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Maize (
wheat, with global production exceeding one billion tons annually. However, fungal diseases such as 
Northern Corn Leaf Blight (NCLB), caused by 
yield, threatening food security under changing climatic conditions. This study employs 
transcriptomic, network biology, and machine learning approaches to investigate maize defense 
responses against fungal infection. Publicly availabl
samples across three genotypes EtEC81 (fungal effector), GFP (control), and ZmEIP1 (elicitor
induced protein)were analyzed at 10, 14, and 21 days post
B73 genome, followed by
Network Analysis (WGCNA), and classification using Random Forest, XGBoost, Support Vector 
Machine, and Logistic Regression models. A total of 1,202 significant co
DEGs were identified, enriched in immune signaling, hormone regulation, and metabolic pathways. 
Machine learning models converged on 4,280 key genes, highlighting pathogen recognition, 
transcriptional regulation, and cell wall reinforcement. Functional cha
transcription factors (notably bHLH), 145 resistance (R) genes dominated by kinase
and 54 carbohydrate
metabolism and defense responses. Protein
including stress
metabolic reprogramming by the pathogen.  These findings reveal stage
and recovery mechanisms in maize, offering potential disease
strategies. Integrating transcriptomics with machine learning provides a robust framework to dissect 
host–pathogen interactions in crop systems
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INTRODUCTION 
 

Zea Mays is also known as the Queen of Cereals. It is the 3
largest produced crop in the world after rice and wheat. It is 
one of the most important crops in the world, and it has multi
billion dollars in annual revenue(1). Currently, over 170 
nations are producing a big 1147.7 million tons from 193.7 
million hectares of land, with each hectare yielding about 5.75 
tons (2). Earlier it was domesticated in the continents of 
America and Africa. It belongs to the Zea
genus in poaceae family. Various biotic and abiotic factors are 
currently affecting maize production. Drought is a serious 
threat to maize, and climate change is making this stress worse. 
Other biotic stressors like weeds, insect pests, and bacterial, 
viral, and fungal illnesses also affect the crop. Despite the 

ISSN: 0975-833X 
 

Vol. 17, Issue, 

Article History: 
 

Received 20th June, 2025 
Received in revised form 
24st July, 2025 
Accepted 29th August, 2025 
Published online 30th September, 2025 

 

Citation: Ramachandran, S., Shreyansh Tatiya and Amrendra Kumar.
Transcriptome Profiling and Machine Learning Under Exserohilum turcicum Infection

Keywords:  
 

RNA-Seq; ML, DEGs, WGCNA, Fungi; 
Zea mays. 
 
 
 
 
 
 
 
 
 
 
 

*Corresponding author:  
Amrendra Kumar 

 
 

 

 

RESEARCH ARTICLE 
 

SPECIFIC IMMUNE RESPONSES IN ZEA MAYS THROUGH 
TRANSCRIPTOME PROFILING AND MACHINE LEARNING UNDER EXSEROHILUM 

TURCICUM INFECTION 
 

S.,1 Shreyansh Tatiya2 and Amrendra Kumar
 

Department of Biotechnology, NIMS Institute of Allied Medical Sciences & Technology, NIMS University, Jaipur, 
Department of Biotechnology, NIMS Institute of Allied Medical Sciences & 

chnology, NIMS University, Jaipur, Rajasthan, India – 303121; 3School of Biological and Biomedical Sciences, 
Galgotias University, Noida, UP, India – 203201 

 
   

ABSTRACT  

Maize (Zea mays), the “Queen of Cereals,” is the world’s third most cultivated crop after rice and 
wheat, with global production exceeding one billion tons annually. However, fungal diseases such as 
Northern Corn Leaf Blight (NCLB), caused by Exserohilum turcicum
yield, threatening food security under changing climatic conditions. This study employs 
transcriptomic, network biology, and machine learning approaches to investigate maize defense 
responses against fungal infection. Publicly available RNA-Seq data comprising 27 maize leaf 
samples across three genotypes EtEC81 (fungal effector), GFP (control), and ZmEIP1 (elicitor
induced protein)were analyzed at 10, 14, and 21 days post-infection. Reads were aligned to 
B73 genome, followed by differential expression (DEG) analysis, Weighted Gene Co
Network Analysis (WGCNA), and classification using Random Forest, XGBoost, Support Vector 
Machine, and Logistic Regression models. A total of 1,202 significant co
DEGs were identified, enriched in immune signaling, hormone regulation, and metabolic pathways. 
Machine learning models converged on 4,280 key genes, highlighting pathogen recognition, 
transcriptional regulation, and cell wall reinforcement. Functional cha
transcription factors (notably bHLH), 145 resistance (R) genes dominated by kinase
and 54 carbohydrate-active enzymes (CAZymes), particularly GT1, involved in secondary 
metabolism and defense responses. Protein–protein interaction analysis uncovered central hub genes, 
including stress-related kinases and glutathione transferases, underpinning immune suppression and 
metabolic reprogramming by the pathogen.  These findings reveal stage

recovery mechanisms in maize, offering potential disease-
strategies. Integrating transcriptomics with machine learning provides a robust framework to dissect 

pathogen interactions in crop systems.  
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largest produced crop in the world after rice and wheat. It is 
one of the most important crops in the world, and it has multi-

. Currently, over 170 
nations are producing a big 1147.7 million tons from 193.7 

ctares of land, with each hectare yielding about 5.75 
. Earlier it was domesticated in the continents of 

Zea species of mays 
family. Various biotic and abiotic factors are 

maize production. Drought is a serious 
threat to maize, and climate change is making this stress worse. 
Other biotic stressors like weeds, insect pests, and bacterial, 
viral, and fungal illnesses also affect the crop. Despite the  

 
widespread application of antifungal treatments, agricultural 
producers continue to experience annual crop losses ranging 
from 10% to 23% due to fungal phytopathogens
fungi result in losses that would provide 600 million people 
with 2000 calories a day for a full yea
the number of people going hungry will rise due to climate 
change(4). Its order and class are 
which belong to the phylum Tracheophyta
Plantae(5) were aerials used mainly for feed a
nowadays they have other uses such as medicine, cosmetics, 
biofuel and etc (6), (7), (8).  The leaves of 
alternate arrangement along the stem, which helps collect the 
maximum amount of sunlight for the process of 
photosynthesis.The leaf tissue itself, particularly the lamina 
and surfaces (both the upper/adaxial and lower/abaxial 
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), the “Queen of Cereals,” is the world’s third most cultivated crop after rice and 
wheat, with global production exceeding one billion tons annually. However, fungal diseases such as 

Exserohilum turcicum, significantly reduce maize 
yield, threatening food security under changing climatic conditions. This study employs 
transcriptomic, network biology, and machine learning approaches to investigate maize defense 

Seq data comprising 27 maize leaf 
samples across three genotypes EtEC81 (fungal effector), GFP (control), and ZmEIP1 (elicitor-

infection. Reads were aligned to Zea mays 
differential expression (DEG) analysis, Weighted Gene Co-expression 

Network Analysis (WGCNA), and classification using Random Forest, XGBoost, Support Vector 
Machine, and Logistic Regression models. A total of 1,202 significant co-expressed genes and 350 
DEGs were identified, enriched in immune signaling, hormone regulation, and metabolic pathways. 
Machine learning models converged on 4,280 key genes, highlighting pathogen recognition, 
transcriptional regulation, and cell wall reinforcement. Functional characterization revealed 65 
transcription factors (notably bHLH), 145 resistance (R) genes dominated by kinase-class receptors, 

active enzymes (CAZymes), particularly GT1, involved in secondary 
otein interaction analysis uncovered central hub genes, 

related kinases and glutathione transferases, underpinning immune suppression and 
metabolic reprogramming by the pathogen.  These findings reveal stage-specific defense activation 
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producers continue to experience annual crop losses ranging 
from 10% to 23% due to fungal phytopathogens(3). These 
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the number of people going hungry will rise due to climate 
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surfaces), is the main component of a leaf that is impacted by 
fungus. Visible signs of fungal infections frequently include 
lesions, patches, or blights on the leaves 
turcicum is a fungus that causes the disease of the northern leaf 
blight of maize and loss of production yields. It’s known as 
Setosphaeria turcicofPleosporaceae 
morphological structure of this fungus has
spindle-shaped conidia that measure 5 X 20 cm and have 1
septa(10). These fugus affect the Zea mays 
production of yield  (11), was initially reported in 1876 Italy 
under 15-25 °C and 90-100 % level of humidity 
reduced surface area of leaves and which affect the 
photosynthesis as well as the pathogenic race affect the size 
and shape of lesions (13). It develops very fast in number as 
well as spread to other portions of plant tissues. These spots 
develop into elliptic lesions which are running parallel to the 
lower leaf margin and spreading upward. Northern Corn Leaf 
Blight (NCLB) can lead to stunted growth and reduced kernel 
development as the infections affect the whole leaves.  In this 
study, where used transcriptome data of maize leaves infected 
with Exserohilum turcicum were found from the NCBI 
(National Center for Biotechnology Information), where 
contain 27 samples of three conditions, including EtEC81 
(Exserohilum turcicum Effector 81), GFP (Green
Protein as a control), and ZmEIP1 (Zea mays Elicitor
Protein 1, a maize resistance-associated protein) and different 
time periods, like 10 days, 14 days, and 21 days. Futher 
analysis  and identified gene expression patterns in fungal 
infection through WGCNA, DEGs, and ML
uses Weighted Gene Co-expression Network Analysis 
(WGCNA), Differentially Expressed Genes (DEGs) analysis, 
and Machine Learning (ML) models such as  Random Forest 
(RF), XGBoost, Support Vector Machine (SVM), and Logistic 
Regressionto unravel maize’s transcriptional responses to 
fungal infection. WGCNA, groups genes into co
modules to identify clusters linked to trait. DEG analysis 
detects genes with significant expression changes between 
control and infected, highlighting active biological processes. 
Together, these methods reveal how immune signaling, 
hormone regulation, and defence systemcoordinate maize’s 
stage-specific defense and recovery mechanisms. 
65 transcriptional regulations, 146 plant immunity (R genes), 
and 54 carbohydrate-active enzyme (CAZyme) genes were 
identified with protein-protein interactions. which contributes 
to the scientific community's disease-resistant genes which 
help farmers cultivate maize varieties. 
 

MATERIALS AND METHODS
 
Data Collection: Transcriptome data of fungal
Zea mays were obtained from the Bioproject database in NCBI 
(accession no PRJNA1144095). The dataset contained 27 
samples with three replicates of genotypes such as 
EtEC81(exserohilum turcicum Effector 81), GFP (Green 
fluorescent protein), and ZmEIP1 (Zea mays Elicitor
Protein 1) at different time periods like 10 days, 14 days, and 
21 days.  
 
RNA-Seq data pre-processing and alignment: 
samples were checked by the tool FASTQC, further read 
sequences were aligned with the reference sequence of Z
mays B73 (V5.0) (http://ftp.ebi.ac.uk/ ensemblgenomes/ 
pub/release-51/plants/fasta/zea_mays) using the tool HISAT2 
(15)under Galaxy web tool (https://usegalaxy.org/
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Fig 1: Box plot of un-normalized and normalized count of 
samples

 
Weighted Gene Co-expression Network Analysis
gene co-expression network analysis (WGCNA) was 
conducted on read count of genes through R package. Gene 
modules were identified via a dynamic tree
employing a minimum module size of 30 and a default cut
height of 0.99. These modules genes were hierarchically 
clustered within a dendrogram based on their structural 
similarities. Pairwise gene correlation across all samples was 
determined using Pearson’s correlation coefficient, which was 
utilized to construct an adjacency matr
topological overlap matrix (TOM) and the corresponding 
dissimilarity values (1-TOM) were computed to assess 
network connectivity(17). 
 
Differential Expression Genes Analysis
by R package with RStudio, where GFP 1
samples were used as control and EtEC81(10 day ,14 day 21) 
and ZmEIP (10,14and 21 days) were used as treated.further the 
significant DEGs were identified based on the |log
Change) | ≥ 1 and FDR < 0.05. 
 
Machine Learning Models: 
Boost, SVM and Logistic regression Models of ML.RF uses 
many decision trees, handles large amount of data and find out 
key genes linked with certain traits
decision tree by correcting errors each time and find com
gene expression patterns(19).Logistic regression shows how 
much one genes expression depends on others
to separate gene classes based on gene expression data
identified top 10 percent key genes which are highly 
expressed., further more simplified and found highly 
significant genes through venn diagram which revealed the 
number of genes expressed commonly expressed genes in all 
models. Additionaly, Highly significant 26 genes were 
identified common between WGCNA, DEGs and ML
 
Resistance gene, CAZyme, and TF identification
Significant genes encoding Transcription Factors (TFs) and 
resistance (R) genes were identified through BLASTx analysis 
against the Plant Transcription Factor Database (PlantTFdb) 
and the Plant Resistance Gene Database (PRGdb) version 4.0. 
The identification process involved aligning query sequences 
with known TF and R-gene sequences to determine functional 
homology and domain conservation
classes and their associated f
systematically identified and classified using DRAGO, a 
specialized tool within the PRGdb platform. This classification 
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: We used Random Forest, XG 
Boost, SVM and Logistic regression Models of ML.RF uses 
many decision trees, handles large amount of data and find out 
key genes linked with certain traits(18) .XG Boost build 
decision tree by correcting errors each time and find complex 

.Logistic regression shows how 
much one genes expression depends on others(20) .SVM helps 
to separate gene classes based on gene expression data(21). We 
identified top 10 percent key genes which are highly 

further more simplified and found highly 
significant genes through venn diagram which revealed the 
number of genes expressed commonly expressed genes in all 
models. Additionaly, Highly significant 26 genes were 
identified common between WGCNA, DEGs and ML models. 

Resistance gene, CAZyme, and TF identification: 
Significant genes encoding Transcription Factors (TFs) and 
resistance (R) genes were identified through BLASTx analysis 
against the Plant Transcription Factor Database (PlantTFdb) 

Resistance Gene Database (PRGdb) version 4.0. 
The identification process involved aligning query sequences 

gene sequences to determine functional 
homology and domain conservation(22). Furthermore, R-gene 
classes and their associated functional domains were 
systematically identified and classified using DRAGO, a 
specialized tool within the PRGdb platform. This classification 

specific immune responses in zea mays through transcriptome profiling and machine 



enabled the differentiation of resistance gene categories based 
on structural characteristics and evolutionary re
facilitating a more comprehensive understanding of their roles 
in plant immunity(23). 
 
PPI Network Analysis: The interactions between ML models, 
DEGs and positively or negatively co-expressed genes network 
visualization through Cytoscape, which allowed for the 
identification of clusters and strongly hubs genes within the 
network(24) under various fungal infection. Further 
circumstances were examined interactions among identified 
TFs, R-genes, and CAZyme-encoding genes.
to enter text. 
 
Functional Annotation: Functional annotation for gene and 
pathway identification was performed using ShinyGo and 
UniProt. Gene Ontology (GO) annotations were obtained using 
the following categories: Biological process (BP), Molecular 
function (MF), and Cellular component (CC) with a cut
FDR=0.05. Shiny Go gives the result in a more graphical way, 
such as a bar graph, tree, etc., and the UniProt ID mapping tool 
was used to convert stable ID to string ID downstream process.
 

RESULTS 
 
The publicly available 27 transcriptome samples of 3 replicates 
were screened for adaptors, GC content, and per
content, and quality checked, further aligned and mapped 
uniquely with more than 70 %, further processed for read 
counts downstream analysis. 
 
Co-expression genes cluster identification
co-expressed genes were found by the R package (WGCNA) 
(25). The scale-free fit index and mean connectivity were 
calculated, and the power of β = 12 (scale-free R2 = 0.8) was 
selected (Fig. 2).  
 

 
Fig. 2. Scale independence and mean connectivity analysis

 
Further, based on cluster dendrogram merge modules with a 
similarity greater than 0.25 and finally 16 modules, including 
MEsalmon, MEdargery, MEgreenyellow, MEdarkolivegreen, 
MEgrey60, MEviolet, MEpaleturquoise, MElightgreen, 
MEred, MElightyellow, MEblack, MEwhite, MEblue, 
MEmagenta, MEsteelblue, MEgrey (Fig. 3
modules have the gene significance |GS| >
<0.05. Further intramodular analysis based on the GS (Gene 
Significance) and MM (Module Membership) of genes 
identified key genes within the 13 modules. A filter of 
|MM>0.7 & GS> 0.5| was applied for significant gene 
identifications. The number of significant genes in different 
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nt genes in different 

modules is as follows 20 in ME white,6 in ME violet, 12 in 
MEsteelblue, 20 in MEpaleturquoise, 98 in MEmagenta,33 in 
MElightyellow,133 in MElightgreen,14 in MEgrey60,2 in 
MEgrey, 67 in MEgreen yellow, 5 in MEdarkolive green, 636 
in MEblue and 156 in MEblack.No significant genes were 
observed in MEsalmon, MEred and MEdarkgrey. Finally, 1202 
significant genes were identified in this analysis (
Table 1). 
 

Sup. 

 
Fig 3: Module–trait relationship with samples

Fig 4. Bar graph showing the number
genes

 
Differentially Expressed Genes
significant DEGs, filtered at log2
significant DGE responses under 
expression. Across all comparisons, the highest number of 
DEGs was observed under the 
Here we have found out that 350 genes were significantly 
differently expressed. Out of which 208 genes were 
significantly upregulated and 14
downregulated. It has been find out that in ZmEIP 14 day 
sample , less genes were downregulated.
 
Significant genes identified by machine learning
used multiple machine learning models such as Random Forest 
(RF), XGBoost, Support Vector Machine (SVM), and Logistic 
Regression, and found genes 4459, 4281, 4333, and 4458 
genes, respectively have been found, in which 4,280 genes that 
were consistently present all four model algorithms 
These genes showed high importan
indicating that their expression changes are closely associated 
with maize responses to Exserohilum turcicum
ZmEIP. 
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Differentially Expressed Genes: Functional annotation of 
significant DEGs, filtered at log2FC>1 and p<0.05 revealed 
significant DGE responses under EtEC81 infection and ZmEIP 
expression. Across all comparisons, the highest number of 
DEGs was observed under the ZmEIP late-stage condition.  
Here we have found out that 350 genes were significantly 
differently expressed. Out of which 208 genes were 
significantly upregulated and 142 genes were significantly 
downregulated. It has been find out that in ZmEIP 14 day 
sample , less genes were downregulated. 

Significant genes identified by machine learning: We were 
used multiple machine learning models such as Random Forest 

, Support Vector Machine (SVM), and Logistic 
Regression, and found genes 4459, 4281, 4333, and 4458 
genes, respectively have been found, in which 4,280 genes that 
were consistently present all four model algorithms (Fig.5). 
These genes showed high importance scores in the ML models, 
indicating that their expression changes are closely associated 

Exserohilum turcicum infection and 

, 2025 



 
 

Fig. 5. Venn Diagram generated by M-L model 
 
Role of TF, R genes, CAZyme: In the more significant 
positive and negative expressed genes used to identify 
transcription Factors (TF), CAZymes (Carbohydrate Active 
enzymes), and R (Resistance) genes, which have an inevitable 
role in the molecular behavior in plant systems. TFs control the 
regulation of gene transcription and affect their expression 
levels, and thus, play a pivotal role in plant development under 
biotic and abiotic stress conditions and regulate secondary 
metabolism (26). 65 transcription factors genes were found 
which were belong 25 different families such as HSF, NFYA, 
FAR1, bHLH, LBD, GRAS, GATA, ZFHD, Trihelix, NAC, 
WRKY, bZIP, SBP, ARF, B3, ERF, DBB, CO-like, G2-like, 
MIKC_MADS, TALE, C2H2, C3H, MYB, MYB_related. 
bHLH TF is the major TF identified in the study, which plays 
an important role in the range of biological processes in Zea 
mays, which is identified in the samples GFP 21-day blue, 
GFP 10-day magenta, and GFP 10-day light green (Sup. Table 
2A).  
 
A total of 54 genes encoding cell wall-related proteins, 
specifically carbohydrate-active enzymes (CAZyme) were 
identified. The CAZymes identified were AA, CE, GH and 
GT.  Out of these GT 1 (Glycosyltransferase 1) is the most 
significant CAZyme. GT 1 is a large group of proteins that 
play important roles in secondary metabolite biosynthesis in 
plants (27). GT 1 is identified in the samples GFP 10-day 
lightgreen, ZmEIP 21-day blue, EtEC81 14-day steelblue, GS 
greenyellow MM greenyellow, EtEC81 10-day black. 2 genes 
(Zm00001eb349810 and Zm00001eb209550) are expressed 
both the modules, GFP 21-day blue and ZmEIP 21-day blue 
(Sup. Table 2B). 
 

The 145 R genes were identified, where 10 classes of seven 
domains contain including LYP, CN, N, KIN, RLK, LECRK, 
CNL, RLP, TRAN, and CK, while domains like TM, LYSM, 
NBS, CC, Kinase, LRR, LECM.  KIN major class were found 
out of them with TM (Transmembrane) domains in EtC81-10d 
samples with different clusters grey60, EtC81-14d magenta. 
EtEC81_10d and EtEC81_14d remain black clusters. 
EtEC81_10d found white. EtEC81_14d samples have Violet. 
GFP_10d found Light_green, GFP_21d blue, GFP-10d 
magenta, Light_yellow, ZmEIP_10d, ZmEIP_21d blue, 
ZmEIP-14d grey, ZmEIP-14d contain paletqurqo is cluster 
(Sup. Table 2C). 
 
 
Complex network analysis: The genome annotation database 
was used in UniProt to identify protein IDs from significant 

genes, in which 525 protein IDs construct a protein-protein 
interactions network for further analysis (Sup. Table 3).  
 
Network visualization and analysis were performed by 
Cytoscape, which identified a total of 353 nodes and 2052 
edges.  This node corresponds to the gene 
Zm00001eb229930(string id: 4577.P24067), present in the 
ZmEIP_21d under blue modules. It has a significant role in 
protein folding in the ER(28). While other C2H2 transcription 
factors (4577.B4FEJ7) were positively expressed which have  
to interact with resistant proteins Serine/threonine-protein 
kinase ATG1t (string id: 4577.C0PMW7) (Fig. 6). Functional 
annotations: The genes involved in biological processes, 
molecular functions, cellular components, and pathways were 
identified using ShinyGo8.0 and UniProt. Functional 
annotation of 1162 positive regulated genes and 39 negative-
regulated genes were filtered using a False discovery rate  
 (FDR)<0.05. The blue module was positively expressed in 
ZmEIP_21d and GFP_21d, while in other conditions not 
significant (Fig. 7). Other black modules also have positive 
expressions in EtEc81_10d and 14d; these positively expressed 
genes are involved in multiple functions (Fig. 8). White 
module is highly expressed in EtEC81 10 day sample. It 
functions include transmembrane transport, polysaccharide 
catabolic process, lignin catabolic process, defense response, 
carboxylic acid metabolic process. Lightyellow module is 
higly expressed in ZmEIP1 10 day sample. Its functions 
include trehalose biosynthetic process, translation, RNA 
modification, response to oxidative stress, regulation of DNA-
templated transcription, etc. Green yellow is highly expressed 
kin ZmEIP1 14 days sample It’s  which is involved in 
ubiquitin-dependent protein catabolic process, translation, 
sucrose biosynthetic process, RNA splicing, etc. Future studies 
on stress adaptation and plant defense systems will be made 
easier by our findings, which offer important insights into the 
molecular mechanisms controlling gene regulation and plant 
responses under fungal infection conditions. In the EtEC81 
condition, the early-stage of infection, upregulated genes were 
predominantly enriched in functions associated with immune 
system activation and signal transduction, such as defense 
response, protein kinase activity, and Toll-like receptor 
signalling pathway. Under the mid-stage, the genes 
upregulated were having functions like metabolic adaptation 
functions, including lipid metabolism and amino acid 
catabolism, while downregulated gene’s activated in the 
following functions such as DNA replication, chromosome 
organization, and cell cycle progression. In the late-stage, 
glycolysis/gluconeogenesis, fatty acid metabolism, and other 
metabolic remodelling pathways were upregulated, with 
sustained repression of proliferative and biosynthetic 
functions. The early stage of zmeip condition upregulated  
genes were involved in pathogen recognition, cytokine-
mediated signalling, and antigen processing and presentation, 
while downregulated genes  work in nucleosome assembly, 
DNA replication, and translation. Additionally, the functional 
annotation of these ML-selected genes (Sup. Table 4) revealed 
that they upregulate many genes, which are having functions 
such as multiple defence-related categories, including 
pathogen recognition, hormone signalling pathways, 
transcriptional regulation, secondary metabolism, and 
developmental reprogramming. Furthermore, were found the 
common genes between all machine learning models, 
Differential Gene Expression analysis and WGCNA. The most 
significant 26 genes (Fig. 9) involved in multiple biological 
process, in which 5 genes insist to stimulus. 
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DISCUSSION  
 
Fungal infections are the 2nd most common pathogen that 
affectsZea mays after insect attacks. It can cause up to 5% to 
42% yield loss. In this study, we focus on the fungus 
Exserohilum turcicum. Exserohilum turcicum causes the 
disease of Northern Corn Leaf Blind (29). The disease is 
particularly seen in areas with high humidity and moderate 
temperature of 22-25 C. The fungus Exserohilum turcicum 
secretes the protein EtEC81, and this protein alter cellular 
pathways. The Zea mays Elicitor-Induced Protein 1 (ZmEIP1) 
and its interaction with the exserohilum turcicum Effector 81 
(EtEC81) could provide insights into maize's resistance 
mechanisms. GFP (Green fluorescent protein) is typically used 
as a control to ensure the changes observed are specific to 
EtEC81. In the current study, we used computational 
approaches on the publicly available transcriptome data of 
multiple fungal-affected silk of Zea mays and identified key 
gene modules associated with maize defense responses through 
WGCNA. Several biological significant modules that exhibit 
distinct expression patterns under different fungal infection 
conditions. A total of 22151 genes from the sample were 
subjected with significance values GS> 0.5 and MM>0.8 in 16 
modules. The total number of significant genes present here is 
1202. A notable observation in our study was the differential 
regulation of the Magenta module, which was upregulated in 
GFP 10-day samples but significantly downregulated in 
EtEC81 14-day samples. This suggests that maize initially had 
immune-related genes (Zm00001eb315910, 
Zm00001eb209480 ) but E. turcicum manipulates the host 
transcriptome to suppress these pathways at later stages of 
infection (30). Transcription factors (TFs) play crucial roles in 
plant defence by regulating hormone signaling pathways, stress 
responses, and secondary metabolis. The role of bHLH is 
particularly in growth, development, stress responses, and 
defence mechanisms (31). Which were negative co-expression 
in EtEC81-infected samples indicates that the pathogen may be 
 

 
 

Fig. 9. Core genes identification 
 
targeting these transcription factors to disrupt JA/ET-mediated 
immune responses, which are known to be crucial for fungal 
pathogen resistance (30). Several scientists have been finding 
that pathways controlling the adaptation to stress, such as 
resistance to mechanical damage, drought, high salt, oxidative 
stress, low-temperature stressors, heavy metal stress, iron 
deficiency, and osmotic stress (32). JA/ET(jasmonic acid and 
ethylene) signaling pathway has been documented in 
Pseudomonas syringae, where JA biosynthesis dampens host 
defense (33). In this study, the bHLH transcription factor 

might regulate JA/ET pathways and suppression in EtEC81-
treated samples, affecting immune suppression to weaken host 
resistance. 
 
The plant cell wall is an elaborate extracellular matrix that 
encloses each cell in a plant and help from biotic and abiotic 
stress (29). we have many genes that synthesize cell wall-
related proteins and polysaccharide recognition, thus 
promoting efficient catalysis(34). GT1 (Glycosyltransferase 1) 
enzymes, which were expressed in GFP 10 days (Light Green 
modules), suggest that Glycosyltransferase 1 plays a key role 
in maize’s defense response. However, the expression of GT1 
genes was negative co-expression in EtEC81 14 days (Steel 
Blue module models), indicating a potential pathogen attack on 
the host’s carbohydrate metabolism. The CAZymes that are 
significant after GT1 are N-Acetyltransferase and GT2 
(Glycosyltransferase 2). GT2 has a role in the defense, 
signaling, and storage of carbohydrate biosynthesis, etc. It 
helps in the production of cellulose and hemicellulose (35). 
 
Resistance (R) genes are crucial components of plant innate 
immunity. The Kinase-Class R (KIN) genes have key roles in 
pathogen recognition and signaling(36).KIN-class R genes 
were the dominant class, characterized by the presence of 
Kinase and Transmembrane (TM)domains. Our analysis 
identified KIN-class R genes as significant R genes that 
contribute to maize defense. The effector molecules are 
recognized by the LRR domain, and this recognition signal is 
transmitted through the TM domain to the intracellular kinase 
domain, which further 9 activates a downstream signaling 
cascade resulting in the activation of plant defense (37). 
Kinases have an inevitable role in mediating plant immune 
responses; pathogen effectors have adapted mechanisms to 
directly target and inhibit these kinase-mediated pathways, 
effectively undermining the plant's ability to mount a robust 
defense (38). The KIN-class R genes are negatively co-
expressed in EtEC81-infected samples, this suggests a direct 
suppression of kinase-mediated immunity by the pathogen. 
The other significant gene after the KIN class is RLK 
(Receptor-like kinase), and the domains are TM, LRR, and 
kinase.Transmembrane proteins known as receptor-like kinases 
(RLKs) are distinguished by the presence of an external 
receptor domain, which might comprise wall-associated kinase 
(WAK) domains, lectin (Lec), leucine-rich repeats (LRRs), or 
lysine motifs (LysM). These RLKs play an important role in 
controlling plant signaling pathways, especially when it comes 
to modulating reactions to abiotic stressors including drought, 
high temperatures, and low temperatures. Furthermore, RLKs 
are essential for plant immunity because they recognize 
pathogen-associated molecular patterns (PAMPs) and trigger 
immunological signaling cascades that improve defenses 
against pathogen invasion (39). 
 
Protein-protein interactions were identified from significantly 
positively expressed under ZmEIP_21d present in the under 
blue modules like Zm00001eb229930 (string id 4577.P24067). 
Which have been identified a significant role in protein folding 
in the ER (21). Other C2H2 transcription factors (4577. 
B4FEJ7) exhibited positive expression and are required to 
interact with resistance-related proteins such as 
Serine/threonine-protein kinase ATG1t (STRING ID: 
4577.C0PMW7). These proteins regulate multiple target 
proteins, including Endoglucanase (4577.C0P6G1), which 
plays a crucial role in the breakdown of plant material into 
sugars. Additionally, the transcription factor SHOOT 
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GRAVITROPISM 5 (4577.A0A1D6KL68) also interacts with 
these resistance (R) genes (Fig. 6). Previous studies in 
Arabidopsis thaliana have reported the positive involvement of 
these transcription factors in stomatal responses to darkness 
(40) 
 
The most significant 26 genes involved in multiple biological 
process, such as response to stimulus, localization role of 
peptide-based signaling and nutrient transport in defense 
responses. Protein kinase domain-containing protein coding 
genes (Zm00001eb158040) were downregulated in EtEC81 
21d,(41) ,have been suggested that these factors cause the 
misregulation of cellular activities and thus induce immune 
responses.  While Iron-phytosiderophore transporter yellow 
stripe 1 protein genes (Zm00001eb249020) also showing 
downregulated in Exserohilum turcicum Effector 81(EtEC81 
21 d) which response to iron ion. While 3 genes upregulated in 
Zm00001eb141080 (Glutathione transferase) in ZmEIP 14 d, 
Zm00001eb253890 (dihydropyrimidine dehydrogenase 
(NADP(+))) in EtEC81 14 d, Zm00001eb418060(Glutathione 
S-transferase 4) in  ZmEIP 14 d. Its  play significant role in 
herbicide detoxification(42).  
 

CONCLUSION 
 
Significant modules were identified through Weighted Gene 
Co-expression Network Analysis (WGCNA). The transcription 
factor (TF) identification, CAZyme screening, and R gene 
classification were performed, which revealed critical 
regulatory pathways that contribute to maize’s immune 
responses. This study provides significant information on 
Exserohilum turcicum effector EtEC81 and molecular 
mechanisms involved in maize defense and pathogen-induced 
immune suppression. This finding suggests that E. turcicum 
suppresses maize immunity and manipulates the plant’s 
metabolic pathways. The pathogen disrupts bHLH TF-
regulated hormone signaling, alters GT1-mediated 
glycosylation, and suppresses KIN-class R genes, leading to 
compromised immune responses in silk of Zea mays. DEG 
analysis revealed stage-specific transcriptional responses under 
both EtEC81 infection and ZmEIP expression, highlighting 
shifts from immune activation in early stages to growth 
restoration in later stages.Machine learning models identified 
4,280 key genes involved in pathogen recognition, hormone 
signalling, transcriptional regulation, and structural defence 
reinforcement.The integration of DEG and ML analyses 
confirmed maize prioritizes immune defence in early stages 
and recovery processes in late stages. 
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