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INTRODUCTION 
 
The statistical modeling of extreme events has seen significant evolution over the past decade, driven by the need to quantif
predict rare but impactful phenomena in domains such as environmental science, traffic safety, and finance. Extreme value theory 
(EVT) serves as a foundational framework for quantifying rare, high
hydrology, and climate science. Among EVT models, the generalized Pareto distribution (GPD) has emerged as a pivotal tool 
under the Peaks-Over-Threshold (POT) paradigm for modeling tail exceedances 
likelihood estimation (MLE), while asymptotic
misspecification (9)(3). To mitigate these issues, alternative approaches including the method of moments (MoM) 
probability-weighted moments (PWM) (7), and empirical percentile
robustness and adaptability. Recent advances in Bayesian inference offer a compelling solution through hierarchical modeling 
frameworks, which not only accommodate parameter uncertainty but also 
(6)(1).   
 
Hierarchical Bayesian GPD models have been effectively utilized in hydrology 
exceedances (15), often outperforming their classical counterparts
models combining bulk and tail distributions have been explored for better posterior calibration in multivariate settings 
Gradient-based sampling methods like the No
computational efficiency in high-dimensional posteriors. Comparative studies highlight the superiority of Bayesian regularization 
in finite-sample regimes (5)(17)(19). Recent innovations include Bayesian 
boosted GPD estimators (17), and non-stationary hybrid models incorporating covariate
on these developments by integrating multi
comprehensive framework for hierarchical Bayesian GPD modeling, tailored for actuarial, operational, and financial tail
estimation. 
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ABSTRACT  

A comprehensive framework for extreme value analysis grounded in hierarchical Bayesian modeling 
of the Generalized Pareto Distribution (HB-GPD). This study proposes a robust and computati
intensive framework for extreme value analysis via a three-tier HB
captures within-group volatility and cross-group heterogeneity through structured prior and 
hyperprior hierarchies. To address the limitations of classical estimators under sparse data and heavy
tailed regimes, we compare Maximum Likelihood Estimation (MLE), Method of Moments (MoM), 
Probability-Weighted Moments (PWM), and Empirical Percentile Method (EPM) against our 
Bayesian paradigm. Posterior inference is conducted using advanced Markov Chain Monte Carlo 
(MCMC) techniques, including Metropolis-Hastings within Gibbs sampling and the No
Sampler (NUTS), ensuring efficient posterior exploration in high
Relative Efficiency (ARE) as performance diagnostics. Simulation studies and empirical financial 
data from Nifty 50 and S&P 500 sectors substantiate the model's superiority in estimating Value
Risk and Expected Shortfall, thereby affirming its relevance in actuarial science
financial solvency analytics. 
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The statistical modeling of extreme events has seen significant evolution over the past decade, driven by the need to quantif
phenomena in domains such as environmental science, traffic safety, and finance. Extreme value theory 

(EVT) serves as a foundational framework for quantifying rare, high-impact events in domains such as finance, insurance, 
Among EVT models, the generalized Pareto distribution (GPD) has emerged as a pivotal tool 

Threshold (POT) paradigm for modeling tail exceedances (2)(4). The classical method such as maximum 
likelihood estimation (MLE), while asymptotically efficient, often exhibit instability in small samples or under model 

. To mitigate these issues, alternative approaches including the method of moments (MoM) 
, and empirical percentile methods (12) have been proposed, albeit with limitations in 

robustness and adaptability. Recent advances in Bayesian inference offer a compelling solution through hierarchical modeling 
frameworks, which not only accommodate parameter uncertainty but also enable partial pooling across heterogeneous groups 

Hierarchical Bayesian GPD models have been effectively utilized in hydrology (13), spatial extremes 
, often outperforming their classical counterparts in both interpretability and stability. Furthermore, mixture 

models combining bulk and tail distributions have been explored for better posterior calibration in multivariate settings 
based sampling methods like the No-U-Turn Sampler (NUTS) and Hamiltonian Monte Carlo 

dimensional posteriors. Comparative studies highlight the superiority of Bayesian regularization 
. Recent innovations include Bayesian regression trees for POT modeling 

stationary hybrid models incorporating covariate-driven thresholds 
on these developments by integrating multi-level priors, robust inference techniques, and simulation
comprehensive framework for hierarchical Bayesian GPD modeling, tailored for actuarial, operational, and financial tail
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framework for extreme value analysis grounded in hierarchical Bayesian modeling 
GPD). This study proposes a robust and computationally 

tier HB-GPD. The model rigorously 
group heterogeneity through structured prior and 

estimators under sparse data and heavy-
tailed regimes, we compare Maximum Likelihood Estimation (MLE), Method of Moments (MoM), 

Weighted Moments (PWM), and Empirical Percentile Method (EPM) against our 
conducted using advanced Markov Chain Monte Carlo 

Hastings within Gibbs sampling and the No-U-Turn 
Sampler (NUTS), ensuring efficient posterior exploration in high-dimensional spaces. Asymptotic 

ARE) as performance diagnostics. Simulation studies and empirical financial 
data from Nifty 50 and S&P 500 sectors substantiate the model's superiority in estimating Value-at-
Risk and Expected Shortfall, thereby affirming its relevance in actuarial science, operational risk, and 
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The statistical modeling of extreme events has seen significant evolution over the past decade, driven by the need to quantify and 
phenomena in domains such as environmental science, traffic safety, and finance. Extreme value theory 

impact events in domains such as finance, insurance, 
Among EVT models, the generalized Pareto distribution (GPD) has emerged as a pivotal tool 

. The classical method such as maximum 
ally efficient, often exhibit instability in small samples or under model 

. To mitigate these issues, alternative approaches including the method of moments (MoM) (14), 
have been proposed, albeit with limitations in 

robustness and adaptability. Recent advances in Bayesian inference offer a compelling solution through hierarchical modeling 
enable partial pooling across heterogeneous groups 

, spatial extremes (16)(11), and air pollution 
in both interpretability and stability. Furthermore, mixture 

models combining bulk and tail distributions have been explored for better posterior calibration in multivariate settings (10). 
and Hamiltonian Monte Carlo (8) have revolutionized 

dimensional posteriors. Comparative studies highlight the superiority of Bayesian regularization 
regression trees for POT modeling (5), gradient-

driven thresholds (18). This paper builds 
ques, and simulation-based diagnostics into a 

comprehensive framework for hierarchical Bayesian GPD modeling, tailored for actuarial, operational, and financial tail-risk 
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METHODOLOGY 
 
Model Framework 
 
A three-level hierarchical Bayesian structure allows us to incorporate multiple layers of uncertainty and dependence, accounting 
for both within-group variability and across-group heterogeneity. The levels are: 
 

Level 1: GPD likelihood for exceedances above a threshold. For group 𝑗 ∈ {1, … , 𝐽}, and observations 𝑥𝑖𝑗 such that 𝑥𝑖𝑗 > 𝑢𝑗, 

assume: 𝑢𝑗 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ቀ𝑝൫𝑥𝑖𝑗൯ቁ. 

 

൫𝑥𝑖𝑗 − 𝑢𝑗൯ ∼ 𝐺𝑃𝐷(𝜉
𝑗
, 𝜎𝑗), for 𝑖 = 1, … , 𝑛𝑗 

 
The GPD density function is defined as  
 

𝑓(𝑥|𝜉, 𝜎) =

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵ

ఙ
ቀ1 +

క௫

ఙ
ቁ

ି
భ

഍షభ
        𝑖𝑓 𝜉 ≠ 0

 
 
 

ଵ

ఙ
𝑒ିቀ

ೣ

഑
ቁ                          𝑖𝑓 𝜉 = 0

      ∀ 𝑥 > 0, 𝜎 > 0                          (1) 

 

Level 2: Group-specific priors for𝜉
𝑗
 𝑎𝑛𝑑 𝜎𝑗. Each group 𝑗 has its own shape and scale parameters drawn from normal priors (log-

transformed scale parameter for positivity): 
 

𝜉
𝑗

∼ 𝑁൫𝜇
𝜉
, 𝜏𝜉

2൯, 𝑙𝑜𝑔𝜎𝑗 ∼ 𝑁൫𝜇
𝜎

, 𝜏𝜎
2൯ 

 
This layer captures the between-group variability in tail behavior and spread of the excesses. 
 

Level 3: Hyperpriors on 𝜇
𝜉
, 𝜇

𝜎
 𝑎𝑛𝑑 𝜏𝜉

2, 𝜏𝜎
2 . It is reflecting uncertainty in population-level effects. We assume non-informative or 

weakly informative priors for the hyperparameters to allow the data to inform the population-level inference: 
 

𝜇
𝜉

∼ 𝑁(0,1), 𝜇
𝜎

∼ 𝑁(0,1) 

 

We choose variance as 102 because the prior variance because it provides a weakly informative prior to the data dominate 
inference while still stabilizing computation. The exact choice 𝑁(0, 1)is not universal, but it is consistent with the standard 
practice of using weakly informative Normal priors for hierarchical GPD modeling. 
 

𝜏𝜉
2 ∼ Inverse − Gamma൫𝑎𝜉, 𝑏𝜉൯,     𝜏𝜎

2 ∼ Inverse − Gamma(𝑎𝜎, 𝑏𝜎) 
 

Cumulative Distribution Function (CDF) 
 

The cumulative distribution function of ቀ𝑥𝑖𝑗ቚ𝜉
𝑗
, 𝜎𝑗ቁ is given by 

 

𝐹(𝑥) = ∫
ଵ

ఙ
ቀ1 +

క௧

ఙ
ቁ 𝑑𝑡

௫

଴
#   (2) 

 
After simplifying, the cumulative distribution function becomes 

𝐹൫𝑥ห𝜉௝ , 𝜎௝൯ =

⎩
⎪
⎨

⎪
⎧

 

1 − ቀ1 +
క௫

ఙ
ቁ

ି
భ

഍
             𝑖𝑓 𝜉 ≠ 0
 
 
 

1 − 𝑒ି
ೣ

഑                           𝑖𝑓 𝜉 = 0

      ∀ 𝑥 > 0, 1 +
క௫

ఙ
> 0    (3) 

 
Estimation methods for the parameters of the HB-GPD 
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Let (𝑋1, 𝑋2, . . . , 𝑋𝑛) be a random sample of size n from a GPD with d.f. given in (1) and let (𝑋1:𝑛 , 𝑋2:𝑛, . . . , 𝑋𝑛:𝑛) be the 
ascending ordered sample. The observed and its corresponding ascending ordered samples will be denoted respectively by 

𝑥 =  (𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡)  and (𝑥1:𝑛 , 𝑥2:𝑛, . . . , 𝑥𝑛:𝑛). 

 
i. Maximum Likelihood Estimation (MLE) 
 
ML estimators only exist for ξ ≠ 0 and ξ = 0, the log-likelihood 
 

log[𝐿(𝜉, 𝜎; 𝑥)] =

⎩
⎪⎪
⎨

⎪⎪
⎧ෑ

1

𝜎
൬1 +

𝜉𝑥𝑖

𝜎
൰

−ቀ
1

𝜉−1
ቁ

    𝑖𝑓 𝜉 ≠ 0

 

𝑛

𝑖=1  

 

ෑ
1

𝜎
𝑒

−ቀ
𝑥

𝜎
ቁ

                         𝑖𝑓 𝜉 = 0 

𝑛

𝑖=1

  

 

log[𝐿(𝜉, 𝜎; 𝑥)] = ෑ
1

𝜎
൬1 +

𝜉𝑥𝑖

𝜎
൰

−ቀ
1

𝜉−1
ቁ

    𝑖𝑓 𝜉 ≠ 0

 

𝑛

𝑖=1

 

𝑛(𝜉 − 1) = 𝜉 ∑ ൭
௫೔

ఙ ୪୭୥൬ଵା
഍ೣ೔

഑
൰
൱௡

௜ୀଵ        (4) 

 

𝜎 =
∑ ൬

ೣ೔
഑శ഍ೣ೔

൰೙
೔సభ

∑ ൬
భ

഑శ഍ೣ೔
൰೙

೔సభ

    (5) 

 
The equation (3) and (4) are non-linear in 𝜉 and 𝜎. The MLE of 𝜉 and 𝜎 are obtained using numerical optimization techniques. 
 

ii. Method of Moments (MoM) 
 
Let 𝑥1, 𝑥2, … , 𝑥𝑘be the sample and let 𝑓(𝑥; 𝜉ଵ, 𝜉ଶ, … , 𝜉௞) be the density function with parameters 𝜉

1
, 𝜉

2
, … , 𝜉

𝑘
. If µ

𝑟
′  is the 𝑟𝑡ℎ 

moment about origin, then 
 

µ
𝑟
′ =

⎩
⎪
⎨

⎪
⎧

∫
𝑥𝑟

𝜎
ቀ1 +

𝑥𝑟

𝜎
ቁ

−
1

𝜉−1
𝑑𝑥

 

 

                    𝑖𝑓 𝜉 ≠ 0

 

1

0
 

 

∫
𝑥𝑟

𝜎
𝑒

−
𝑥

𝜎 𝑑𝑥
1

0
                                    𝑖𝑓 𝜉 = 0

         

 (6) 

   µ
𝑟
′ =

𝑥𝑟

𝜎
ቀ1 +

𝑥𝑟

𝜎
ቁ

−
1

𝜉−1
𝑑𝑥 

𝜉 =
ቀ

మ഍

భషమ഍
ቁ

ቀ
మ

మ഍షభ
ቁ
          (7) 

𝜎 = ቀ
ఙ

ଵିక
ቁ ∗ ቆ1 −

ቀ
మ഍

భషమ഍
ቁ

ቀ
మ

మ഍షభ
ቁ
ቇ    (8) 

 

µ
𝑟
′ =

𝜎
ቀ

2−𝜉

𝜉−1
ቁ

∑ ൬
−

1

𝜉−1

𝑘
൰∞

𝑘=0 𝜉𝑘

𝑟 + 𝑘 + 1
 

 

Put 𝑟 = 1 then µ
1
′ =

𝜎
ቀ

2−𝜉

𝜉−1
ቁ

∑ ቆ
−

1

𝜉−1
𝑘

ቇ∞
𝑘=0 𝜉𝑘

𝑘+2
  is the mean and µ

2
′ =

𝜎
ቀ

2−𝜉

𝜉−1
ቁ

∑ ቆ
−

1

𝜉−1
𝑘

ቇ∞
𝑘=0 𝜉𝑘

𝑘+3
. Variance of the HB-GPD distribution is 

µ
2

= µ
2
′ − ൫µ

1
′ ൯

2
.The moments estimates 𝜉̂

𝑀𝑜𝑀
and𝜎ො𝑀𝑜𝑀are computed via MCMC techniques. 

 
iii. Probability Weighted Moments (PWM) 
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Let 𝐹(𝑥) be the CDF of the rTh PWM and then 𝛽
𝑟

= 𝐸[𝑥𝐹(𝑥)𝑟] 

 

𝛽
𝑟

= න 𝑥 ൥1 − ൬1 +
𝜉𝑥

𝜎
൰

−
1

𝜉

൩

𝑘

൭
1

𝜎
൬1 +

𝜉𝑥

𝜎
൰

−ቀ
1

𝜉−1
ቁ

൱ 𝑑𝑥 

1

0

 

𝜉 =
ቆቀ

మ(మష഍)

భష഍
ቁିସቇ

ቆቀ
మ(మష഍)

భష഍
ቁିଶቇ

         (9) 

𝜎 = ൬
𝜎

1 − 𝜉
൰

⎝

⎜
⎛

1 −

ቆ൬
2(2 − 𝜉)

1 − 𝜉
൰ − 4ቇ

ቆ൬
2(2 − 𝜉)

1 − 𝜉
൰ − 2ቇ

⎠

⎟
⎞

     

 

Therefore, 𝑇(𝜉, 𝑗) = ቂ
(కିଵ)మ

ଶకరି଻కయା(଺ା଼௝)కమି(ହାଶ௝)௝కା௝మቃ. The probability weighted moment is  

 

𝑀𝑘,𝜉,𝜎 = 𝜎 ෍ ൬
𝑘

𝑗
൰ (−1)𝑗+1

𝑘

𝑗=0

𝑇(𝜉, 𝑗) 

 
The estimates 𝜉̂

𝑃𝑊𝑀
and𝜎ො𝑃𝑊𝑀are computed via MCMC techniques. 

 
i.  Empirical Percentile Method (EPM) 

 
The Empirical Percentile Method estimates a quantile of a distribution by ordering the data and selecting the value corresponding 
to a specific percentile rank. Unlike parametric methods, EPM relies solely on the empirical distribution of the sample, making it 

robust against model misspecification. Given a sample of size 𝑛, let 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) denote the ordered statistics. 
 

The inverse CDF of 𝐹(𝑥|𝜉, 𝜎) = 𝑝 = 1 − ቀ1 +
క௫೛

ఙ
ቁ

ି
భ

഍
The 𝑝𝑡ℎempirical percentile is defined as: 

 

𝑄ො
𝑝

=
𝜎

𝜉
ቂ൫1 − 𝑝

𝑥
൯

−𝜉
− 1ቃ   (10) 

 
𝜉 =

ఙ

ொ෠೛
ൣ(1 − 𝑝௫)ିక − 1൧    (11) 

 

𝜎ො𝐸𝑃𝑀 =
𝜉𝑄ො𝑝

ቂ൫1−𝑝𝑥൯
−𝜉

−1ቃ
    (12) 

 

If 𝑝 = 𝑀𝑒𝑑𝑖𝑎𝑛 =
ଵ

ଶ
 then 𝜎ො𝐸𝑃𝑀 is becomes 𝜎ො𝐸𝑃𝑀 =

𝑄ො0.5

0.3010
 . Empirical percentile estimates  𝜉̂

𝐸𝑃𝑀
and𝜎ො𝐸𝑃𝑀are computed via MCMC 

techniques. 
 
Bayesian Approach of Prior and Hyperprior Parameters  
 
The prior distribution for the parameter 𝜎 𝑎𝑛𝑑 𝜉 is defined by the level two of our hierarchy  

 
    𝑝൫𝜎, 𝜉ห𝑎, 𝑏, µక , 𝜏క൯ = 𝑝(𝜎|𝑎, 𝑏) ∗ 𝑝൫𝜉หµక , 𝜏క൯ 
 

𝑊ℎ𝑒𝑟𝑒, 𝑝(𝜎|𝑎, 𝑏) =
𝑏௔

𝛤𝑎
𝜎௔ିଵ𝑒ି௕ఙ , ∀𝜎 > 0  (Gamma distribution) 

𝑝൫𝜉หµక , 𝜏క൯ = ට
𝜏క

2𝜋
൬𝑒ି

ఛ഍

ଶ
൫కିµ഍൯

మ

൰ , ∀𝜉𝜖ℝ  (Normal distribution) 

 

The prior distribution for the hyper parameters 𝑎, 𝑏, µక
(௧)

, 𝜏ଶ
క
(௧)

, µఙ
(௧)

 and𝜏ଶ
ఙ
(௧)

is defined by level three of our hierarchy  

 
𝑝൫𝑎, 𝑏, µక , 𝜏కห𝛼௔, 𝛽௔ , 𝛼௕ , 𝛽௕ , 𝑚௢, 𝑆௢, 𝛼ఛ , 𝛽ఛ൯ = 𝑝(𝑎|𝛼௔, 𝛽௔) ∗ 𝑝(𝑏|𝛼௕ , 𝛽௕) ∗ 𝑝൫µకห𝑚௢൯ ∗ 𝑝൫𝜏కห𝛼ఛ, 𝛽ఛ൯ 
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𝑤ℎ𝑒𝑟𝑒, 𝑝(𝑎|𝛼௔, 𝛽௔) =
ఉഀೌ

௰ఈೌ
𝑎ఈೌିଵ𝑒ିఉೌ௔ ∀𝑎 > 0  𝑎𝑛𝑑  𝑝(𝑏|𝛼௕ , 𝛽௕) =

ఉഀ್

௰ఈ್
𝑏ఈ್ିଵ𝑒ିఉ್௕ ∀𝑏 > 0 

𝑝൫µకห𝑚௢൯ = ඨ
𝑆௢

2𝜋
൬𝑒ି

ௌ೚
ଶ

ቀµ഍ష೘೚
ቁ

మ

൰ ∀µక𝜖ℝ  𝑎𝑛𝑑  𝑝൫𝜏కห𝛼ఛ , 𝛽ఛ൯ =
𝛽ఛ

ఈഓ

𝛤𝛼ఛ

𝜏క
ఈഓିଵ

𝑒ିఉഓఛ  ∀𝜏క > 0 

              
 The posterior distribution is proportional to the joint probability distribution  

 
𝑝൫𝜎, 𝜉, 𝑎, 𝑏, µక , 𝜏కห𝑥൯ ∝ 𝑝൫𝑥, 𝜎, 𝜉, 𝑎, 𝑏, µక , 𝜏క൯ 
 
𝑝൫𝜎, 𝜉, 𝑎, 𝑏, µక , 𝜏కห𝑥൯ ∝

ቊቈ𝜎ି௡ ∏ ቀ1 +
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ఙ
ቁ

ି
భ

഍షభ௡
௜ୀଵ ቉ ∗ ቂ

௕ೌ
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ఛ഍

ଶగ
൬𝑒ି

ഓ഍

మ
൫కିµ഍൯

మ

൰቉ ∗ ቂ
ఉഀೌ

௰ఈೌ
𝑎ఈೌିଵ𝑒ିఉೌ௔ቃ ∗ ቂ

ఉഀ್

௰ఈ್
𝑏ఈ್ିଵ𝑒ିఉ್௕ቃ ∗

ቈට
ௌ೚

ଶగ
൬𝑒ି

ೄ೚
మ

ቀµ഍ష೘೚
ቁ

మ

൰቉ ∗ ൤
ఉഓ

ഀഓ

௰ఈഓ
𝜏క

ఈഓିଵ
𝑒ିఉഓఛ൨ቋ                (13)            

                                                               

The hyperparameters µ
𝜉
(𝑡), 𝜏2

𝜉

(𝑡)
, µ

𝜎

(𝑡)and𝜏2
𝜎

(𝑡)
 have conjugate priors, due to normality assumption 

𝑃ቀµక
(௧)

ቚ𝑋௜ቁ ∝ ∏ 𝑝 ቀ𝜉௝ቚµక , 𝜏ଶ
క ቁ

௝
௜ୀଵ , the hyperparameters µ

𝜉
(𝑡)andµ

𝜎

(𝑡) follow normal and the hyperparameters 𝜏2
𝜉

(𝑡)
and𝜏2

𝜎

(𝑡)
 follow 

inverse- gamma distribution. That is 
 

µ
𝜉

∼ 𝑁 ൭
𝜏𝜉

−2 ∑ 𝜉
𝑗

𝑗

𝑖=1

𝑗𝜏𝜉
−2

, ൫𝑗𝜏𝜉
−2൯

−1
൱ 

𝜏2
𝜉

(𝑡)
~Inv − Gamma ቌ𝑎𝜉 +

𝑗

2
, 𝑏𝜉 +

1

2
෍ቀ𝜉

𝑗
− µ

𝜉
ቁ

2
𝑗

𝑖=1

ቍ 

 
Comparison of Estimation Methods 
 
We compare the performance of various parameter estimation techniques, Hierarchical Bayesian approaches-based on their bias, 
variance, robustness, and efficiency. 
 
Asymptotic Relative efficiency (ARE) 
 

Let us assume the both parameters are consistent for parameter 𝜃 and asymptotically normal for 𝜃ො𝐴 and𝜃ො𝐵,   √𝑛(𝜃ො𝐴 − 𝜃)
𝑑

→ 𝑁(0, 𝑉𝐴), where𝑉𝐴 = 𝐴𝑣𝑎𝑟(𝜃ො𝐴) 

√𝑛(𝜃ො𝐵 − 𝜃) 𝑑
→

𝑁(0, 𝑉𝐵), where𝑉𝐵 = 𝐴𝑣𝑎𝑟(𝜃ො𝐵) 

𝑉𝐴 𝑎𝑛𝑑 𝑉𝐵 are asymptotic variance being the variance of the limiting distribution. The asymptotic efficiency of 𝜃ො𝐴 relative to 𝜃ො𝐵 is 
defined by the ratio of their asymptotic variances 
 

𝐴𝑅𝐸൫𝜃෠஺, 𝜃෠஻൯ =
𝐴𝑣𝑎𝑟൫𝜉መெ௅ா൯

𝐴𝑣𝑎𝑟(𝜉መெ௢ெ)
 

                            = ൮
൬

𝜎ଶ

𝑛
൰

𝜎ଶ

𝑛(1 − 2𝜉)

൲ 

= (1 − 2𝜉) < 1                                                   (14) 
 

The asymptotic efficiency of 𝜃ො𝐴 relative to 𝜃ො𝐵 is conclude that by the ratio of their asymptotic variances. If 𝐴𝑅𝐸൫𝜃෠஺, 𝜃෠஻൯ < 1 then 

𝑉𝐵 < 𝑉𝐴 ⟶ 𝜃ො𝐵  is more efficient. And if 𝐴𝑅𝐸൫𝜃෠஺, 𝜃෠஻൯ > 1 then 𝑉𝐵 > 𝑉𝐴 ⟶ 𝜃ො𝐴  is more efficient. This ratio emerges naturally 
from the asymptotic distribution of the estimators. 
 
 

Bayesian Inference under Hierarchical Framework 
 

Algorithm-I: MCMC Method; Gibbs-MH Based Full Posterior Sampling for Hierarchical GPD Model  
 

The Gibbs Sampling with Metropolis-Hastings (MH) algorithm for the Hierarchical Bayesian GPD Model is 
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(i) Initialize 
 
 

𝑇: Total number of MCMC iterations 
𝐽: Number of groups 
𝑁𝑗 : Number of exceedances in group 𝑗 

𝑥𝑖𝑗: Exceedances such that 𝑥𝑖𝑗 > 𝑢𝑗 

𝜃𝑗 = ቀ𝜉
𝑗
, 𝑙𝑜𝑔𝜎𝑗ቁ 

Group-Specific parameters ቄ𝜉
𝑗
(0), 𝜎𝑗

(0)
ቅ

𝑗=1

𝐽

 

 

Hyperparameters: 𝜇
𝜉

(0)
, 𝜏𝜉

2(0)
, 𝜇

𝜎
(0), 𝜏𝜎

2(0)
 

 
(ii)For each iteration (𝒕 = 𝟏, 𝟐, 𝟑, … 𝑻) 
 
The iteration t is: Sampling Hyperparameters and Group-Specific Parameters. Samples of Hyperparameters: Let 𝐽 be the number 
of groups. Gibbs step Sample Hyperparameters are 
 

 

ቀ 𝜇
𝜉 ∣

∣ ቄ𝜉
𝑗
ቅ, 𝜏𝜉

2 ቁ , ቀ𝜏𝜉
2 ∣ ቄ𝜉

𝑗
ቅ, 𝜇

𝜉
ቁ , ൫𝜇

𝜎
∣ ൛𝑙𝑜𝑔𝜎𝑗ൟ, 𝜏𝜎

2൯, 𝑎𝑛𝑑 ൫𝜏𝜎
2 ∣ ൛𝑙𝑜𝑔𝜎𝑗ൟ, 𝜇

𝜎
൯ 

𝜇
𝜉

∼ 𝑁 ൮

1

𝜏𝜉
2 ∑ 𝜉

𝑗

𝐽
𝑗=1

𝐽

𝜏𝜉
2 +

1

100

, ቆ
𝐽

𝜏𝜉
2

+
1

100
ቇ

−1

൲ 

𝜏𝜉
2 ∼ Inv − Gamma ቌ𝑎 +

𝐽

2
, 𝑏 +

1

2
= 1 ෍

𝐽

𝑗=1

ቀ𝜉
𝑗

− 𝜇
𝜉
ቁ

2

ቍ 

𝜇
𝜎

∼ 𝑁 ቌ

1

𝜏𝜎
2 ∑ 𝑙𝑜𝑔𝜎𝑗

𝐽
𝑗=1

𝐽

𝜏𝜎
2 +

1

100

, ൬
𝐽

𝜏𝜎
2

+
1

100
൰

−1

ቍ 

𝜏𝜎
2 ∼ Inv − Gamma ൮𝑎 +

𝐽

2
, 𝑏 +

1

2
ቌ෍൫𝑙𝑜𝑔𝜎𝑗 − µ

𝑗
൯

2

𝐽

𝑗=1

ቍ൲ 

Metropolis-Hastings Step: For Each Group (𝑗 = 1,2,3, … , 𝐽) or Samples of Group-Specific Parameters 𝜉
𝑗
 𝑎𝑛𝑑 𝜎𝑗: 𝐿𝑒𝑡 𝜃௝ =

൫𝜉௝
(௧ିଵ)

, 𝑙𝑜𝑔𝜎௝
(௧ିଵ)

൯. The purposed new values that are 𝜃𝑗 ∼ 𝑁ቀ𝜃𝑗

(𝑡−1)
, 𝛴ቁ then compute the log posterior and acceptance 

probability for HB-GPD density. 
 
 

𝑙𝑜𝑔𝑝(𝜃௝ ∣ 𝑥௜) = ෍ 𝑙𝑜𝑔

௡௝

௜ୀଵ

𝑓൫ 𝑦௜௝ ∣∣ 𝜉௝ , 𝜎௝ ൯ + 𝑙𝑜𝑔𝑁൫ 𝜉௝ ∣∣ 𝜇క , 𝜏క
ଶ ൯ + 𝑙𝑜𝑔𝑁൫ 𝑙𝑜𝑔𝜎௝ ∣∣ 𝜇ఙ , 𝜏ఙ

ଶ ൯ 

Where 𝑓(𝑥௜௝ ∣ 𝜉௝ , 𝜎௝) is the HB-GPD density: 

𝑓(𝑥|𝜉, 𝜎) =

⎩
⎪⎪
⎨

⎪⎪
⎧1

𝜎
൬1 +

𝜉𝑥

𝜎
൰

ି
ଵ

కିଵ
        𝑖𝑓 𝜉 ≠ 0

 
 
 

1

𝜎
𝑒ିቀ

௫
ఙ

ቁ                        𝑖𝑓 𝜉 = 0

      ∀ 𝑥 > 0, 𝜎 > 0  

The acceptance probability is 𝛼 = 𝑚𝑖𝑛 ቆ1,
 ௣ቀ ఏೕ

∗
∣
∣௫೔ ቁ

௣ቀఏ
ೕ
(೟షభ)

|௫೔ቁ
ቇ, where 𝜃𝑗

(𝑡)
 = ቊ

𝜃𝑗
∗,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼

𝜃𝑗

(𝑡−1)
,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(iii) Mixture Proposal (for robustness when ቀ𝝃
𝒋

≈ 𝟎ቁ:  

𝜃𝑗
∗ = ൜

𝜃𝑗

(𝑡−1)
+ 𝜖,                      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.5

𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑝𝑟𝑖𝑜𝑟,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.5
  

 

(iv) Repeat for all T Iterations 
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Algorithm-II: NUTS-Based Full Posterior Sampling for Hierarchical GPD Model 
 
A structured algorithm loop for NUTS (No-U-Turn Sampler) applied in our hierarchical Bayesian GPD model as a replacement 
for Metropolis-Hastings (MH) steps in the Gibbs sampling framework. The inputs are 
 
 

Grouped data: ൛𝑥𝑖𝑗ൟ𝑖=𝑛

𝑛𝑗
,  𝑗 = 1, … , 𝐽 

Model structure: i. Likelihood: 𝑥𝑖𝑗 − 𝑢𝑗 ∼ 𝐺𝑃𝐷ቀ𝜉
𝑗
, 𝜎𝑗ቁ 

                            ii. Priors: 𝜉
𝑗

∼ 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑁𝑜𝑟𝑚𝑎𝑙൫𝜇
𝜉
, 𝜏𝜉

2൯ and 𝑙𝑜𝑔𝜎௝ ∼ 𝑁൫𝜇௟௢௚ఙ , 𝜏௟௢௚ఙ
ଶ ൯ 

Hyperpriors: 𝜇
𝜉
, 𝜇

𝑙𝑜𝑔𝜎
∼ 𝑁(0,102) and 𝜏𝜉

2, 𝜏𝑙𝑜𝑔𝜎
2 ∼ InverseGamma(2,2) 

 
(i) Initialization 
 

Set number of samples 𝑇, burn-in 𝑇𝑡𝑢𝑛𝑒and number of chains 𝐶. Then choose initial values 
 

𝜃(0) = ൫𝜉, 𝜎, 𝜇
𝜉
, 𝜇

𝑙𝑜𝑔𝜎
, 𝜏𝜉, 𝜏𝑙𝑜𝑔𝜎൯. 

 
(ii) NUTS Sampling Loop: 
 
For 𝑡 = 1 𝑡𝑜 𝑇 
 
Evaluate Joint Log Posterior: 
 

 
 
Compute Gradient of Log Posterior 
 

𝛻𝜃𝑙𝑜𝑔𝑝( 𝜃 ∣ 𝑥 ) = −𝛻𝜃𝑈(𝜃) 
 
 The leapfrog integrator (Discretized Hamiltonian Dynamics) is defined as the total energy  
 
𝐻(𝜃, 𝑟) = 𝑈(𝜃) + 𝐾(𝑟) 

Where: 𝜽: Vector of model parameters are µ𝝃
(𝒕)

, 𝝉𝟐
𝝃
(𝒕)

, µ𝝈
(𝒕)

 𝒂𝒏𝒅 𝝉𝟐
𝝈
(𝒕)

 

𝑟: auxiliary momentum variable 
𝑈(𝜃): potential energy,  
𝑈(𝜃) = −𝑙𝑜𝑔𝑝(𝜃 ∣ 𝑥) = −(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  𝑝𝑟𝑖𝑜𝑟𝑠 +  ℎ𝑦𝑝𝑒𝑟𝑝𝑟𝑖𝑜𝑟𝑠) 

𝐾(𝑟): kinetic energy, 𝐾(𝑟) =
ଵ

ଶ
𝑟்𝑀ିଵ𝑟 

The updated gradient steps are  𝑟
𝑡+

1

2

 = 𝑟𝑡 −
𝜖

2
𝛻𝜃𝑈(𝜃𝑡) 

𝜃𝑡+1 = 𝜃𝑡 + 𝜖𝑀−1𝑟
𝑡+

1

2

   

𝑟𝑡+1 = 𝑟
𝑡+

1

2

−
𝜖

2
𝛻𝜃𝑈(𝜃𝑡+1) 

 

These steps are repeated to simulate the path of (𝜃, 𝑟) in phase space. The stopping rule of NO-U-TURN method is (𝜃+ −

𝜃−)⊤𝑟− < 0 𝑜𝑟 (𝜃+ − 𝜃−)⊤𝑟+ < 0. 
 
Simulate Hamiltonian Trajectory 
 

 

 Start with random momentum 𝑟 ∼ 𝑁(0, 𝐼) 

 Simulate leapfrog steps for (𝜃, 𝑟) 

 Stop when trajectory turns back (No-U-Turn condition) 
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Propose new state 𝜽(𝒕) 
 
 

 Select a point from the trajectory with Metropolis-adjusted weights 

 Accept/reject automatically handled via NUTS mechanics 
 

Adapt step size and Mass Matrix (During burn - in)  
 
 During 𝑡 ≤ 𝑇௧௨௡௘ adaptively tune: 
 
 Step size ϵ 
 Mass matrix (covariance of parameter 
(iii) Output 

Posterior samples ൛𝜃(𝑡)ൟ
𝑡=1

𝑇
for: 𝜉

𝑗
, 𝜎𝑗, 𝜇

𝜉
, 𝜇

𝑙𝑜𝑔𝜎
, 𝜏𝜉and𝜏𝑙𝑜𝑔𝜎 these estimate the trace diagnostics, give posterior summaries and 

plots. 
 

(iv) Repeat for all T Iterations 
 

RESULTS AND DISCUSSION 
 
A Simulation Study 
 
Our modeling framework integrates a three-level hierarchical Bayesian structure utilizing the Generalized Pareto 
Distribution (GPD) to model threshold exceedances. This structure allows for: 
 
 Level 1: Modeling individual exceedances via GPD. 
 Level 2: Group-specific parameters governed by hyperpriors to allow within-group variation. 
 Level 3: Population-level hyperparameters capturing across-group heterogeneity. 

 
Given the analytical intractability of the full posterior, we rely on Markov Chain Monte Carlo (MCMC)techniques to draw 
samples from the joint posterior distribution. These simulations serve as the foundation for parameter estimation, credible 
intervals, and uncertainty quantification. 
 
In hierarchical Bayesian frameworks, efficient posterior sampling is critical due to the complex, high-dimensional parameter 
spaces involved. The Gibbs sampler with Metropolis-Hastings (Gibbs-MH) provides a hybrid approach, where conditionally 
conjugate parameters are updated via Gibbs steps, while non-conjugate parameters are sampled using the MH algorithm. This 
method ensures flexibility and robustness, especially when dealing with partially tractable posterior structures. However, it may 
suffer from slow convergence and poor mixing in correlated spaces. To address these limitations, the No-U-Turn Sampler 
(NUTS), an adaptive variant of Hamiltonian Monte Carlo (HMC), offer a gradient-based solution that avoids random walk 
behavior by simulating Hamiltonian dynamics. NUTS automatically tunes trajectory length and step size, improving exploration 
efficiency and eliminating the need for manual tuning. Its capacity to handle high curvature and strong dependencies makes it 
particularly suitable for hierarchical models with intricate posterior geometries. 

 
i. Parameter Estimation Using MLE and MOM Across Varying Sample Sizes 

 
The simulation results provided for the parameter estimates of the Generalized Pareto Distribution (GPD) using two 
estimation methods MLE, MOM, PWM and EPM across four sample sizes. All four estimation methods MLE, MOM, PWM and 
EPM demonstrate consistent performance in estimating the shape parameter 𝜉, converging toward the true value (𝜉 ≈ 0.3) as 
sample size increases.  

 
While initial estimates at n = 2500 slightly underestimate 𝜉 due to limited extreme value representation, accuracy improves 
notably at n = 5000, where all methods yield tightly clustered values near 0.3. A minor dip observed at n = 7500 appears to stem 
from sample variability rather than methodological shortcomings.  
 
By n = 10500, all methods align closely with the true 𝜉, confirming their asymptotic consistency. Among them, MLE and PWM 
exhibit slightly faster and smoother convergence.  The table 1 gives that all four methods converge toward the true values of 𝜉 and 
σ as sample size increases. The model provides a good fit for the HB-GPD parameters (𝜉 and σ), especially at moderate to large 
sample sizes (𝑛 ≥  5000). All four estimation methods (MLE, MOM, PWM, EPM) show asymptotic consistency, meaning their 
estimates converge closely to the true values (𝜉 ≈  0.3, 𝜎 ≈  1.0). The slight deviations at smaller sample sizes are expected due 
to sample variability, not model inadequacy. Overall, the model demonstrates robustness and reliability across methods and 
sample sizes. 
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Table 1. Estimation of  (𝝃) and  (𝝈) parameters of the HB-GPD using MLE, MOM, PWM, and EPM across varying sample sizes 
 

Parameter 𝜉 𝜎 
n MLE MOM PWM EPM MLE MOM PWM EPM 

2500 0.2685 0.2644 0.2651 0.2665 1.0405 1.0468 1.0401 1.0499 
5000 0.3019 0.3010 0.3035 0.3034 0.9896 0.9862 0.9901 0.9831 
7500 0.2890 0.2899 0.2897 0.2894 1.0033 1.0010 1.0040 1.0068 

10500 0.3032 0.3010 0.3000 0.2999 0.9999 1.0009 1.0026 0.9996 

 
Table 2. Impact of sample size on hierarchical GPD hyperparameter estimation 

 

Sample size 
Hyper 

parameter 
Mean SD 

HDI MCSE ESS 
𝑅෠ 3% 97% Mean SD Bulk Tail 

2500 

µక -7.412 4.756 -16.469 -0.483 0.097 0.098 2825 2243 1.0 
µ௟௢௚ఙ 0.121 0.380 -0.626 0.819 0.007 0.008 3422 2145 1.0 

𝜏క 
𝜏௟௢௚ఙ 

1.454 
0.674 

0.995 
0.461 

0.280 
0.163 

3.144 
1.378 

0.019 
0.009 

0.033 
0.035 

3055 
3708 

3508 
2690 

1.0 
1.0 

5000 

µక -7.240 4.691 -15.676 -0.269 0.078 0.085 4566 3915 1.0 
µ௟௢௚ఙ 0.149 0.368 -0.530 0.858 0.004 0.005 8374 6119 1.0 

𝜏క 1.561 1.097 0.295 3.453 0.016 0.026 5190 5844 1.0 
𝜏௟௢௚ఙ 0.696 0.483 0.186 1.462 0.006 0.019 9963 6371 1.0 

7500 

µక -6.857 4.569 -15.438 -0.302 0.058 0.060 7553 7204 1.0 
µ௟௢௚ఙ 0.104 0.369 -0.601 0.797 0.004 0.006 10195 7452 1.0 

𝜏క 1.611 1.130 0.281 3.606 0.014 0.022 7830 9331 1.0 
𝜏௟௢௚ఙ 0.678 0.458 0.179 1.408 0.006 0.015 10723 8010 1.0 

10500 

µక -6.857 4.533 -15.388 -0.357 0.045 0.047 11926 11571 1.0 
µ௟௢௚ఙ 0.102 0.378 -0.596 0.832 0.003 0.004 16726 12363 1.0 

𝜏క 1.609 1.170 0.272 3.577 0.012 0.022 11413 13913 1.0 
𝜏௟௢௚ఙ 0.697 0.499 0.176 1.467 0.005 0.016 17660 11142 1.0 

 
 
Performance of MLE, MOM, PWM and EPM: In this hierarchical Bayesian modeling of GPD exceedances, MLE is optimal 
for large, clean datasets but suffers near boundary cases. PWM strikes a practical balance between robustness and interpretability, 
making it a strong candidate for prior generation. MoM and EPM serve as simple alternatives or backups when other methods fail. 
The hierarchical framework enhances these methods by regularizing unstable estimates and borrowing strength across groups, 
improving inference on extreme tail behavior. 
 
ii. Bayesian Parameter Estimation Using NUTS with Hamiltonian Monte Carlo 
 
The No-U-Turn Sampler (NUTS), an adaptive extension of Hamiltonian Monte Carlo (HMC), is employed to estimate the model 
parameters efficiently by leveraging gradient information to explore the posterior distribution. This method avoids random walk 
behavior and automatically tunes path lengths, resulting in faster convergence and more effective sampling of complex posterior 
landscapes. 
 

 

Figure 1. Trace and Density Diagnostics for Hierarchical GPD hyperparameters 
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As the sample size increases from 2,500 to 10,500, the posterior mean of the location hyperparameter µξ becomes slightly less 

negative, suggesting stabilization in parameter estimation with more data. The standard deviations (SD) and Monte Carlo standard 
errors (MCSE) for all parameters decrease, indicating improved precision. The effective sample sizes (ESS) for both bulk and tail 
distributions increase notably, confirming better sampling efficiency and convergence. All R̂ values are 1.0 across the board, 
reflecting excellent convergence of the MCMC chains. Overall, the hierarchical Bayesian GPD model demonstrates improved 
parameter stability, efficiency, and robustness as the sample size grows. These plots demonstrate excellent MCMC convergence, 
posterior stabilization, and parameter learning as data increases. The hierarchical Bayesian GPD model improves significantly 
with larger datasets, showing more confident and reliable inference of both location and scale components. 
 

iii. Bayesian Hyper Parameter Estimation Using Gibbs-Sampling with Metropolis-Hestings Algorithm 
 

This analysis uses a Bayesian hierarchical model to estimate the parameters of the Generalized Pareto Distribution (GPD) 
specifically the shape parameter 𝜉 and the scale parameter 𝜎 across multiple groups. The model assumes group-level parameters 𝜉௝ 
and 𝜎௝, which are drawn from hyperpriors governed by hyperparameters 𝜇క , 𝜏క

ଶfor 𝜉௝, 𝜎௝ , 𝜇௟௢௚ఙand𝜏௟௢௚ఙ
ଶ  . Estimation is performed 

using Markov Chain Monte Carlo (MCMC) sampling with a Gibbs sampler, where Metropolis-Hastings (MH) steps are 
employed for parameters without closed-form conditionals. The MCMC was run for a sufficient number of iterations, with the first 
5000 samples treated as burn-in, and 15000 effective samples retained for posterior analysis.  
 

Table 3: Posterior mean estimates of group-level HB-GPD parameters and hyperparameters 
 

Burn-in: 5000 Iterations 
Effective Samples after burn-in 15000 

Posterior Means (after burn-in) 
True 𝜉௝ 𝜉௝ (Mean) True 𝜎௝  𝜎௝  (Mean) 

0.1 0.1313 0.1 1.0310 
0.2 0.1792 1.2 1.3661 
0.3 0.3397 2.0 2.1347 

Hyperparameter Posterior Means 
µక  𝜏క

ଶ µ௟௢௚ఙ  𝜏௟௢௚ఙ
ଶ  

0.211 1.007 0.365 1.441 

 
This technique encapsulates the inferential outcomes derived from a hierarchical Bayesian framework applied to the Generalized 
Pareto Distribution (GPD), utilizing a Markov Chain Monte Carlo (MCMC) scheme with a 5,000-iteration burn-in and 15,000 
effective posterior samples. The posterior means of the group-specific shape parameters 𝜉௝exhibit commendable fidelity to their 
respective ground truths, with estimates of 0.1313, 0.1792, and 0.3397 for true values 0.1, 0.2, and 0.3, respectively. An indication 
of robust posterior contraction and precise learning under the latent structure. Likewise, the inferred scale parameters 𝜎௝ 
demonstrate strong concordance with their true counterparts, albeit with a marginal upward bias typical in finite-sample regimes, 
especially within heavy-tailed contexts. At the hyperparameter level, the posterior mean of the shape location hyperparameter 
𝜇క = 0.211 closely mirrors the empirical average of the true 𝜉௝, while the associated variance 𝜏క

ଶ = 1.007 captures moderate 
dispersion across groups, affirming the model’s capacity to encode inter-group heterogeneity. The log-scale hyperparameters are 
𝜇௟௢௚ఙ = 0.365 and 𝜏௟௢௚ఙ

ଶ = 1.441, reveal a consistent and well-calibrated estimation of the central tendency and variability in the 
log-transformed scale parameter. Collectively, the results substantiate the efficacy of the hierarchical Bayesian paradigm in 
recovering latent parameter structures, ensuring both local fidelity and global regularization through carefully specified prior 
hierarchies.  

 

Figure 2. MCMC trace and posterior plots for GPD parameters and hyperparameters across three groups 
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The presented MCMC trace plots and posterior histograms collectively demonstrate effective convergence, mixing, and parameter 
recovery for the hierarchical Bayesian model applied to GPD parameters. The trace plots for both group-level (𝜉, 𝑙𝑜𝑔𝜎 ) and 
hyperparameters (𝜇క , 𝜇௟௢௚ఙ , 𝜏క

ଶ 𝑎𝑛𝑑 𝜏௟௢௚ఙ
ଶ ) exhibit stationarity and rapid exploration of the parameter space post burn-in, indicating 

well-behaved chains. Posterior histograms for ξ and 𝜎 closely align with the true parameter values across all groups, showcasing 

high estimation accuracy and model calibration. While some variability is observed particularly in𝜏𝑙𝑜𝑔𝜎
2  this reflects the model’s 

capacity to capture group-specific heterogeneity. Overall, the hierarchical framework successfully balances parameter pooling and 
flexibility, yielding robust and reliable posterior inference. 
 
Posterior Credible Intervals (95%) 
 
The reported 95% credible intervals for the hyper-parameters encapsulate the central posterior mass, reflecting the uncertainty 

surrounding the hierarchical priors. Specifically, the interval for 𝜇
𝜉
(−0.8903,  1.2060) suggests that the global mean of the shape 

parameter 𝜉 is most plausibly centered near zero, yet exhibits moderate dispersion, indicating non-negligible heterogeneity across 

groups. Similarly, the credible interval for 𝜇
𝑙𝑜𝑔𝜎

 (−0.9187,  1.4850) reflects a wider posterior belief over the global location of 

the log-scale parameter, hinting at broader group-level variability in scale. The intervals for 𝜏𝜉
2 (0.2843,  2.9170) and 

𝜏𝑙𝑜𝑔𝜎
2 [0.3079,  2.9786]quantify the posterior belief over the inter-group dispersion in 𝜉 and 𝑙𝑜𝑔𝜎, respectively. The non-trivial 

lower bounds and substantial upper limits of these intervals signify pronounced variability across clusters, thereby justifying the 
hierarchical structure and endorsing the presence of meaningful group-level stochasticity in the latent parameter space. 
 
Effective Sample Size (ESS) and R-hat Convergence Diagnostic 
 
The convergence diagnostics for the HB-GPD model demonstrate strong posterior stability and sampling efficiency. Effective 
Sample Sizes (ESS) for both bulk and tail exceed 10,000, indicating minimal autocorrelation and high-quality inference across 
chains. Monte Carlo Standard Errors (MCSEs) remain low (≤ 0.035), ensuring precise posterior estimates, while Gelman–Rubin R̂ 
values uniformly equal to 1.0 confirm full convergence. Together, these metrics affirm that the hierarchical Bayesian procedure 
yields reliable, well-mixed, and statistically valid posterior distributions suitable for robust inference in extreme value modeling. 
 
Enhancing Model Robustness through PPCs, Regularization, and Strength Borrowing  
 
The HB-GPD model effectively captures tail risk by integrating posterior predictive checks to validate fit in extreme value 
regions. Regularization through hierarchical priors enables borrowing strength across subgroups, yielding stable and efficient 
parameter estimates even under data sparsity. This framework enhances model robustness, ensuring resilience against outliers and 
structural misspecification. Together, these elements make HB-GPD a powerful tool for reliable inference in actuarial, financial, 
and environmental risk domains. The below plots collectively demonstrate the effectiveness, reliability, and robustness of the 
Hierarchical Bayesian GPD (HB-GPD) model.  

 

Figure 3. Graphical illustration of the robustness of the HB-GPD model 
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Figure 4. Regularization Effects in Hierarchical Bayesian GPD Modeling

The figure 3 presents posterior predictive checks across multiple groups and sample size, where the fitted distributions alig
closely with observed data, indicating strong model fit and generalizability across heterogeneous data regimes. Figure 4 highlights 
the impact of regularization in hierarchical modeling, where shrinkage effects stabilize parameter estimates across varying l
of group-specific noise, underscoring the model’s capacity to borrow strength and mitigate overfitting. Together, these diagnostics 
validate the HB-GPD model's capacity for reliable inference, particularly under data sparsity and tail
 
Model Comparison by using DIC, WAIC, BIC, AIC and RMSE
 
The model comparison using DIC, WAIC, AIC, BIC, and RMSE demonstrates that the HB
with increasing sample size. Lower RMSE and better
model fit, confirming the model’s robustness in capturing extreme value behavior. 

Table 4. Model Comparison metrics of DIC, WAIC, BIC, AIC and RMSE

 
Sample Size DIC 

2500 5980.23 
5000 11960.3 
7500 17945.2 

10500 25101.4 

 
As sample size increases, all model selection criteria (DIC, WAIC, BIC, AIC) scale proportionally while R
from 0.9621 to 0.9517, indicating improved predictive accuracy and model stability. This trend underscores the HB
capacity to efficiently harness larger data volumes, enhancing both inferential precision and robustness in
 

APPLICATIONS 
 
Tail Risk Modeling in Insurance and Reinsurance Using Real
 
In insurance and reinsurance, especially in financial and catastrophe risk management, it's critical to model extreme losses 
events like market crashes or sudden claim spikes. Stock market data (daily returns or log
financial risk exposure, where negative extremes represent claim
exceedances over a high threshold, and the HB
time windows hierarchically. We have taken Nifty 50 and S & P 500 stock daily returns and I estimated log returns and filter 
exceedances over a threshold of 95th percentile. We use grouping strategies, the groups are by sector (Finance, Tech and Pharma), 
quarterly time periods and company clusters. We estimated Value
using 
Reinsured loss = max(0, 𝑋 − 𝑅) , where R is
 
Used HB-GPD to simulate thousands of such scenarios, and compute, premium loadings, Stop
requirements at 99.5% quantile.   
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Regularization Effects in Hierarchical Bayesian GPD Modeling
 

The figure 3 presents posterior predictive checks across multiple groups and sample size, where the fitted distributions alig
dicating strong model fit and generalizability across heterogeneous data regimes. Figure 4 highlights 

the impact of regularization in hierarchical modeling, where shrinkage effects stabilize parameter estimates across varying l
, underscoring the model’s capacity to borrow strength and mitigate overfitting. Together, these diagnostics 

GPD model's capacity for reliable inference, particularly under data sparsity and tail

using DIC, WAIC, BIC, AIC and RMSE 

The model comparison using DIC, WAIC, AIC, BIC, and RMSE demonstrates that the HB-GPD model improves consistently 
with increasing sample size. Lower RMSE and better-aligned information criteria indicate enhanced predicti
model fit, confirming the model’s robustness in capturing extreme value behavior.  

. Model Comparison metrics of DIC, WAIC, BIC, AIC and RMSE

WAIC BIC AIC 
5985.74 5988.98 5977.56 
11965.1 11973.3 11956.7 
17950.6 17963.6 17941.8 
25108.3 25124.4 25097.5 

As sample size increases, all model selection criteria (DIC, WAIC, BIC, AIC) scale proportionally while R
from 0.9621 to 0.9517, indicating improved predictive accuracy and model stability. This trend underscores the HB
capacity to efficiently harness larger data volumes, enhancing both inferential precision and robustness in

Tail Risk Modeling in Insurance and Reinsurance Using Real-World Financial Data 

In insurance and reinsurance, especially in financial and catastrophe risk management, it's critical to model extreme losses 
ke market crashes or sudden claim spikes. Stock market data (daily returns or log-returns) can serve as a proxy for 

financial risk exposure, where negative extremes represent claim-generating events. The GPD is ideal for modeling the 
h threshold, and the HB-GPD enhances this by modeling heterogeneity across different stocks, sectors, or 

time windows hierarchically. We have taken Nifty 50 and S & P 500 stock daily returns and I estimated log returns and filter 
percentile. We use grouping strategies, the groups are by sector (Finance, Tech and Pharma), 

quarterly time periods and company clusters. We estimated Value-at-Risk (VaR) and Expected Shortfall (ES) for each group by 

is retention limit  

GPD to simulate thousands of such scenarios, and compute, premium loadings, Stop
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Regularization Effects in Hierarchical Bayesian GPD Modeling 

The figure 3 presents posterior predictive checks across multiple groups and sample size, where the fitted distributions align 
dicating strong model fit and generalizability across heterogeneous data regimes. Figure 4 highlights 

the impact of regularization in hierarchical modeling, where shrinkage effects stabilize parameter estimates across varying levels 
, underscoring the model’s capacity to borrow strength and mitigate overfitting. Together, these diagnostics 

GPD model's capacity for reliable inference, particularly under data sparsity and tail-heavy risk conditions. 

GPD model improves consistently 
aligned information criteria indicate enhanced predictive accuracy and 

. Model Comparison metrics of DIC, WAIC, BIC, AIC and RMSE 

RMSE 
0.9621 
0.9544 
0.9532 
0.9517 

As sample size increases, all model selection criteria (DIC, WAIC, BIC, AIC) scale proportionally while RMSE steadily decreases 
from 0.9621 to 0.9517, indicating improved predictive accuracy and model stability. This trend underscores the HB-GPD model's 
capacity to efficiently harness larger data volumes, enhancing both inferential precision and robustness in tail-risk modeling. 

In insurance and reinsurance, especially in financial and catastrophe risk management, it's critical to model extreme losses tail 
returns) can serve as a proxy for 

generating events. The GPD is ideal for modeling the 
GPD enhances this by modeling heterogeneity across different stocks, sectors, or 

time windows hierarchically. We have taken Nifty 50 and S & P 500 stock daily returns and I estimated log returns and filter 
percentile. We use grouping strategies, the groups are by sector (Finance, Tech and Pharma), 

Risk (VaR) and Expected Shortfall (ES) for each group by 

GPD to simulate thousands of such scenarios, and compute, premium loadings, Stop-loss probabilities and Capital 

level hierarchical bayesian  



Table 5: Tail Risk Estimates Across Sectors Using HB-GPD: Posterior ξ, σ, VaR(99%), and ES(99%) 
 

Group Posterior Mean 𝜉 95% HDI 𝜉 Posterior 𝜎 VaR (99%) 
Expected 

Shortfall (99%) 
Finance 0.71 (0.55, 0.88) 1.42 3.57 4.89 
Tech 0.39 (0.22, 0.58) 0.97 2.14 2.90 
Pharma 0.65 (0.45, 0.80) 1.10 3.11 4.12 
Human Error 0.32 (0.15, 0.49) 0.78 1.90 2.63 

 

 
 

Figure 5. Posterior summaries with HDI and Effective Sample Size (ESS) 

 
 

Figure 6. Posterior Predictive Checks Across Groups 

 
 

 

Figure 7. Hierarchical Shrinkage Effect Across Groups 
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Figure 8. Tail Risk Measures Derived from the Posterior Distribution 

The hierarchical Bayesian GPD model reveals marked heterogeneity in tail risk behavior across industrial sectors. The Finance 
and Pharma sectors exhibit elevated posterior mean estimates of the tail index (𝜉 =  0.71 and 0.65, respectively), accompanied 
by broader 95% HDIs, indicating heavier-tailed loss distributions and substantial uncertainty in extreme outcomes. 
Correspondingly, these sectors also display higher scale parameters (σ) and extreme quantile measures such as the 99% Value-at-
Risk and Expected Shortfall signifying significant exposure to catastrophic losses. In contrast, the Tech and Human Error domains 
manifest lighter tails (𝜉 <  0.4) and lower risk magnitudes, suggesting more contained but still non-negligible extreme-event 
profiles under the fitted HB-GPD framework. Posterior parameter estimates for μ and σ are visualized with 94% Highest Density 
Intervals (HDIs), indicating credible bounds around the posterior mean. The effective sample sizes (ESS) suggest high-quality 
sampling and well-mixed chains, with convergence diagnostics supporting model stability. The Figure 6 demonstrates the HB-
GPD model demonstrates good fit and adaptability to group-specific tail behavior, capturing the heterogeneity in financial loss 
distributions. The Figure 7 shows the shrinkage effect from the hierarchical prior centers group-specific estimates around the 
global mean, reflecting effective regularization and borrowing of strength across structurally related groups. The Figure 8 
quantifies extreme financial losses, demonstrating the HB-GPD model’s utility for risk-sensitive decision-making in insurance and 
operational risk management. Finally, we captured the heterogeneity across portfolios, borrow strength in low data regimes, ensure 
robust tail modeling of critical for solvency pricing and posterior uncertainty quantification improves regulatory risk reporting. 
 

CONCLUSION 
 
This paper culminates in the development and rigorous validation of a hierarchical Bayesian framework for modeling extremes 
using the Generalized Pareto Distribution (GPD), offering a resilient statistical infrastructure for heavy-tailed phenomena. The 
multi-level Bayesian hierarchy meticulously disentangles within-group volatility and inter-group heterogeneity, yielding posterior 
inferences that are both granular and globally coherent. Comparative simulations across classical estimators MLE, MoM, PWM, 
and EPM underscore the pronounced stability and adaptability of the Bayesian paradigm, particularly under sparse data regimes 
and high tail-index uncertainty. By incorporating robust MCMC techniques specifically, Gibbs sampling with Metropolis-Hastings 
and the No-U-Turn Sampler the model adeptly navigates complex posterior topologies, ensuring convergence and inferential 
reliability. The proposed RETI and ARE indices substantiate a balanced estimator selection that respects both robustness and 
asymptotic precision. Application to real-world financial sectors such as Finance, Pharma, and Tech reveals the model’s potency 
in quantifying sectoral tail risk via VaR and Expected Shortfall metrics, effectively supporting actuarial, reinsurance, and 
regulatory domains. The HB-GPD’s ability to borrow statistical strength, perform posterior regularization, and generate 
uncertainty-aware decisions affirms its stature as an indispensable tool in modern extreme value analytics and risk-sensitive 
environments. 
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