

International Journal of Current Research Vol. 17, Issue, 10, pp.34864-34867, October, 2025 DOI: https://doi.org/10.24941/ijcr.49590.10.2025

REVIEW ARTICLE

IMPACT OF DIET RESTRICTION ON HEALTH AND DISEASE: A NOVEL APPROACH TO COUNTER PCOS AND OBESITY RELATED REPRODUCTIVE DYSFUNCTIONS

Ashutosh Ranjan*, Bhawna and Syed Mohd Atif

Depatment of Zoology, University of Lucknow, Lucknow-226007, UP, India

ARTICLE INFO

Article History:

Received 20th July, 2025 Received in revised form 14st August, 2025 Accepted 18th September, 2025 Published online 29th October, 2025

Keywords:

Time-Restricted Feeding, Intermittent Fasting, PCOS, Diabetes, Infertility.

*Corresponding author: Ashutosh Ranjan

ABSTRACT

Background: There has been a significant increase, to epidemic levels, of obese and overweight person of reproductive age, causing impairments to reproductive health. The prevalence of overweight and obesity among men and women of reproductive age is increasing. Obesity has a detrimental effect on male and female health, and of which a particular concern was paid on the reproductive disorders. TRF is being considered as a potential therapy for humans with obesity and related metabolic syndromes. There is strong evidence that high caloric intake has negative impacts on principal body functions, such as impaired endocrine effects, altered liver metabolism, and cholesterol imbalance. Objective: In this review we have listed out the potential benefits of different regimen of TRF to improve health and prevent disease progression. Methodology: The method used to write this manuscript is purely interpretative and descriptive in nature which is primarily based upon the primary and secondary sources of data like books, journals, and internet. Conclusion: Overall, dietary intervention along with TRF could be a novel therapeutic treatment approach for them suffering from metabolic disorders and infertility.

Copyright©2025, Ashutosh Ranjan et al. 2025. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Ashutosh Ranjan, Bhawna and Syed Mohd Atif. 2025. "Impact of diet restriction on health and disease: a novel approach to counter pcos and obesity related reproductive dysfunctions". International Journal of Current Research, 17, (10), 34864-34867.

INTRODUCTION

Nutritional imbalance arise when body does not process the digestion and distribution of macronutrients, such as protein, carbohydrates, fats etc. effectively leading to generation of nutritional deficiency or metabolic abnormality. According to World Health Organization (WHO) report 1 out of 8 people have obesity, in which adult individual of aged 18 years and above contribute 16% obesity (WHO, 2024). This rising metabolic disease have placed a tremendous burden on our healthcare system as well as general public (Narmkul et al., 2024). Diabetes and obesity are considered to be most common metabolic disease among adults. It is estimated that by the end of 2030, 439 million adults are expected to suffer with diabetes and obesity (Afshin et al., 2017). Other metabolic disease outcome includes cardiovascular disease, musculoskeletal conditions, endometrial cancer, PCOS, infertility in male and female, etc. Given these challenges, dietary modifications have been shown to play a pivotal role in management of metabolic abnormality thus, offering a non-pharmacological, sustainable treatment option (Bulsara et al., 2021). The two major dietary intervention include caloric restriction (CR) and intermittent fasting (IF) (Kalafi et al., 2024; Welton et al., 2020). The CR regimen include practice of reducing energy intake below normal level without causing malnutrition. It involves long-term daily reduction of food intake which result

in improving metabolic biomarkers thus, potentially reducing the risk of chronic disease like obesity and diabetes. On the other hand, IF is an alternate strategy of CR that have been developed to effectively treat and monitor metabolic abnormality including obesity, diabetes, as well as infertility. The IF regimen include limiting the amount of time spent on food or drink intake for a specific period, and/or alternate period of fasting and feeding without imposing caloric restriction (Khalafi et al, 2024). There are three primary regimen of IF: time-restricted feeding (TRF), alternate-day fasting (ADF), the 5:2 diet, and other variations (Nye et al., 2024). TRF, food intake is performed in a specific time window, typically 4-10 h, with unrestricted caloric intake during that eating window. Outside this window, only noncaloric drink or beverages like water, unsweetened tea, or black coffee is allowed. Due to its practicality and ability to align with our circadian rhythm, TRF has been intrinsically linked to metabolic and endocrine regulation (Wilkinson at el., 2020). In ADF, on the day of fasting, energy intake is restricted to only water or minimal caloric intake that is interspersed with non-fasting days that allow unrestricted energy intake or food consumption. Recent findings have suggested that ADF regimen has a great potential in reducing body weight, improving insulin-sensitivity, fasting glucose level-factors that are crucial in the management of PCOS, diabetes etc. (Stekovic et al., 2020). The 5:2 diet is variation of ADF where two non-consecutive fasting days are restricted to

only 20-25% energy intake of daily requirement followed by 5 days of unrestricted food intake. This not only prevent metabolic and psychological stress of continuous dieting but balances the caloric restriction with sustainability (Carter et al., 2018). Today, a growing dietary trend in developed and developing countries is IF, which is now a days often encouraged and adopted to loose body weight, achieve optimum glycemic index, and improved metabolism. IF have also been shown to prevent apoptosis, autophagy, oxidative stress etc. (Golbidi et al., 2017). Looking into the long term potential of IF and its relevance in prevention of diseases, it could be implemented as an alternate strategy to counteract side effect arises due to disturbed metabolism. Therefore, a thorough understanding of IF is required to manage disorder arises due to disturb metabolism, life-style modifications, and also create public awareness of the potential outcomes of IF. In this article we have reviewed several aspect of IF in the implication of health and disease, and its potential challenges and future.

IF and PCOS: Rising prevalence of exposure to endocrine disruptors, life-style modifications, environmental changes, and genetic pre-dispositions have severely impacted the female reproduction viz. gynecological disorder, diabetes, cardiovascular disease, and most notably polycystic ovary syndrome (PCOS). Today, PCOS contributes to majority cause of female infertility. PCOS is characterized by morphological, hormonal, and metabolic abnormalities leading characteristic symptoms like anovulation, hyperinsulinemia, and hyperandrogenism (Belenkaia et al., 2019). The coexistence of hormonal disturbances along with metabolic abnormality, including obesity, insulin resistance (IR), and hyperinsulinemia highlights the importance of life-style modifications or interventions in the management of PCOS. Recent findings have suggested the pivotal role of dietary modifications in amelioration of PCOS and mitigates its related complications. These interventions are beneficial in managing oxidative stress, inflammation, and metabolic abnormality. Thus, it is offering a non-pharmacological and sustainable treatment option (Bulsara et al., 2021; Juhasz et al., 2024).

Among the various dietary strategies, IF is proved to be a promising strategy in the mitigation of PCOS. Earlier studies have suggested the improvement in menstrual cycle abnormalities compared to placebo group following the IF regimen (Li et al., 2021; Talebi et al, 2024). The hormonal profile revealed that, IF lead to reduced Anti-Mullerian Hormone (AMH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) compared to healthy control females (Li et al., 2024; Cldwell et al., 2011; Feyzioglu et al., 2023). In contrast, there are certain report which suggest no changes in AMH, FSH and LH level (Methley et al., 2014; Ranneh et al., 2025). A notable reduction in testosterone (T), free androgen index (FAI), and estradiol (E2) were also observed in IF regimen (Cienfuegos et al., 2022). These findings suggest that IF could be an alternate strategy for the management of PCOS and its related complications. However, further research is needed to strengthen the effect of IF on hormonal profile like FSH, LH and T which are crucial in PCOS progression. An improved FSH and LH level are pivotal for menstrual cycle regulation and improved fertility. The hormonal concentration in PCOS female with and without IF is given in Table 1.

Table 1. Effect of intermittent fasting on reproductive hormonal profile of female

Hormone	Hormone concentration in PCOS	Hormone concentratio n after IF	Reference
Estradiol	High	Reduced	Jakubowicz, 2013
Androgens	Testosterone- High DHEA-S-High Androstenedio ne-High	Testosterone- Reduced DHEA-S- Reduced Androstenedi one- Reduced	Li, 2021 Harvie 2011
SHBG	Low	Increased	Deswal 2018; Harvie 2011
Gonadotropins	LH & FSH- Reduced	LH & FSH- Unchanged	Li 2021
Prolactin	Not linked directly	Unchanged	Harvie 2011

IF can boost male fertility: Growing evidence is now suggesting that, approximately 10-20% of couple worldwide are unable to conceive due to male factor infertility. Around 50% cases of infertility is attributed to male partner. The male subfertility include low sperm count, sperm quality, sperm motility that are significantly affected by lifestyle changes (Kohn and Schuppe, 2021). Psychological stress including unfulfilled desire for children also creates a mental pressure leading to reduced fertility. The conventional method that are being prescribed for improving the sperm parameters are vitamins, Coenzyme Q10, zinc, selenium, carnitine nutrients rich diet etc. In addition to this fasting intervention have also now been shown to improve sperm quality and concentration. In a recent study by Zhang et al., 2025, IF has significantly improved the testicular morphology, and weight gain in obesity-induced male infertility mice model. There was increased reproductive competence and increased bioactive metabolites gene expression. Thus, IF can act as an alternate strategy in mitigation of male factor subfertility.

IF and obesity: Intermittent fasting (IF) is an increasingly popular strategy for weight loss and improved metabolic health. IF regimes involve deliberate implementation of fasting windows ranging from 12 to 72 hr. Please replace with this sentence: "Such strategies due to their promising results, are gaining social popularity but are not yet completely understood". Specifically, the effects of time-restricted feeding (TRF), a specific form of IF in which participants undergo daily fasting periods lasting about 16 hour, is among the most popular yet understudied regimens. A recent findings of Deota and Panda, 2020, found that mice who eat within a set amount of time (8-12 hour) resulted in slimmer, healthier mice than those who ate the same number of calories in a larger window of time, showing that the temporal pattern of eating may be as important as the nutritional content of the diet. If the benefits of this "time-restricted eating" (TRE) hold true in humans, it could have profound impacts on treating overeating disorders, diabetes and obesity. TRF has the potential for improving several key markers of health. One of the most consistent results reported showed a decrease in fasting insulin level, which supports the theory that TRF may improve insulin function. In a study reported by Gabel et al., 2018 showed that Twenty-three participants who were obese (20 women, 3 men) participated in a TRF regimen (ad libitum eating from 10 AM to 6 PM and water-only fast from 6 PM to 10 AM) every day for 12 weeks have more weight loss and reduced energy

intake, and decreased systolic blood pressure. This indicate that TRF produces a mild caloric deficit and weight loss without calorie counting and may lower blood pressure. In a study by Hutchison et al., 2019, fifteen men at risk for type-2 diabetes mellitus (T2DM) underwent 2 different 7-day TRF regimens, either an early TRF schedule (caloric intake confined to 8 AM to 5 PM) or a delayed TRF (caloric intake confined to 12 PM to 9 PM). The result showed reduced blood glucose, circulating fasting triglycerides and reduced insulin level. Overall, TRF improved glycemic responses in individual. Another very important study by Moro et al., 2019 where thirty-four resistance-trained men were randomly assigned TRF (caloric intake confined from 1 PM to 8PM) or normal diet (caloric intake confined to 8 AM to 8 PM). The result demonstrated that TRF, when combined with resistance training, significantly reduced fat mass while maintaining muscle mass.

This study particularly elucidates some of TRF's potential to encourage healthy body composition, especially when combined with physical activity. In a study of Sutton *et al.*, 2018, eight men with prediabetes who were considered overweight underwent 5 weeks of TRF (water-only fast from 8 AM to 3 PM) compared with a normal diet (12 hour eating window, beginning 6:30 AM to 8:30 AM) in a randomized order, separated by a 7-week was houtperiod. The result showed that TRF elicited significant decrease in mean insulin and IR while also improving B-cell responsiveness. TRF also caused a notable decrease in mean (SD) systolic and diastolic blood pressure.

CONCLUSION

Our current lifestyle has led us to eating and increasing times/irregular hours and erratic patterns of eating increasing the risk of chronic diseases, including cancer, cardiovascular diseases, infertility, and other related chronic conditions. Shift in light-dark cycles curtails fertility competence in mice. Recently, dietary strategies that focus on the timing of eating and duration of fasting (i.e., chrono-nutrition) have been shown to improve metabolic health in humans. Specifically, TRF and calorie restriction (CR) limiting food access within the active phase is a dietary strategy that has emerged as a practical intervention for improving insulin resistance along with other markers of whole-body health such as reproductive health. Given the increased frequency of diabetes induced hypogonadism in male, lifestyle disorder like PCOS in female have resulted in reduced fertility. Therefore, it is crucial to understand the contribution of time restricted feeding (TRF) and calorie restriction (CR) regimen of feeding in order to mitigate health related issues in non-invasive way.

Author contributions: AR conceived the idea, wrote, edited and finalize the original draft. B and SMA have corrected and formatted the draft.

Funding: This work was supported by Protsahan award (Boost Scheme)to AR in Year 2021-2022 from University of Lucknow, India; Department of Science and technology (DST), New Delhi, India (SUR/2022/001936); Council of Science & Technology, Government of Uttar Pradesh, India (CST/D-1549) to AR.

Conflict of interest: Declared none.

ACKNOWLEDGEMENTS

The authors would like to thank Head, Department of Zoology, University of Lucknow for providing the departmental central facility to carry out this work.

REFERENCES

- Afshin, A., Forouzanfar., MH., Reitsma, MB., *et al.* 2017. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med., 377(1):13-27.
- Belenkaia, LV., Lazareva, LM., Walker, W., Lizneva, DV., Suturina, LV. 2019. Criteria, Phenotypes and Prevalence of Polycystic Ovary Syndrome. Minerva Ginecol. 71, 211– 225.
- Bulsara, J., Patel, P., Soni, A., Acharya, S. 2021. A review: brief insight into polycystic ovarian syndrome. Endocr Metab Sci., 3:100085.
- Caldwell, K., Henshaw, L., Taylor, G. 2011. Developing a framework for critiquing health research: an early evaluation. Nurse Educ Today., 31(8):e1–7.
- Carter, S., Clifton, PM., Keogh, JB. 2018. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw Open., 1(3):e180756.
- Cienfuegos, S., Corapi, S., Gabel, K., Ezpeleta, M., Kalam, F., Lin, S., Pavlou, V., Varady, KA. 2022. Effect of Intermittent Fasting on Reproductive Hormone Levels in Females and Males: A Review of Human Trials. *Nutrients.*, *14*(11), 2343.
- Deota, S., Panda, S. 2021. New Horizons: Circadian Control of Metabolism Offers Novel Insight Into the Cause and Treatment of Metabolic Diseases. *J Clin Endocrinol Metab.*, 8;106(3):e1488-e1493.
- Feyzioglu, BS., Güven, CM., Avul, Z. 2023. Eight-hour time-restricted feeding: a strong candidate diet protocol for first-line therapy in polycystic ovary syndrome. Nutrients., 15(10):2260.
- Gabel, K., Hoddy, KK., Haggerty, N., Song, J., Kroeger, CM., Trepanowski, JF., Panda, S., Varady, KA. 2018. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging.,4(4):345-353.
- Golbidi, S., Daiber, A., Korac, B., *et al.* 2017. Health benefits of fasting and caloric restriction. CurrDiab Rep., 17(12):123.
- Hutchison, AT., Regmi, P., Manoogian, ENC., Fleischer, JG.,
 Wittert, GA., Panda, S., Heilbronn, LK. 2019. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity (Silver Spring)., 27(5):724-732.
- Jakubowicz, D., Barnea, M., Wainstein, J., Froy, O. 2013. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin. Sci., 125: 423–432.
- Juhász, AE., Stubnya, MP., Teutsch, B., Gede, N., Hegyi, P., Nyirády, P., Bánhidy, F., Ács, N., Juhász, R. 2024. Ranking the Dietary Interventions by Their Effectiveness in the Management of Polycystic Ovary Syndrome: A Systematic Review and Network Meta-Analysis. Reprod. Health., 21(1): 28.
- Khalafi, M., Habibi, MA., Symonds, ME, et al. 2024. The effects of intermittent fasting on body composition and

- cardiometabolic health in adults with prediabetes or type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab.,26(9):3830-41.
- Köhn, FM., Schuppe, HC.,2021. The influence of environmental factors and life style on male fertility. Gynäkologe., 54:260–72.
- Li, C., Xing, C., Zhang, J., Zhao, H., Shi, W., He, B. 2021. Eight-hour time-restricted feeding improves endocrine and metabolic profiles in women with anovulatory polycystic ovary syndrome. J Transl Med., 19(1):148.
- Methley, AM., Campbell, S., Chew-Graham, C., McNally, R., Cheraghi-Sohi, S. 2014. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res., 14(1):579.
- Moro, T., Tinsley, G., Bianco, A., Marcolin, G., Pacelli, QF., Battaglia, G., Palma, A., Gentil, P., Neri, M., Paoli, A. 2016. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. *J Transl Med.*, 14(1):290.
- Narmkul, P., Songserm, N., Woradet, S. 2024. Effect of weight control intervention on body mass index among adolescents with overweight: A systematic review and meta-analysis. Iran J Nurs Midwifery Res., 29(2):145-51.
- Nye, K., Cherrin, C., Meires, J. 2024. Intermittent fasting: Exploring approaches, benefits, and implications for health and weight management. J Nurse Pract., 20(3):104893.
- Ranneh, Y., Hamsho, M., Shkorfu, W., Terzi, M., Fadel, A. 2025. Effect of Intermittent Fasting on Anthropometric Measurements, Metabolic Profile, and Hormones in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Nutrients.,17(15):2436.

- Stekovic, S., Hofer, SJ., Tripolt, N., Aon, MA., Royer, P., Pein, L, *et al.*2020. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metabol., 31(4):878–81.
- Sutton, EF., Beyl, R., Early, KS., Cefalu, WT., Ravussin, E., Peterson, CM. 2018. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab.,27(6):1212-1221.
- Talebi, S., Shab-Bidar, S., Moini, A., Mohammadi, H., Djafarian, K. 2024. The effects of time-restricted eating alone or in combination with probiotic supplementation in comparison with a calorie-restricted diet on endocrine and metabolic profiles in women with polycystic ovary syndrome: a randomized clinical trial. *Diabetes Obes Metabol.*, 26(10):4468–79.
- Welton, S., Minty, R., O'Driscoll, T, *et al.* 2020. Intermittent fasting and weight loss: Systematic review. Can Fam Physician., 66(2):117-25.
- Wilkinson, MJ., Manoogian, ENC., Zadourian, A., Lo, H., Fakhouri, S., Shoghi, A, *et al.* 2020. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metabol.,31(1):92–104.
- World Health Organization (WHO). Fact sheet. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [1 March 2024]
