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ABSTRACT 

Static conformally flat charged fluid  spheres have much  attracted the relatives in recent years. In 
1968, De and Raychaudhuri (9) have shown that in relativistic unit a pressure
distribution in equilibrium will have the absolute value of the charge to mass ratio as unity. Many 
workers have already studied the charged fluid distribution in equilibrium.  The Einstein
field equations in the presence of matter and charge from a highly non
so a small number of exact solution have been obtained. It is believed that exact solutions of the field 
equations in general relativity for extended charged distribution will prove useful in the study of 
quantum field theory in a Reimannin manifold as question of self-energy becomes answerable. Sphere 
of charged dust have been investigated by Papapetrou  (23). Bonner and Wickramasuriya 
Raychaudhuri  (24). It is believed that exact solutions of the field equations in general relativity for 
extended charged distribution will prove useful in the study of quantum field theory in a Reimannin 
manifold as question of self-energy becomes answerable. Sphere of charged dust have been 
investigated by Papapetrou  (23). Bonner and Wickramasuriya 
known that the pressure less charged distribution in equilibrium will have the absolute value of the 
charge to mass ratio as unity in relativistic units (De and Raychaudhuri 
not reduce to the interior Schwarzschild solutions when tensor charge density equals zero. This is not 
surprising as the vanishing of σ does not mean the absence of charge but only implies that the total 
charge in the sphere is zero. Secondly the gravitational self
gravitational mass inversely as the radius of the sphere and not inversely as the square of radius. It 
can be  Mentioned that if one attempts to generalize Kyle and Martin assumption of taking 

                  eଶσ(r) ∝ r୫,m≥ 0.  Q(r) ∝ r୫ାଷ, 
The solution of Wilson can always be overlooked. Hereσ(r) is the proper charge density within the 
sphere λ is metric potential and Q(r) represent the total charge contained within the sphere of radius r.

Q(r) = 4 π∫ xଶ୰


eଶσ(x)dx  

For a spherically symmetric charge distribution the unique exterior metric was obtained by Reissner 
and Nordstorm (21). 
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A conformally flat spherically symmetric non-static internal solution was obtained by Singh and Abdussattar
found a general solution representing conformally flat perfect fluid distribution of spherical symmetry. They 

have also discussed various physical properties of the model. Gurses (12) has shown that the only static distribution of the fluid 
with positive density and pressure which would generate a conformally flate metric through the Einstein’s equations without 
cosmological term is that described by the Schwarzschild interior solution.  Burman (4) discussed the motion of the particles in 

time. Singh and Abdussattar (21) has obtained a non-static generalization of the Schwarzschild interior 
time. They have also shown that the model admits of distribution of discrete particles 

and Shikin (20) have obtained conformally flate non-static solution in general relativity theory 
theories of gravitation. Collinson (8) has shown that every conform ally flat ax symmetric stationary space

is static, he has also Proved that if the source is perfect fluid the space-time is the interior Schwarzschild field. The Einstein
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Maxwell field equations in the presence of matter and charge from a highly non-liner system of equations and so a small number 
of exact solution have been obtained. It is believed that exact solutions of the field equations in general relativity for extended 
charged distribution will prove useful in the study of quantum field theory in a Reimannin manifold as question of self-energy 
becomes answerable. Sphere of charged dust have been investigated by Papapetrou  (23). Bonner and Wickramasuriya (5) and 
Raychaudhuri  (24). It is known that the pressure less charged distribution in equilibrium will have the absolute value of the charge 
to mass ratio as unity in relativistic units (De and Raychaudhuri (9)). Firstly, the solution does not reduce to the interior 
Schwarzschild solutions when tensor charge density equals zero. This is not surprising as the vanishing of σ0 does not mean the 
absence of charge but only implies that the total charge in the sphere is zero. Secondly the gravitational self-energy contribution to 
the total gravitational mass inversely as the radius of the sphere and not inversely as the square of radius. It can be  

Mentioned that if one attempts to generalize Kyle and Martin assumption of taking  

    eଶσ(r) ∝ r୫,m≥ 0. 

 Q(r) ∝ r୫ାଷ, 

The solution of Wilson can always be overlooked. Hereσ(r) is the proper charge density within the sphere λ is metric potential and 

Q(r) represent the total charge contained within the sphere of radius r. 

      Q(r) = 4 π∫ xଶ୰


eଶσ(x)dx 

For a spherically symmetric charge distribution the unique exterior metric was obtained by Reissner (25) and Nordstorm (21). 

 
THE FIELD EQUATIONS 
 
  We use here the static spherically symmetric line element in the form  
 
 ds2= e3dt2 –er dr2 –r2(dθ2+sin2θdϕଶ)  (1) 
 
  Whereα and βare function of r only.  The Einstein-Maxwell equation for the charged perfect fluid distribution in general relativity 
is   
 
 Rij-1/2Rgij = -8πTij   (2) 

 

((-g)1/2Fij)j=Ji(-8)1/2  (3) 

F(ij;k)=0  (4) 

 

  Where Tijis the energy momentum tensor, Ji is the current four vector, Rij is the Ricci tensor and R the curvature scalar. For the 

system under study the energy momentum tensor Ti
j splits up into two parts viz. Mi

j and Ei
j for matter and charges respectively i.e. 

Mi
j= ((p+P)uiuj -pδ୨

୧)   (5) 

  With 

 uiuj=1(6) 

The non-vanishing components of Mi
j are  

 

Mଵ
ଵ = Mଶ

ଶ= Mଷ
ଷ= -ρ, Mସ

ସ =ρ 

 

Thus the Einstein-Maxwell field equation are 

  eି∝(
ଵ

୰మ +
ᇱ

୰
)-

ଵ

୰మ = -8πρ-E2   (6) 

   
ଵ

୰మ eି∝(
ଵ

୰మ +
ஒᇱ

୰
)-

ଵ

୰మ = -8πρ-E2   (7) 

eି∝(
ଵ

ସ
βᇱαᇱ −

ଵ

ସ
βᇱଶ −

ଵ

ଶ
β" −

ଵ

ଶ
(

ஒᇲିᇱ

୰
)) = -8πρ-E2  (8) 

32035                         Dudheshwar Mahto, To analysis of general theory of relativity in references of static conformally flat charged fluid spheres  
and spherically symmetric charged fluids in einstein – maxwell theory 



Where p is the interior pressure and  ρ is the pure gravitational mass density. To solve (5), we get  

E2 = 
୕మ(୰)

୰ర   (9) 

Where Q(r) represents the total charge contained within the sphere of radius r, we have  

Q(r) = 4π ∫ ρe r
2dr  (10) 

Where ρe is the charge density.   

3.3 SOLUTION OF THE FIELD EQUATIONS 

We have five equation (1) – (4) and (6) in six variables  α, β, Q(r), Ej, ρ and ρ. Hence the system is indeterminate. To make the 

system determinate we require one more relation. For this we choose uniform mass density in the form  

   ρ = A+Br2, (B<0)   (11) 

   Where A and B are constant. Now integrating equation (6) we get  

  e –α = 1+ηr2+ξ(r)   (12) 

   Where η is integration constant andξ(r) is 

  ξ(r) = 2r2
∫

ୣమ

୰
dr  (13) 

From (11), (12) and (13) we get 

 ξ′/r+ξ/r2 = -8π(A+Br2) –E2-3η  (14) 

 Now differentiating (4) we get 

  
ୢమ

ୢ୰
+ 2

మ

୰
=  −

ଵ

ଷ
Br  (15) 

  Solution of (5) we get 

  E2 =
ഥାୠమ୰మ

୰మ   (16) 

 Q2(r) =Aഥr2+b2r6(17) 

Where Aഥ is the integration constant and 

 B2 = 
ିସ

ଷ
B, (B < 0)   (18) 

    Case 1:    when  Aതതത ≠ 0 

  Using (16) into ( 13) we find  

  ξ(r) = -Aഥ+b2r2  (19) 
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 From (19) and (12)  we get 

  e –α = 1-Aഥ+b2r4 +ηr2   (20) 

  Inserting (20) and (12) into (12) we can prove   

η =−
଼

ଷ
A = -

ଵ

ୖమ   (21) 

Where R2 is different from R
ଶwhich is dependent on the pure gravitational mass density ρ; so that 

  e –α = C-
୰మ

ୖమ +b2r4  (22) 

Where C=1-Aഥ 

Using equation (16) and (22) into p eliminate of (21) and (22) we get 

β”+
ଵ

ଶ
β’2 – ቆ

ଵ

ଶ
−

ష౨

మାଶୠమ୰య

ୡି
౨మ

మାୠమ୰ర
ቇ, β = 

ଶ(ୡିଵ)ାଶୠమ୰ర

୰మ൬ୡି
౨మ

మାୠమ୰మ൰
   (23) 

By use of transformation 

  r2= χ   (24) 

 And  

χ-1/2eβ/2 =Z  (25) 

Equation (3.3.12) is transformed to 

  
ୢమ

ୢమ+ቂχିଵ ଵ

ଶ
ቀ

ଵିଶୠమୖమ

ୡୖమିାୠమୖమଶ
ቁ

ୢ

ୢ
ቃ 

   =
ଶ(ୡିଵ)ୖమ

ସଶ(ୡୖమିାୠమୖమଶ)మ  (26) 

Again using the transformation 

 u =
ୈ

ୖ

ଵ

(ୡ)భ/మ ln 
ቀୡି



మାୠమଶቁ
భ/మ


+

ୡ


−

ଵ

ଶ√ୡ
Rଶ൩   (27) 

 Where D is constant, equation (3.3.15) is changed into 

  D2ୢమ

ୢ୳మ −
(ଶୡିଵ)ୖమ

ସ
Z = 0  (27) 

 The final solution of equation (3.3.12) may be written as 

𝑒ఉ = 𝑟ଶ ቌkଵsinh ቐ
ଵ

ଶ
ቀ2 −

ଵ

ୡ
ቁ

ଵ/ଶ
ln ቆ

ୡି
౨మ

మାୠమ୰ర

୰మ
ቇ

భ

మ

+
ୡ

୰మ
−

ଵ

ଶ√ୡୖ
ቑ + kଶcosh ቐ

ଵ

ଶ
ቀ2 −

ଵ

ୡ
ቁ

ଵ/ଶ
ln ቆ

ୡି
౨మ

మା୦మ୰ర

୰మ
ቇ

ଵ/ଶ

+ 
ୡ

୰మ

ଵ

ଶ√ୡୖమ
ቑቍ

ଶ

  (28) 

where k1 and k2 are the integration constant. Now using equation (28) and (7) the pressure ρ is given by 

  8πρ =4b2r2-
ଷ

ୖమ +
ଶୣ

୰మ − ቀ
ୣ

୰మ +
ଵ

ୖమ + rଶbଶቁ β′  (29) 

   8πρ =
ଶୡ

୰మ −
ଷ

ୖమ+4b2r2-ቀc −
୰మ

ୖమ + rଶbସቁ 
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  X

మ

౨
ି(ଶି

భ

ౙ
)భ/మ

⎣
⎢
⎢
⎢
⎡ ౨మ

మషమౙ

౨మቆభష
౨మ

మశౘమ౨రቇ

భ/మି
మౙ

౨మ

⎦
⎥
⎥
⎥
⎤

൬ୡమି
౨మ

మାୠమ୰ర൰ାୡି
౨మ

మඥౙమ

 

X
୩భା୩మ୲ୟ୬୦൝

భ

మ
ቀଶି

భ

ౙ
ቁ

భ/మ
୪୬൬ୡି

౨మ

మାୠమ୰ర൰
భ/మ

ା
ౙ

౨మି
భ

మඥౙయ
൩ൡ

୩మା୩భ୲ୟ୬୦

⎩
⎪
⎨

⎪
⎧

భ

మ
ቀଶି

భ

ౙ
ቁ

భ/మ
୪୬

⎣
⎢
⎢
⎢
⎡ቆౙష

౨మ

మశౘమ౨రቇ

భ/మ

౨మ ା
ౙ

౨మି
భ

మඥౙమ

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫
  (30) 

 Case II.  Uniform charge density sphere 

 

  When A =0 then from (3.7) 

 Q2(r) =b2r6  (31) 

This is the case of uniform charge density distribution or the case of uniform charge density sphere with the surface of charge 

spherical thin shell. From (9), we find  

  b2 = 
ଵమ

ଽ
ρୡ

ଶ   (ρc = constant) Or     b = ቀ
ସ

ଷ
ቁρc  (32) 

Then from (3.3.1) we have  

  ρ =A - 
ଷ

ସ
b2r2  (32) 

Where A is the total mass density and the (
ଷ

ସ
)b2r2 is the electromagnetic self-density. Equation (3.3.23) implies that the pure 

gravitational mass density A is inhomogeneous but the total mass density A is homogeneous.  Also we have from (3.3.11). 

e-α =1-
୰మ

ୖమ + bଶRସ  (32) 

In this case eqn.(3.3.18) can be transformed and gives 

 eβ = ቀ
୩మି୩భ

ସ
ቁ

ଶ

ቈቀ1 −
୰మ

ୖమ + bଶRସቁ

భ

మ
+ 1 −

୰మ

ୖమ 

  +
(୩మ

మି୩మ)୰మ

ଶ
+ቀ

୩మା୩భ

ସ
ቁ

ଶ

r2ቀ1 −
୰మ

ୖమ + bଶRସቁ
ଵ/ଶ

+ 1 −
୰మ

ୖమ൨
ିଵ

  (33) 

Also pressure is given by  

 8πρ = 4b2r2 - 
ଷ

ୖమ +
ଶ

୰మ − ቀ
ଵ

୰మ −
ଵ

ୖమ + brቁ β′  (34) 

Case III:    when B=0(or bଶ = 0) 

Then from (3.3.6) and (3.3.7) we get 

E2 = 
ഥ

୰మ and Q2(r) =Aഥr2  (35) 

Also  

ρ = A  (36) 
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Hence this is the case of uniform mass density  

Using (35), (12) & (13) we get 

 e-α =1-Aഥ+ηr2=c-
୰మ

ୖబ
మ  (37) 

Where c= 1-Aഥ and  
ଵ

ୖబ
మ =

଼

ଷ
 is the Schwarzeild radius. Using equation  

(35), (37) into ρ eliminate of (21) and (22) we get 

  β”+
ஒᇱమ

ଶ
+

୰

୰మିୣୖబ
మ −

ଵ

୰
β′=2R

ଶ (ୣିଵ)

୰మ൫୰మିୣୖబ
మ൯

   (38) 

 After suitable substitution and transformations the final solutions of (3.3.30) is (for r2≥ R
ଶ) 

     eβ = r2ቊcଵsin ቈ
ଵ

√ୣ
tanିଵ ቀ

୰మ

ୡୖబ
మ − 1ቁ

భ

మ
 + cଶcos 

ଵ

√ୣ
tanିଵ ቀ

୰మ

ୡୖబ
మ − 1ቁ

ଵ/ଶ

൨ቋ

ଶ

   (39) 

Where c1 and c2 are integration constant. Also pressure is given by  

 8πρ =
ଶୡ

୰మ −
ଷ

ୖబ
మ −

ଶ

√ୡ
ቀ

ୡ

୰మ −
ଵ

ୖబ
మቁ ቀ

୰మ

ୡୖబ
మ − 1ቁ

ିଵ/ଶ

 

X
ୡభିୡమ୲ୟ୬

భ

√ౙ
୲ୟ୬షభቆ

౨మ

ౙబ
మିଵቇ

భ/మ

൩

ୡభ୲ୟ୬൭
భ

√ౙ
୲ୟ୬షభቆ

౨మ

ౙబ
మିଵቇ

భ/మ

൱ାୡమ

  (40) 

For r2< 𝑐R
ଶ , the final solution of (38) is 

cஒ = rଶ ൜cଵsinh 
ଵ

√ୡ
tanhିଵ ቀ1 −

୰మ

ୡୖబ
మቁ

ଵ/ଶ

൨ + cଶcosh 
ଵ

√ୡ
tanhିଵ ቀ1 −

୰మ

ୡୖబ
మቁ

ଵ/ଶ

൨ൠ
ଶ

..  (41) 

And also 

8πρ =
2c

r2
−

3

R0
2 −

2

√c
൬

c

r2
−

1

R0
2൰ ൬1 −

r2

cR0
2൰

ି1/2

 

X
c1ାc2tanh

1

√c
tanh

ష1ቆ1ି
r2

cR0
2ቇ

1/2

൩

c1tanh൭
1

√c
tanh

ష1ቆ1ି
r2

cR0
2ቇ

1/2

൱ାc2

  (42) 

If Aഥ ≠ 0 and c≠ 0(35) and (42) are not regular, they will diverge,  we cannot get a physically reasonable solution for charged 
percent fluid with constant mass density. The constant appearing in the Rocessner-Nondsrom metric outside the boundary. 
 
THE FIELD EQUATION  
 
We consider the line element in the form  
 
ds2=evdt2-eλdr2-r2(dθ2+sin2θdϕ2)  (43) 
 
Where λ and v are function of r only.  The Einstein-Maxwell field equation for the charged perfect fluid distribution in general 
relativity are (Adler(1)) 
 

 Rαβ - 
1

2
Rgαβ = -8πTαβ   (44) 

F;αββ =4πJα = 4πσuα  (45) 

F[ஒ;ஓ] =0   (46) 
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Where Tαβ is the energy momentum tensor, Jα is the charged current four vector, Rαβ is the Ricci tensor and R the scalar of curative 
tensor. 
 
For the system under study the energy momentum tensor Tβ

αsplits up into two parts viz. Tഥβ
α
 And Eβ

α respectivly. 
 
 Tβ

α =Tഥβ
α
+Eβ

α  (47) 
 
Where 
 
 Tഥβ

α
 =  ൣ(ρ + P)uαuβ − p8α

α൧  (48) 
 
With  
  
 uαuα=1  (49) 
 
The non-vanishing component of  Tβ

α  are 
 

Tഥ1
1
 = Tഥ2

2
 = Tഥ3

3
= -p and Tഥ4

4
 = p  (50) 

 
Here p is internal pressure, p and σare densities of matter and charges respectively, uα is the velocity vector of the matter. 
The static condition is given by 
 

u1 = u2 = u3 = 0 and u4 = (g44) -
1

2
 (51) 

 

 i.e.   u4 =e
షv
2  

 
 The electromagnetic energy momentum tensor Eβ

αis given by 

 Eஒ
= - Fβγ F

αγ +
ଵ

ସ
8ஒ

FlmFlm  (52) 

We assumed the field to be purely electronic i.e. Fαγ =0 and F4γ = ϕ    γ = ϕλ where ϕ is the electrostatic potential. 
 
Thus the Einstein-Maxwell field equation are reduces into the form  
 

    e-λቀ
1

r2
−

λ

r
ቁ −

1

r2
 = -8πρ – E   (53) 

 

     
1

r2
− e-λቀ

1

r2
−

v′

r
ቁ = -8πρ + E  (54) 

 

   e-λቂ
1

4
v′λ′ −

1

4
v′2 −

1

2
v" −

1

2
ቀ

v′ିλ′

r
ቁቃ=-8πρ – E  (55) 

 
Where 
 
E = -F41F41  (56) 
And  

     

4πσ =ቀ
பరభ

ப୰
+

ଶ

୰
Fସଵ +

ᇲା୴ᇲ

ଶ
Fସଵቁ e

౬

మ  (57) 

By the use of equation (53) – (55), we get the expression 

For ρ, p and E as  
 

8πp =
eషλ

2
ቆ

3v′

2r
+

v"

2
−

λ′v′

4
+

v′2

4
−

λ′

2r
+

1

r2
ቇ −

1

2r2
  (58) 

 

 8πρ = eିλ ቆ
5λ′

4r
+

v"

4
−

λ′v′

8
+

v′2

8
+

v′

4r
−

1

2r2
ቇ +

1

2r2
   (59) 
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  2E = eିλ ቆ
v"

2
−

λ′v′

4
+

v′2

4
−

v′

2r
−

λ′

2r
−

1

r2
ቇ +

1

r2
  (60) 

The exterior metric is taken as usual Reissner-Nordstrom line element given by  

ds2 = ቀ1 −
ଶഥ

୰
+

୕బ
మ

୰మ ቁ dt2 -ቀ1 −
ଶഥ

୰
+

୕బ
మ

୰మ ቁ dr2 -r2 (dθ2+sin2θdϕ2) ……… (61) 

  Where Q0 = Q (r0) and Mഥ  is the total mass of the sphere. The total mass, as   measured by an external observer, inside the fluid 

sphere of radius r0 is given by 

  Mഥ  = 4π∫ p(r).
୰బ


r2dr(62) 

SOLUTION OF THE FEILD EQUATIONS:     We have three equation (4.2.16)-(4.2.18) in five variables (i, p, E, λ, v) and thus 
the system is indeterminate. In order to make the system determinate, we require two more equation or relation. For this we choose 
λ and v as two free fluid variables as  
 

(4.3.1)      eλ = 
Lr4ାMr2ାN

r2ାN
  (63) 

 

 e = 
Ar4ାCrାN

4B
;  (64) 

 
  where A,B,C,L,M,N are arbitaray constant      Use of equation (63), (64) in (57), (58)-(60) yields 
 
 

16πp=
r4ାN

Lr4ାMr2ାN


72A2r5ା108ACr5ା48NAr2ା5C2ା6NCr

4൫Ar4ାCrାN൯
2 −                           

2r4N(Lି1)(4Ar6ା3Cr3ା2Nr2)

(r4ାN)൫Lr4ାMr2ାN൯(Ar4ାCrାN)
+

1

r2
൨ −

1

2r2
  (65) 

 
 

16πρ=
r4ାN

Lr4ାMr2ାN


2r5N(Lି1)(12Ar4ା11Crା10N)

(r4ାN)൫Lr4ାMr2ାN൯(Ar4ାCrାN)
+

4A2r6ା6ACr5ା3C2r2ା2NCr

4൫Ar4ାCrାN൯
2 −

1

r2
൨ +

1

2r2
 (66) 

 
 

2E=
r4ାN

Lr4ାMr2ାN
+

4A2r6ା6ACr5ା3C2r2ା2NCr

2൫Ar4ାCrାN൯
2 −

4r4N(Lି1)(Ar6ାCr3ା2Ar3ାCr)

(r4ାN)൫Lr4ାMr2ାN൯(Ar4ାCrାN)
−

1

r2
൨ +

1

2r2
    (67) 

 

4πσ=൦
பF

பr
+

2

r
F41 +

4r3ቀNLషMR2షNቁశ4r5Mశ2NMr)

(r4శN)൫Lr4శMr2శN൯
ା

4r3Aశc

Ar4శCrశN

2
. F41 × ቀ

Ar4ାCrାN

4B
ቁ

1
2
൪ (68) 

 
Now using the boundary condition at r = r0 the constant appearing in the solution are found to be 
 
     

r0
4ାN

Lr0
4ାMr0

2ାN
= 1 −

2Mഥ

r0
+

Q0
2

r0
2   (69) 

 
     
Ar0

4ାCr0ାN

4B
= 1 −

2Mഥ

r0
+

Q0
2

r0
2   (70) 

 

     
4Ar0

3ାC

8B
=

Mഥ

r0
2 −

Q0
2

r0
3   (71) 

 
       Now we consider the following different cases: 
 
       Case: 1    when M =0 then we have  
 

   eλ = 
Lr4ାN

r4ାN
   (72) 

 

ev = 
Ar4ାCrାN

4B
  (73) 
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Using equation (4.3.10) - (4.3.11) in (57), (58)- (60) we get 
 

16πp =
r4ାN

Lr4ାN


72A2r6ା108ACr5ା48NAr2ା5C2r2ା6NCr

4൫Ar4ାCrାN൯
2 −

2r4N(Lି1)(4Ar6ା3Cr3ା2Nr2)

(r4ାN)൫Lr4ାN൯(Ar4ାCrାN)
+  

1

r2
൨ −

1

2r2
…. (74) 

 
 

16πρ = 
r4ାN

Lr4ାN


2r6N(Lି1)(12Ar411Crା10N)

(r4ାN)൫Lr4ାN൯(Ar4ାCrାN)
൨ +  

4A2r6ା6ACr5ା3C2r2ା2NCr

4൫Ar4ାCrାN൯
2 −

1

r2
൨ +

1

2r2
…... (75) 

 

2E = 
r4ାN

Lr4ାN


4A2r6ା6ACr5ା3C2r2ା2NCr

2൫Ar4ାCrାN൯
2 −

4r4N(Lି1)(Ar6ାCr32Ar3ାCr2)

(r4ାN)൫Lr4ାN൯(Ar4ାCrାN)
−    

1

r2
൨ +

1

2r2
………  (76) 

 

4πσ =
பF

பr
+

2

r
F41 +

4r3N(Lష1)

(r4శN)൫Lr4శN൯
ା

4r3Aశc

Ar4శCrశN

2
. F41 × ቀ

Ar4ାCrାN

4B
ቁ

1
2
……….. (77) 

 Now using the boundary condition at r =r0we have  
 

   
r0
4ାN

Lr0
4ାN

= 1 −
2Mഥ

r0
+

Q0
2

r0
2   (78) 

 
    
Ar0

4ାCr0ାN

4B
= 1 −

2Mഥ

r0
+

Q0
2

r0
2   (79) 

 

  
4Ar0

3ାC

8B
=

Mഥ

r0
2 +

Q0
2

r0
3   (80) 

 
Case-II   when C =0, then we have  
 

 eα = 
Lr4ାMr2ାN

r4ାN
  (81) 

 

      eβ = 
Arష4ାN

4B
 (81-a) and the spin density K is given by Using equation (81) and (81-a) in equation (57), (58)-(60) we get  

 

16πp=
r4ାN

Lr4ାMr4ାN


6Ar2(3Ar3ା2N)

൫Ar4ାN൯
−

4r5N(Lି1)(2Ar4ାN)

(r4ାN)൫Lr4ାMr2ାN൯(Ar4ାN)
+

1

r2
൨ −   

1

2r2
 (82) 

 

16πρ = 
r4ାN

Lr4ାMr2ାN


4r6N(Lି1)(6Ar4ା5N)

(r4ାN)൫Lr4ାMr2ାN൯(Ar4ାN)
൨ + 

A2r6

൫Ar4ାN൯
2 −  

1

r2
൨ +

1

2r2
  (83) 

 

2E = 
r4ାN

Lr4ାMr2ାN


2Ar2r3

൫Ar4ାN൯
−

4Ar2N(Lି1)(2r2ା1)

(r4ାN)൫Lr4ାMr2ାN൯(Ar4ାN)
−

1

r2
൨ +

1

2r2
  (84) 

 

4πσ =൦
பF

பr
+

2

r
F41 +

4r3ቀNLషMr2షNቁశ2Mr(2r4శN)

(r4శN)൫Lr4శMr2శN൯
ା

4r3A

Ar4శN

2
. F41 × ቀ

Ar4ାN

4B
ቁ

1
2
൪  (85) 

 
Now applying the boundary conditions at r =r0 we have 
 
    

r0
4ାN

൫Lr4ାMr0
2ାN൯

= 1 −
2Mഥ

r0
+

Q0
2

r0
2   (86) 

 

  
Ar0

4ାN

4B
= 1 −

2Mഥ

r0
+

Q0
2

r0
2   (87) 

 

    
Ar0

3

2B
=

Mഥ

r0
2 +

Q0
2

r0
3 ;  (88) 

 
Also the constant ξ is 
 
   Case-III: M=0, C=0 then we have 
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eα = 
Lr4ାN

r4ାN
  (89) 

         eβ = 
Ar4ାN

4B
; (89-a)and the spin density K is 

 
Using equation (89) - (89-a) in equation (57), (58)-(60) we get  
 

16πp = 
r4ାN

Lr4ାN


18A2r6ା12NAr2

൫Ar4ାN൯
2 −

4r4N(Lି1)(2Ar6ାNr2)

(r4ାN)൫Lr4ାN൯(Ar4ାN)
+  

1

r2
൨ −

1

2r2
  (90) 

 

16πρ = 
r4ାN

Lr4ାN


4r5N(Lି1)(6Ar6ା5Nr2)

r(r4ାN)൫Lr4ାN൯(Ar4ାN)
+

A2r6

൫Ar4ାN൯
2 −

1

r2
൨  (91) 

 

2E = 
r4ାN

Lr4ାN


2A2r6

൫Ar4ାN൯
2 −

4r4N(Lି1)(Ar6ା2Ar3)

(r4ାN)൫Lr4ାN൯(Ar4ାN)
−

1

r2
൨ +  

1

2r2
  (92) 

 

4πσ =
பF

பr
+

2

r
F41 +

4r3(N(Lష1)

(r4శN)൫Lr4శN൯
ା

4r3A

Ar4శN

2
. F41 × ቀ

Ar4ାN

4B
ቁ

1
2
  (93) 

 
Now applying the boundary conditions at r =r0 we have 
 

  
r0
4ାN

൫Lr0
4ାN൯

= 1 −
2Mഥ

r0
+

Q0
2

r0
2   (94) 

 

    
Ar0

4ାN

4B
= 1 −

2Mഥ

r0
+

Q0
2

r0
2   (95) 

 

    
Ar0

3

2B
=

Mഥ

r0
2 +

Q0
2

r0
3 ;   (96) 

 

CONCLUSION 

 

The solution of Einstein-Maxwell field equation for Static conform ally flat that charged perfect fluid sphere by using a suitable 
form of mass density.  The result gives uniform charge density and uniform mass density distribution also. Various physical 
parameters can be calculated by using different boundary conditions. In spherical symmetric metric, we have solved Einstein- 
Maxwell field equation by taking a suitable form of matter density and charge density hence various parameters can also be 
calculated by putting varies conditions. Solutions of Electromagnetic equation and scalar field for cylindrically symmetric metric 
(Satcher metric) in two different cases (i) directly solved in terms of Fij components (ii) in terms of two potentials θ2 and θ3. The 
thesis shows that starting from any solution to the electro vacuum field equation it is possible to generate a whole class of solution 
to the Einstein-Maxwell  mass less field equation by a suitable redefinition of one of the metric coefficients. Considering all these 
facts this thesis is very-very useful for finding different parameters using different boundary conditions. Almost a century later, 
the General Theory of Relativity remains the single most influential theory in modern physics, and one of the few that almost 
everyone, from all walks of life, has heard of (even if they may be a little hazy about the details). Einstein’s General 
Theory predicted the existence of black holes many years before any evidence of such phenomena, even indirect evidence, was 
obtained, and was highly suggestive of an origin of the universe beginning with a Big Bang type event, although Einstein himself 
was highly suspicious of both of those possibilities. 
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