f(x), u(x, y)} from the given conditions:
 
Au = f(x) g(u) in D, 
డ௨

డ
 +  ku = q(x, y) on ∂D, 

∫ 𝑢(𝑥, 𝑦)𝑑𝑦 = ℎ(𝑥) 𝑖𝑛
ఊమ(ೣ)

ఊభ (ೣ)
 D' . 

 

The focus will be on establishing the conditions under which 
the solution is unique and stable, thereby ensuring the well
posedness of the problem. 
 
2. Assumptions and Definitions: To proceed with the 
analysis, we make the following assumptions about the input 
data: 
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Inverse problems for elliptic equations often arise in various 
scientific and engineering applications such as geophysics, 
medical imaging, and material sciences. These problems are 

posed, meaning that solutions may not exist, be 
unique, or depend continuously on the data. This paper extends 
previous studies by considering an inverse problem for an 

linear boundary conditions and 
mation, which are more reflective of 

be a convex, bounded domain with a sufficiently 
∂D. The goal is to determine a pair of 

functions {f(x), u(x, y)} from the given conditions: 

The focus will be on establishing the conditions under which 
the solution is unique and stable, thereby ensuring the well-

proceed with the 
analysis, we make the following assumptions about the input 

 
 The function g(u) is Lipschitz continuous.
 The domain D has a 𝐶ଶାఈ boundary, where 0 < 
 The functions h(x) and q(x, y) are sufficiently smooth and 

belong to 𝐶ଶାఈ  spaces. 
 The functions 𝛾ଵ(𝑥) and 𝛾ଶ

𝛾ଵ(𝑥) < 𝛾ଶ(𝑥) 
 
We define the solution of the inverse problem as follows:
 
Definition 2.1: A pair of functions { f(x), u(x, y)  is said to be 
a solution of the inverse problem if f 
and they satisfy the conditions outlined in the problem 
statement. 
 
3. Uniqueness and Stability Theorem
prove the main theorem regarding the uniqueness and stability 
of the solution. 
 
Theorem 3.1: Let the functions g(u), 
given conditions. Then the solution { f(x), u(x, y)} of the 
inverse problem is unique and the following stability estimate 
holds: 
 
|| f1-f2||0 + || u1- u2 ||0 ≤ C (||g1 – g
 
where C  is a constant dependent on the data of the problem.
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The function g(u) is Lipschitz continuous. 
boundary, where 0 < 𝛼 < 1. 

The functions h(x) and q(x, y) are sufficiently smooth and 

ଶ(𝑥) are well-defined and satisfy 

We define the solution of the inverse problem as follows: 

A pair of functions { f(x), u(x, y)  is said to be 
a solution of the inverse problem if f ϵ C(D)  and  u ϵ C2(D), 
and they satisfy the conditions outlined in the problem 

3. Uniqueness and Stability Theorem: We now state and 
prove the main theorem regarding the uniqueness and stability 

Let the functions g(u), q(x, y), h(x)  satisfy the 
given conditions. Then the solution { f(x), u(x, y)} of the 
inverse problem is unique and the following stability estimate 

g2 ||0 + ||q1 – q2||0 + ||h1 – h2 ||0) 

constant dependent on the data of the problem. 
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Proof of Theorem 3.1: To prove the theorem, we begin by 
integrating the elliptic equation with respect to the variable y 
over the interval [𝛾ଵ(𝑥) , 𝛾ଶ(𝑥) ]. By applying the given 
conditions and assumptions,                we obtain a system of 
equations for the differences between two solutions, {f1(x), 
u1(x, y)}   and                      {f2(x), u2(x, y)}.  
 
Let z(x, y) = u1(x, y) – u2(x, y) and X(x) = f1(x) – f2(x). Then, 
the difference z(x, y) satisfies the following system: 
 
Az = X(x) g1(u1) + F(x, u1, u2) in D, 
 
డ௭

డ
 + kz = q1(x, y) – q2(x, y) on} 𝜕D, 

 

∫ 𝑧(𝑥, 𝑦)𝑑𝑦 = 
ఊమ(ೣ)

ఊభ (ೣ)
 h1(x) – h2(x) in D' . 

 
Using the properties of the Green's function and the given 
conditions, we derive the stability estimate for z(x, y) and 
X(x). The detailed steps of the proof involve applying the 
maximum principle for elliptic equations and estimating the 
Green's function. Finally, we obtain the desired stability 
estimate, proving the uniqueness of the solution. 
 
4. Numerical Methods and Applications: The theoretical 
results presented in this study have significant implications for 
practical applications. In many real-world scenarios, solving 
inverse problems with non-linear boundary conditions is 
crucial for accurate modeling and analysis. Numerical methods 
such as the finite element method (FEM) and the boundary 
element method (BEM) can be employed to approximate 
solutions of the inverse problem. In this section, we outline a 
numerical algorithm for solving the inverse problem using 
FEM. The algorithm involves discretizing the domain D into a 
finite number of elements and applying the weak formulation 
of the elliptic equation. By iteratively updating the solution 
based on the given conditions and minimizing the residual 
error, we can obtain an approximate solution that satisfies the 
stability estimate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Case Study: Heat Conduction in Non-Homogeneous 
Materials: To demonstrate the practical application of the 
proposed method, we consider a case study of heat conduction 
in non-homogeneous materials. The goal is to determine the 
spatial distribution of thermal conductivity f(x) and the 
temperature field u(x, y) within a bounded domain D with non-
linear boundary conditions. The heat conduction equation is 
modeled as an elliptic equation with non-linear boundary 
conditions, and the inverse problem involves determining the 
thermal conductivity function based on temperature 
measurements at the boundary. The numerical algorithm 
presented in the previous section is applied to solve this 
inverse problem, and the results are analyzed to validate the 
theoretical findings. 
 

6. CONCLUSION 
 
This study presents a comprehensive analysis of an inverse 
problem for an elliptic equation with non-linear boundary 
conditions. The uniqueness and stability of the solution are 
established under given assumptions, and a numerical 
algorithm is proposed for practical applications. The case study 
on heat conduction in non-homogeneous materials 
demonstrates the effectiveness of the proposed method. 
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