

International Journal of Current Research Vol. 17, Issue, 10, pp.34905-34919, October, 2025 DOI: https://doi.org/10.24941/ijcr.49681.10.2025

REVIEW ARTICLE

A MODIFIED GENERALIZED PARETO DISTRIBUTION WITH A THREE-LEVEL HIERARCHICAL BAYESIAN ESTIMATION AND FINANCIAL APPLICATION

*Basavaraj Talawar and Talawar, A. S.

Department of Studies in Statistics, Karnatak University, Dharwad -580003, India

ARTICLE INFO

Article History: Received 17th July, 2025 Received in revised form 11th August, 2025 Accepted 05th September, 2025 Published online 29th October, 2025

Keywords:

Hierarchical Bayesian Modeling, Extreme Value Theory, No-U-Turn Sampler, Effective sample size, Markov Chain Monte Carlo (MCMC).

*Corresponding author: Basavaraj Talawar

ABSTRACT

A comprehensive framework for extreme value analysis grounded in hierarchical Bayesian modeling of the Generalized Pareto Distribution (HB-GPD). This study proposes a robust and computationally intensive framework for extreme value analysis via a three-tier HB-GPD. The model rigorously captures within-group volatility and cross-group heterogeneity through structured prior and hyperprior hierarchies. To address the limitations of classical estimators under sparse data and heavytailed regimes, we compare Maximum Likelihood Estimation (MLE), Method of Moments (MoM), Probability-Weighted Moments (PWM), and Empirical Percentile Method (EPM) against our Bayesian paradigm. Posterior inference is conducted using advanced Markov Chain Monte Carlo (MCMC) techniques, including Metropolis-Hastings within Gibbs sampling and the No-U-Turn Sampler (NUTS), ensuring efficient posterior exploration in high-dimensional spaces. Asymptotic Relative Efficiency (ARE) as performance diagnostics. Simulation studies and empirical financial data from Nifty 50 and S&P 500 sectors substantiate the model's superiority in estimating Value-at-Risk and Expected Shortfall, thereby affirming its relevance in actuarial science, operational risk, and financial solvency analytics.

Copyright©2025, Basavaraj Talawar and Talawar. 2025. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Basavaraj Talawar and Talawar, A. S. 2025. "A modified generalized pareto distribution with a three-level hierarchical Bayesian estimation and financial application.". International Journal of Current Research, 17, (09), xxxx-xxxxx.

INTRODUCTION

The statistical modeling of extreme events has seen significant evolution over the past decade, driven by the need to quantify and predict rare but impactful phenomena in domains such as environmental science, traffic safety, and finance. Extreme value theory (EVT) serves as a foundational framework for quantifying rare, high-impact events in domains such as finance, insurance, hydrology, and climate science. Among EVT models, the generalized Pareto distribution (GPD) has emerged as a pivotal tool under the Peaks-Over-Threshold (POT) paradigm for modeling tail exceedances (2)(4). The classical method such as maximum likelihood estimation (MLE), while asymptotically efficient, often exhibit instability in small samples or under model misspecification (9)(3). To mitigate these issues, alternative approaches including the method of moments (MoM) (14), probability-weighted moments (PWM) (7), and empirical percentile methods (12) have been proposed, albeit with limitations in robustness and adaptability. Recent advances in Bayesian inference offer a compelling solution through hierarchical modeling frameworks, which not only accommodate parameter uncertainty but also enable partial pooling across heterogeneous groups (6)(1).

Hierarchical Bayesian GPD models have been effectively utilized in hydrology (13), spatial extremes (16)(11), and air pollution exceedances (15), often outperforming their classical counterparts in both interpretability and stability. Furthermore, mixture models combining bulk and tail distributions have been explored for better posterior calibration in multivariate settings (10). Gradient-based sampling methods like the No-U-Turn Sampler (NUTS) and Hamiltonian Monte Carlo (8) have revolutionized computational efficiency in high-dimensional posteriors. Comparative studies highlight the superiority of Bayesian regularization in finite-sample regimes (5)(17)(19). Recent innovations include Bayesian regression trees for POT modeling (5), gradient-boosted GPD estimators (17), and non-stationary hybrid models incorporating covariate-driven thresholds (18). This paper builds on these developments by integrating multi-level priors, robust inference techniques, and simulation-based diagnostics into a comprehensive framework for hierarchical Bayesian GPD modeling, tailored for actuarial, operational, and financial tail-risk estimation.

METHODOLOGY

Model Framework

A three-level hierarchical Bayesian structure allows us to incorporate multiple layers of uncertainty and dependence, accounting for both within-group variability and across-group heterogeneity. The levels are:

Level 1: GPD likelihood for exceedances above a threshold. For group $j \in \{1, ..., J\}$, and observations x_{ij} such that $x_{ij} > u_j$, assume: $u_j = quantile\left(p\left(x_{ij}\right)\right)$.

$$(x_{ij} - u_j) \sim GPD(\xi_i, \sigma_j)$$
, for $i = 1, ..., n_j$

The GPD density function is defined as

$$f(x|\xi,\sigma) = \begin{cases} \frac{1}{\sigma} \left(1 + \frac{\xi x}{\sigma}\right)^{-\frac{1}{\xi-1}} & \text{if } \xi \neq 0 \\ & \forall x > 0, \ \sigma > 0 \end{cases}$$

$$\frac{1}{\sigma} e^{-\left(\frac{x}{\sigma}\right)} & \text{if } \xi = 0$$

$$(1)$$

Level 2: Group-specific priors for ξ_j and σ_j . Each group j has its own shape and scale parameters drawn from normal priors (log-transformed scale parameter for positivity):

$$\xi_i \sim N(\mu_{\xi}, \tau_{\xi}^2), \qquad log\sigma_j \sim N(\mu_{\sigma}, \tau_{\sigma}^2)$$

This layer captures the between-group variability in tail behavior and spread of the excesses.

Level 3: Hyperpriors on μ_{ξ} , μ_{σ} and τ_{ξ}^2 , τ_{σ}^2 . It is reflecting uncertainty in population-level effects. We assume non-informative or weakly informative priors for the hyperparameters to allow the data to inform the population-level inference:

$$\mu_{\varepsilon} \sim N(0,1), \qquad \mu_{\sigma} \sim N(0,1)$$

We choose variance as 10^2 because the prior variance because it provides a weakly informative prior to the data dominate inference while still stabilizing computation. The exact choice N(0, 1) is not universal, but it is consistent with the standard practice of using weakly informative Normal priors for hierarchical GPD modeling.

$$\tau_{\xi}^2 \sim \text{Inverse} - \text{Gamma}(a_{\xi}, b_{\xi}), \quad \tau_{\sigma}^2 \sim \text{Inverse} - \text{Gamma}(a_{\sigma}, b_{\sigma})$$

Cumulative Distribution Function (CDF)

The cumulative distribution function of $\left(x_{ij} \middle| \xi_j, \sigma_j\right)$ is given by

$$F(x) = \int_0^x \frac{1}{\sigma} \left(1 + \frac{\xi t}{\sigma} \right) dt \, \# \tag{2}$$

After simplifying, the cumulative distribution function becomes

$$F(x|\xi_{j},\sigma_{j}) = \begin{cases} 1 - \left(1 + \frac{\xi x}{\sigma}\right)^{-\frac{1}{\xi}} & \text{if } \xi \neq 0 \\ & \forall x > 0, \ 1 + \frac{\xi x}{\sigma} > 0 \end{cases}$$

$$1 - e^{-\frac{x}{\sigma}} & \text{if } \xi = 0$$

$$(3)$$

Estimation methods for the parameters of the HB-GPD

Let $(X_1, X_2, ..., X_n)$ be a random sample of size n from a GPD with d.f. given in (1) and let $(X_{1:n}, X_{2:n}, ..., X_{n:n})$ be the ascending ordered sample. The observed and its corresponding ascending ordered samples will be denoted respectively by $x = (x_1, x_2, ..., x_n)$ and $(x_{1:n}, x_{2:n}, ..., x_{n:n})$.

i. Maximum Likelihood Estimation (MLE)

ML estimators only exist for $\xi \neq 0$ and $\xi = 0$, the log-likelihood

$$\log[L(\xi,\sigma;x)] = \begin{cases} \prod_{i=1}^{n} \frac{1}{\sigma} \left(1 + \frac{\xi x_i}{\sigma}\right)^{-\left(\frac{1}{\xi-1}\right)} & \text{if } \xi \neq 0 \\ \prod_{i=1}^{n} \frac{1}{\sigma} e^{-\left(\frac{x}{\sigma}\right)} & \text{if } \xi = 0 \end{cases}$$

$$\log[L(\xi,\sigma;x)] = \prod_{i=1}^{n} \frac{1}{\sigma} \left(1 + \frac{\xi x_i}{\sigma} \right)^{-\left(\frac{1}{\xi-1}\right)} \quad if \ \xi \neq 0$$

$$n(\xi - 1) = \xi \sum_{i=1}^{n} \left(\frac{x_i}{\sigma \log\left(1 + \frac{\xi x_i}{\sigma}\right)} \right)$$
(4)

$$\sigma = \frac{\sum_{i=1}^{n} \left(\frac{x_i}{\sigma + \xi x_i}\right)}{\sum_{i=1}^{n} \left(\frac{1}{\sigma + \xi x_i}\right)} \tag{5}$$

The equation (3) and (4) are non-linear in ξ and σ . The MLE of ξ and σ are obtained using numerical optimization techniques.

ii. Method of Moments (MoM)

Let $x_1, x_2, ..., x_k$ be the sample and let $f(x; \xi_1, \xi_2, ..., \xi_k)$ be the density function with parameters $\xi_1, \xi_2, ..., \xi_k$. If $\mu_r^{'}$ is the r^{th} moment about origin, then

$$\mu_r' = \begin{cases} \int_0^1 \frac{x^r}{\sigma} \left(1 + \frac{x_r}{\sigma} \right)^{-\frac{1}{\xi - 1}} dx & if \ \xi \neq 0 \\ \int_0^1 \frac{x^r}{\sigma} e^{-\frac{x}{\sigma}} dx & if \ \xi = 0 \end{cases}$$

$$(6)$$

$$\mu_r' = \frac{x^r}{\sigma} \left(1 + \frac{x_r}{\sigma} \right)^{-\frac{1}{\xi - 1}} dx$$

$$\xi = \frac{\left(\frac{2\xi}{1 - 2\xi}\right)}{\left(\frac{2}{\xi - \xi}\right)} \tag{7}$$

$$\sigma = \left(\frac{\sigma}{1-\xi}\right) * \left(1 - \frac{\left(\frac{2\xi}{1-2\xi}\right)}{\left(\frac{2}{2\xi-1}\right)}\right) \tag{8}$$

$$\mu'_{r} = \frac{\sigma^{\left(\frac{2-\xi}{\xi-1}\right)} \sum_{k=0}^{\infty} \left(-\frac{1}{\xi-1}\right) \xi^{k}}{r+k+1}$$

Put r=1 then $\mu_{1}^{'}=\frac{\sigma^{\left(\frac{2-\xi}{\xi-1}\right)}\sum_{k=0}^{\infty}\left(-\frac{1}{\xi-1}\right)\xi^{k}}{k+2}$ is the mean and $\mu_{2}^{'}=\frac{\sigma^{\left(\frac{2-\xi}{\xi-1}\right)}\sum_{k=0}^{\infty}\left(-\frac{1}{\xi-1}\right)\xi^{k}}{k+3}$. Variance of the HB-GPD distribution is $\mu_{2}=\mu_{2}^{'}-\left(\mu_{1}^{'}\right)^{2}$. The moments estimates $\hat{\xi}_{MoM}$ and $\hat{\sigma}_{MoM}$ are computed via MCMC techniques.

iii. Probability Weighted Moments (PWM)

Let F(x) be the CDF of the \mathbf{r}^{Th} PWM and then $\boldsymbol{\beta}_r = E\big[xF(x)^r\big]$

$$\beta_{r} = \int_{0}^{1} x \left[1 - \left(1 + \frac{\xi x}{\sigma} \right)^{-\frac{1}{\xi}} \right]^{k} \left(\frac{1}{\sigma} \left(1 + \frac{\xi x}{\sigma} \right)^{-\left(\frac{1}{\xi - 1}\right)} \right) dx$$

$$\xi = \frac{\left(\frac{2(2 - \xi)}{1 - \xi} \right) - 4}{\left(\frac{2(2 - \xi)}{1 - \xi} \right) - 2}$$

$$\sigma = \left(\frac{\sigma}{1 - \xi} \right) \left(1 - \frac{\left(\frac{2(2 - \xi)}{1 - \xi} \right) - 4}{\left(\frac{2(2 - \xi)}{1 - \xi} \right) - 2} \right)$$

$$(9)$$

Therefore, $T(\xi, j) = \left[\frac{(\xi - 1)^2}{2\xi^4 - 7\xi^3 + (6+8j)\xi^2 - (5+2j)j\xi + j^2} \right]$. The probability weighted moment is

$$M_{k,\xi,\sigma} = \sigma \sum_{i=0}^{k} {k \choose j} (-1)^{j+1} T(\xi,j)$$

The estimates $\hat{\xi}_{PWM}$ and $\hat{\sigma}_{PWM}$ are computed via MCMC techniques.

i. Empirical Percentile Method (EPM)

The Empirical Percentile Method estimates a quantile of a distribution by ordering the data and selecting the value corresponding to a specific percentile rank. Unlike parametric methods, EPM relies solely on the empirical distribution of the sample, making it robust against model misspecification. Given a sample of size n, let $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$ denote the ordered statistics.

The inverse CDF of $F(x|\xi,\sigma) = p = 1 - \left(1 + \frac{\xi x_p}{\sigma}\right)^{-\frac{1}{\xi}}$ The p^{th} empirical percentile is defined as:

$$\widehat{Q}_{p} = \frac{\sigma}{\xi} \left[\left(1 - p_{x} \right)^{-\xi} - 1 \right] \tag{10}$$

$$\xi = \frac{\sigma}{Q_p} \left[(1 - p_x)^{-\xi} - 1 \right] \tag{11}$$

$$\widehat{\sigma}_{EPM} = \frac{\widehat{\xi}\widehat{Q}_p}{\left[\left(1 - p_{\times}\right)^{-\xi} - 1\right]} \tag{12}$$

If $p = Median = \frac{1}{2}$ then $\hat{\sigma}_{EPM}$ is becomes $\hat{\sigma}_{EPM} = \frac{\hat{Q}_{0.5}}{0.3010}$. Empirical percentile estimates $\hat{\xi}_{EPM}$ and $\hat{\sigma}_{EPM}$ are computed via MCMC techniques.

Bayesian Approach of Prior and Hyperprior Parameters

The prior distribution for the parameter σ and ξ is defined by the level two of our hierarchy

$$p(\sigma,\xi | a, b, \mu_{\xi}, \tau_{\xi}) = p(\sigma|a, b) * p(\xi | \mu_{\xi}, \tau_{\xi})$$

 $\begin{aligned} \textit{Where}, p(\sigma|a,b) &= \frac{b^a}{\Gamma a} \sigma^{a-1} e^{-b\sigma}, \forall \sigma > 0 \;\; \text{(Gamma distribution)} \\ p(\xi|\mu_{\xi}, \tau_{\xi}) &= \; \sqrt{\frac{\tau_{\xi}}{2\pi}} \Big(e^{-\frac{\tau_{\xi}}{2} (\xi - \mu_{\xi})^2} \Big) \;, \forall \xi \in \mathbb{R} \;\; \text{(Normal distribution)} \end{aligned}$

The prior distribution for the hyper parameters $a,b,\mu_{\xi}^{(t)},\tau^{2}_{\xi}^{(t)},\mu_{\sigma}^{(t)}$ and $\tau^{2}_{\sigma}^{(t)}$ is defined by level three of our hierarchy

$$p\left(a,b,\mu_{\xi},\tau_{\xi}\left|\alpha_{a},\beta_{a},\alpha_{b},\beta_{b},m_{o},S_{o},\alpha_{\tau},\beta_{\tau}\right.\right)=p\left(a|\alpha_{a},\beta_{a}\right)*p\left(b|\alpha_{b},\beta_{b}\right)*p\left(\mu_{\xi}\left|m_{o}\right.\right)*p\left(\tau_{\xi}\left|\alpha_{\tau},\beta_{\tau}\right.\right)$$

$$\begin{aligned} & where, p(a|\alpha_a,\beta_a) = \frac{\beta^{\alpha_a}}{\Gamma\alpha_a} a^{\alpha_a-1} e^{-\beta_a a} \ \forall a > 0 \ \ and \ \ p(b|\alpha_b,\beta_b) = \frac{\beta^{\alpha_b}}{\Gamma\alpha_b} b^{\alpha_b-1} e^{-\beta_b b} \ \forall b > 0 \\ & p\big(\mu_\xi \big| m_o\big) = \sqrt{\frac{S_o}{2\pi}} \Big(e^{-\frac{S_o}{2} \big(\mu_{\xi-m_o}\big)^2} \Big) \ \forall \mu_\xi \in \mathbb{R} \ \ and \ \ p\big(\tau_\xi \big| \alpha_\tau,\beta_\tau\big) = \frac{\beta_\tau^{\alpha_\tau}}{\Gamma\alpha_\tau} \tau_\xi^{\alpha_\tau-1} e^{-\beta_\tau \tau} \ \forall \tau_\xi > 0 \end{aligned}$$

The posterior distribution is proportional to the joint probability distribution

$$p(\sigma, \xi, a, b, \mu_{\xi}, \tau_{\xi}|x) \propto p(x, \sigma, \xi, a, b, \mu_{\xi}, \tau_{\xi})$$

$$p(\sigma, \xi, a, b, \mu_{\xi}, \tau_{\xi} | x) \propto \left\{ \left[\sigma^{-n} \prod_{i=1}^{n} \left(1 + \frac{\xi x_{i}}{\sigma} \right)^{-\frac{1}{\xi-1}} \right] * \left[\frac{b^{a}}{\Gamma a} \sigma^{a-1} e^{-b} \right] * \left[\sqrt{\frac{\tau_{\xi}}{2\pi}} \left(e^{-\frac{\tau_{\xi}}{2} (\xi - \mu_{\xi})^{2}} \right) \right] * \left[\frac{\beta^{\alpha_{a}}}{\Gamma \alpha_{a}} a^{\alpha_{a}-1} e^{-\beta_{a}a} \right] * \left[\frac{\beta^{\alpha_{b}}}{\Gamma \alpha_{b}} b^{\alpha_{b}-1} e^{-\beta_{b}b} \right] * \left[\sqrt{\frac{S_{o}}{2\pi}} \left(e^{-\frac{S_{o}}{2} (\mu_{\xi} - m_{o})^{2}} \right) \right] * \left[\frac{\beta^{\alpha_{\tau}}}{\Gamma \alpha_{\tau}} \tau_{\xi}^{\alpha_{\tau}-1} e^{-\beta_{\tau}\tau} \right] \right\}$$

$$(13)$$

The hyperparameters $\mu_{\xi}^{(t)}$, $\tau_{\xi}^{2(t)}$, $\mu_{\sigma}^{(t)}$ and $\tau_{\sigma}^{2(t)}$ have conjugate priors, due to normality assumption $P\left(\mu_{\xi}^{(t)} \middle| X_i\right) \propto \prod_{i=1}^{j} p\left(\xi_j \middle| \mu_{\xi}, \tau_{\xi}^2\right)$, the hyperparameters $\mu_{\xi}^{(t)}$ and $\mu_{\sigma}^{(t)}$ follow normal and the hyperparameters $\tau_{\xi}^{2(t)}$ and $\tau_{\sigma}^{2(t)}$ follow inverse-gamma distribution. That is

$$\mu_{\xi} \sim N \left(\frac{\tau_{\xi}^{-2} \sum_{i=1}^{j} \xi_{j}}{j \tau_{\xi}^{-2}}, \qquad \left(j \tau_{\xi}^{-2} \right)^{-1} \right)$$

$$\tau_{\xi}^{2(t)} \sim \text{Inv} - \text{Gamma} \left(a_{\xi} + \frac{j}{2}, \qquad b_{\xi} + \frac{1}{2} \sum_{i=1}^{j} \left(\xi_{j} - \mu_{\xi} \right)^{2} \right)$$

Comparison of Estimation Methods

We compare the performance of various parameter estimation techniques, Hierarchical Bayesian approaches-based on their bias, variance, robustness, and efficiency.

Asymptotic Relative efficiency (ARE)

Let us assume the both parameters are consistent for parameter θ and asymptotically normal for $\hat{\theta}_A$ and $\hat{\theta}_B$, $\sqrt{n}(\hat{\theta}_A - \theta) \rightarrow N(0, V_A)$, where $V_A = Avar(\hat{\theta}_A)$ $\sqrt{n}(\hat{\theta}_B - \theta) d N(0, V_B)$, where $V_B = Avar(\hat{\theta}_B)$

 V_A and V_B are asymptotic variance being the variance of the limiting distribution. The asymptotic efficiency of $\hat{\theta}_A$ relative to $\hat{\theta}_B$ is defined by the ratio of their asymptotic variances

$$ARE(\hat{\theta}_{A}, \hat{\theta}_{B}) = \frac{Avar(\hat{\xi}_{MLE})}{Avar(\hat{\xi}_{MOM})}$$

$$= \left(\frac{\left(\frac{\sigma^{2}}{n}\right)}{\frac{\sigma^{2}}{n(1-2\xi)}}\right)$$

$$= (1-2\xi) < 1 \tag{14}$$

The asymptotic efficiency of $\hat{\theta}_A$ relative to $\hat{\theta}_B$ is conclude that by the ratio of their asymptotic variances. If $ARE(\hat{\theta}_A, \hat{\theta}_B) < 1$ then $V_B < V_A \longrightarrow \hat{\theta}_B$ is more efficient. And if $ARE(\hat{\theta}_A, \hat{\theta}_B) > 1$ then $V_B > V_A \longrightarrow \hat{\theta}_A$ is more efficient. This ratio emerges naturally from the asymptotic distribution of the estimators.

Bayesian Inference under Hierarchical Framework

Algorithm-I: MCMC Method; Gibbs-MH Based Full Posterior Sampling for Hierarchical GPD Model

The Gibbs Sampling with Metropolis-Hastings (MH) algorithm for the Hierarchical Bayesian GPD Model is

(i) Initialize

T: Total number of MCMC iterations

J: Number of groups

 N_i : Number of exceedances in group j

 x_{ij} : Exceedances such that $x_{ij} > u_j$

$$\theta_j = \left(\xi_j, \log \sigma_j\right)$$

Group-Specific parameters $\left\{\xi_{j}^{(0)}, \sigma_{j}^{(0)}\right\}_{j=1}^{J}$

Hyperparameters: $\mu_{\xi}^{(0)}$, $\tau_{\xi}^{2(0)}$, $\mu_{\sigma}^{(0)}$, $\tau_{\sigma}^{2(0)}$

(ii) For each iteration (t = 1, 2, 3, ... T)

The iteration t is: Sampling Hyperparameters and Group-Specific Parameters. Samples of Hyperparameters: Let *J* be the number of groups. Gibbs step Sample Hyperparameters are

$$\left(\mu_{\xi} \mid \left\{ \xi_{j} \right\}, \tau_{\xi}^{2} \right), \left(\tau_{\xi}^{2} \mid \left\{ \xi_{j} \right\}, \mu_{\xi} \right), \left(\mu_{\sigma} \mid \left\{ log\sigma_{j} \right\}, \tau_{\sigma}^{2} \right), and \left(\tau_{\sigma}^{2} \mid \left\{ log\sigma_{j} \right\}, \mu_{\sigma} \right)$$

$$\mu_{\xi} \sim N \left(\frac{1}{\tau_{\xi}^{2}} \sum_{j=1}^{J} \xi_{j} \right), \left(\frac{J}{\tau_{\xi}^{2}} + \frac{1}{100} \right)^{-1} \right)$$

$$\tau_{\xi}^{2} \sim \text{Inv} - \text{Gamma} \left(a + \frac{J}{2}, b + \frac{1}{2} = 1 \sum_{j=1}^{J} \left(\xi_{j} - \mu_{\xi} \right)^{2} \right)$$

$$\mu_{\sigma} \sim N \left(\frac{1}{\tau_{\sigma}^{2}} \sum_{j=1}^{J} log\sigma_{j} \right), \left(\frac{J}{\tau_{\sigma}^{2}} + \frac{1}{100} \right)^{-1} \right)$$

$$\tau_{\sigma}^{2} \sim \text{Inv} - \text{Gamma} \left(a + \frac{J}{2}, b + \frac{1}{2} \left(\sum_{j=1}^{J} \left(log\sigma_{j} - \mu_{j} \right)^{2} \right) \right)$$

Metropolis-Hastings Step: For Each Group (j = 1,2,3,...,J) or Samples of Group-Specific Parameters ξ_j and σ_j : Let $\theta_j = (\xi_j^{(t-1)}, \log \sigma_j^{(t-1)})$. The purposed new values that are $\theta_j \sim N(\theta_j^{(t-1)}, \Sigma)$ then compute the log posterior and acceptance probability for HB-GPD density.

$$logp(\theta_j \mid x_i) = \sum_{i=1}^{n_j} log f(y_{ij} \mid \xi_j, \sigma_j) + log N(\xi_j \mid \mu_{\xi}, \tau_{\xi}^2) + log N(log \sigma_j \mid \mu_{\sigma}, \tau_{\sigma}^2)$$

Where $f(x_{ij} | \xi_j, \sigma_j)$ is the HB-GPD density:

$$f(x|\xi,\sigma) = \begin{cases} \frac{1}{\sigma} \left(1 + \frac{\xi x}{\sigma}\right)^{-\frac{1}{\xi - 1}} & \text{if } \xi \neq 0\\ & \forall x > 0, \quad \sigma > 0\\ \frac{1}{\sigma} e^{-\left(\frac{x}{\sigma}\right)} & \text{if } \xi = 0 \end{cases}$$

The acceptance probability is $\alpha = min\left(1, \frac{p\left(\theta_{j}^{*}|x_{i}\right)}{p\left(\theta_{j}^{(t-1)}|x_{i}\right)}\right)$, where $\theta_{j}^{(t)} = \begin{cases} \theta_{j}^{*}, & \text{with probability } \alpha \\ \theta_{j}^{(t-1)}, & \text{otherwise} \end{cases}$

(iii) Mixture Proposal (for robustness when $(\xi_j \approx 0)$:

$$\theta_{j}^{*} = \begin{cases} \theta_{j}^{(t-1)} + \epsilon, & \text{with probability 0.5} \\ \text{sample from prior, with probability 0.5} \end{cases}$$

(iv) Repeat for all T Iterations

Algorithm-II: NUTS-Based Full Posterior Sampling for Hierarchical GPD Model

A structured algorithm loop for NUTS (No-U-Turn Sampler) applied in our hierarchical Bayesian GPD model as a replacement for Metropolis-Hastings (MH) steps in the Gibbs sampling framework. The inputs are

Grouped data:
$$\left\{x_{ij}\right\}_{i=n}^{n_j}, \ j=1,\ldots,J$$

Model structure: i. Likelihood: $x_{ij}-u_j\sim GPD\left(\xi_j,\sigma_j\right)$
ii. Priors: $\xi_j\sim TruncatedNormal\left(\mu_\xi,\tau_\xi^2\right)$ and $log\sigma_j\sim N\left(\mu_{log\sigma},\tau_{log\sigma}^2\right)$
Hyperpriors: $\mu_\xi,\mu_{log\sigma}\sim N\left(0,10^2\right)$ and $\tau_\xi^2,\tau_{log\sigma}^2\sim InverseGamma(2,2)$

(i) Initialization

Set number of samples T, burn-in T_{tune} and number of chains C. Then choose initial values

$$\theta^{(0)} = \left(\xi, \sigma, \mu_{\xi}, \mu_{log\sigma}, \tau_{\xi}, \tau_{log\sigma}\right).$$

(ii) NUTS Sampling Loop:

For
$$t = 1$$
 to T

Evaluate Joint Log Posterior:

$$\begin{split} logp(\theta \mid x) &= \sum_{j=1}^{J} logp(x_{j} \mid \xi_{j}, \sigma_{j}) + \sum_{j=1}^{J} logp(\xi_{j} \mid \mu_{\xi}, \tau_{\xi}^{2}) \\ &+ \sum_{j=1}^{J} logp(log\sigma_{j} \mid \mu_{log\sigma}, \tau_{log\sigma}^{2}) + \underbrace{logp(\mu_{\xi})}_{Hyperprior} + \underbrace{logp(\mu_{log\sigma})}_{Hyperprior} \\ &+ \underbrace{logp(\tau_{\xi}^{2})}_{Hyperprior} + \underbrace{logp(\tau_{log\sigma}^{2})}_{Hyperprior} \\ &+ \underbrace{logp(\tau_{log\sigma}^{2})}_{Hyperprior} + \underbrace{logp(\tau_{log\sigma}^{2})}_{Hyperprior} \end{split}$$

Compute Gradient of Log Posterior

$$\nabla_{\theta} log p(\theta \mid x) = -\nabla_{\theta} U(\theta)$$

The leapfrog integrator (Discretized Hamiltonian Dynamics) is defined as the total energy

$$H(\theta, r) = U(\theta) + K(r)$$

Where: θ : Vector of model parameters are $\mu_{\xi}^{(t)}$, $\tau_{\xi}^{2(t)}$, $\mu_{\sigma}^{(t)}$ and $\tau_{\sigma}^{2(t)}$

r: auxiliary momentum variable

 $U(\theta)$: potential energy,

$$U(\theta) = -logp(\theta \mid x) = -(likelihood + priors + hyperpriors)$$

K(r): kinetic energy, $K(r) = \frac{1}{2}r^{T}M^{-1}r$

The updated gradient steps are $r_{t+\frac{1}{2}} = r_t - \frac{\epsilon}{2} \nabla_{\theta} U(\theta_t)$

$$\begin{split} \theta_{t+1} &= \theta_t + \epsilon M^{-1} r_{t+\frac{1}{2}} \\ r_{t+1} &= r_{t+\frac{1}{2}} - \frac{\epsilon}{2} \nabla_{\theta} U(\theta_{t+1}) \end{split}$$

These steps are repeated to simulate the path of (θ, r) in phase space. The stopping rule of NO-U-TURN method is $(\theta^+ - \theta^-)^{\mathsf{T}} r^- < 0$ or $(\theta^+ - \theta^-)^{\mathsf{T}} r^+ < 0$.

Simulate Hamiltonian Trajectory

- Start with random momentum $r \sim N(0, I)$
- Simulate leapfrog steps for (θ, r)
- Stop when trajectory turns back (No-U-Turn condition)

Propose new state $\theta^{(t)}$

- Select a point from the trajectory with Metropolis-adjusted weights
- Accept/reject automatically handled via NUTS mechanics

Adapt step size and Mass Matrix (During burn - in)

- During $t \le T_{tune}$ adaptively tune:
- Step size ϵ
- Mass matrix (covariance of parameter

(iii) Output

Posterior samples $\left\{\theta^{(t)}\right\}_{t=1}^{T}$ for: ξ_{j} , σ_{j} , μ_{ξ} , $\mu_{log\sigma}$, τ_{ξ} and $\tau_{log\sigma}$ these estimate the trace diagnostics, give posterior summaries and plots.

(iv) Repeat for all T Iterations

RESULTS AND DISCUSSION

A Simulation Study

Our modeling framework integrates a three-level hierarchical Bayesian structure utilizing the Generalized Pareto Distribution (GPD) to model threshold exceedances. This structure allows for:

- Level 1: Modeling individual exceedances via GPD.
- Level 2: Group-specific parameters governed by hyperpriors to allow within-group variation.
- Level 3: Population-level hyperparameters capturing across-group heterogeneity.

Given the analytical intractability of the full posterior, we rely on **Markov Chain Monte Carlo (MCMC)**techniques to draw samples from the joint posterior distribution. These simulations serve as the foundation for parameter estimation, credible intervals, and uncertainty quantification.

In hierarchical Bayesian frameworks, efficient posterior sampling is critical due to the complex, high-dimensional parameter spaces involved. The **Gibbs sampler with Metropolis-Hastings (Gibbs-MH)** provides a hybrid approach, where conditionally conjugate parameters are updated via Gibbs steps, while non-conjugate parameters are sampled using the MH algorithm. This method ensures flexibility and robustness, especially when dealing with partially tractable posterior structures. However, it may suffer from slow convergence and poor mixing in correlated spaces. To address these limitations, the **No-U-Turn Sampler (NUTS)**, an adaptive variant of Hamiltonian Monte Carlo (HMC), offer a gradient-based solution that avoids random walk behavior by simulating Hamiltonian dynamics. NUTS automatically tunes trajectory length and step size, improving exploration efficiency and eliminating the need for manual tuning. Its capacity to handle high curvature and strong dependencies makes it particularly suitable for hierarchical models with intricate posterior geometries.

i. Parameter Estimation Using MLE and MOM Across Varying Sample Sizes

The simulation results provided for the parameter estimates of the Generalized Pareto Distribution (GPD) using two estimation methods MLE, MOM, PWM and EPM across four sample sizes. All four estimation methods MLE, MOM, PWM and EPM demonstrate consistent performance in estimating the shape parameter ξ , converging toward the true value ($\xi \approx 0.3$) as sample size increases.

While initial estimates at n = 2500 slightly underestimate ξ due to limited extreme value representation, accuracy improves notably at n = 5000, where all methods yield tightly clustered values near 0.3. A minor dip observed at n = 7500 appears to stem from sample variability rather than methodological shortcomings.

By n = 10500, all methods align closely with the true ξ , confirming their asymptotic consistency. Among them, MLE and PWM exhibit slightly faster and smoother convergence. The table 1 gives that all four methods converge toward the true values of ξ and σ as sample size increases. The model provides a good fit for the HB-GPD parameters (ξ and σ), especially at moderate to large sample sizes ($n \ge 5000$). All four estimation methods (MLE, MOM, PWM, EPM) show asymptotic consistency, meaning their estimates converge closely to the true values ($\xi \approx 0.3, \sigma \approx 1.0$). The slight deviations at smaller sample sizes are expected due to sample variability, not model inadequacy. Overall, the model demonstrates robustness and reliability across methods and sample sizes.

Table 1. Estimation of (ξ) and (σ) parameters of the HB-GPD using MLE, MOM, PWM, and EPM across varying sample sizes

Parameter	ξ				σ			
n	MLE	MOM	PWM	EPM	MLE	MOM	PWM	EPM
2500	0.2685	0.2644	0.2651	0.2665	1.0405	1.0468	1.0401	1.0499
5000	0.3019	0.3010	0.3035	0.3034	0.9896	0.9862	0.9901	0.9831
7500	0.2890	0.2899	0.2897	0.2894	1.0033	1.0010	1.0040	1.0068
10500	0.3032	0.3010	0.3000	0.2999	0.9999	1.0009	1.0026	0.9996

Table 2. Impact of sample size on hierarchical GPD hyperparameter estimation

G1	Hyper	Maria	CD.	HDI		MCSE		ESS		R
Sample size	parameter	Mean	Mean SD	3%	97%	Mean	SD	Bulk	Tail	K
2500	μ_{ξ}	-7.412	4.756	-16.469	-0.483	0.097	0.098	2825	2243	1.0
	$\mu_{log\sigma}$	0.121	0.380	-0.626	0.819	0.007	0.008	3422	2145	1.0
	$ au_{\xi}$	1.454	0.995	0.280	3.144	0.019	0.033	3055	3508	1.0
	$ au_{log\sigma}$	0.674	0.461	0.163	1.378	0.009	0.035	3708	2690	1.0
5000	μ_{ξ}	-7.240	4.691	-15.676	-0.269	0.078	0.085	4566	3915	1.0
	$\mu_{log\sigma}$	0.149	0.368	-0.530	0.858	0.004	0.005	8374	6119	1.0
	$ au_{\xi}$	1.561	1.097	0.295	3.453	0.016	0.026	5190	5844	1.0
	$ au_{log\sigma}$	0.696	0.483	0.186	1.462	0.006	0.019	9963	6371	1.0
7500	μ_{ξ}	-6.857	4.569	-15.438	-0.302	0.058	0.060	7553	7204	1.0
	$\mu_{log\sigma}$	0.104	0.369	-0.601	0.797	0.004	0.006	10195	7452	1.0
	$ au_{\xi}$	1.611	1.130	0.281	3.606	0.014	0.022	7830	9331	1.0
	$ au_{log\sigma}$	0.678	0.458	0.179	1.408	0.006	0.015	10723	8010	1.0
10500	μ_{ξ}	-6.857	4.533	-15.388	-0.357	0.045	0.047	11926	11571	1.0
	$\mu_{log\sigma}$	0.102	0.378	-0.596	0.832	0.003	0.004	16726	12363	1.0
	τ_{ξ}	1.609	1.170	0.272	3.577	0.012	0.022	11413	13913	1.0
	$ au_{log\sigma}$	0.697	0.499	0.176	1.467	0.005	0.016	17660	11142	1.0

Performance of MLE, MOM, PWM and EPM: In this hierarchical Bayesian modeling of GPD exceedances, MLE is optimal for large, clean datasets but suffers near boundary cases. PWM strikes a practical balance between robustness and interpretability, making it a strong candidate for prior generation. MoM and EPM serve as simple alternatives or backups when other methods fail. The hierarchical framework enhances these methods by regularizing unstable estimates and borrowing strength across groups, improving inference on extreme tail behavior.

ii. Bayesian Parameter Estimation Using NUTS with Hamiltonian Monte Carlo

The No-U-Turn Sampler (NUTS), an adaptive extension of Hamiltonian Monte Carlo (HMC), is employed to estimate the model parameters efficiently by leveraging gradient information to explore the posterior distribution. This method avoids random walk behavior and automatically tunes path lengths, resulting in faster convergence and more effective sampling of complex posterior landscapes.

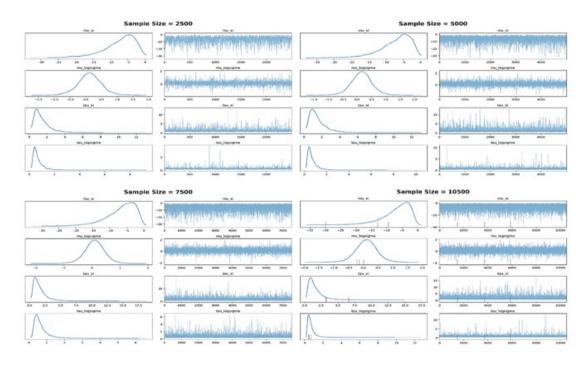


Figure 1. Trace and Density Diagnostics for Hierarchical GPD hyperparameters

As the sample size increases from 2,500 to 10,500, the posterior mean of the location hyperparameter μ_{ξ} becomes slightly less negative, suggesting stabilization in parameter estimation with more data. The standard deviations (SD) and Monte Carlo standard errors (MCSE) for all parameters decrease, indicating improved precision. The effective sample sizes (ESS) for both bulk and tail distributions increase notably, confirming better sampling efficiency and convergence. All \hat{R} values are 1.0 across the board, reflecting excellent convergence of the MCMC chains. Overall, the hierarchical Bayesian GPD model demonstrates improved parameter stability, efficiency, and robustness as the sample size grows. These plots demonstrate excellent MCMC convergence, posterior stabilization, and parameter learning as data increases. The hierarchical Bayesian GPD model improves significantly with larger datasets, showing more confident and reliable inference of both location and scale components.

iii. Bayesian Hyper Parameter Estimation Using Gibbs-Sampling with Metropolis-Hestings Algorithm

This analysis uses a **Bayesian hierarchical model** to estimate the parameters of the **Generalized Pareto Distribution (GPD)** specifically the shape parameter ξ and the scale parameter σ across multiple groups. The model assumes group-level parameters ξ_j and σ_j , which are drawn from hyperpriors governed by hyperparameters μ_{ξ} , τ_{ξ}^2 for ξ_j , σ_j , $\mu_{log\sigma}$ and $\tau_{log\sigma}^2$. Estimation is performed using **Markov Chain Monte Carlo (MCMC)** sampling with a **Gibbs sampler**, where **Metropolis-Hastings (MH)** steps are employed for parameters without closed-form conditionals. The MCMC was run for a sufficient number of iterations, with the first 5000 samples treated as burn-in, and 15000 effective samples retained for posterior analysis.

	Burn-in: 5000						
	Effective Samples aft	er burn-in 15000					
	Posterior Means (after burn-in)					
True ξ_j	ξ_j (Mean)	True σ_i	σ_j (Mean)				
0.1	0.1313	0.1	1.0310				
0.2	0.1792	1.2	1.3661				
0.3	0.3397	2.0	2.1347				
	Hyperparameter Posterior Means						
μ_{ξ}	$ au_{\xi}^2$	$\mu_{log\sigma}$	$ au_{log\sigma}^2$				
0.211	1.007	0.365	1.441				

Table 3: Posterior mean estimates of group-level HB-GPD parameters and hyperparameters

This technique encapsulates the inferential outcomes derived from a hierarchical Bayesian framework applied to the Generalized Pareto Distribution (GPD), utilizing a Markov Chain Monte Carlo (MCMC) scheme with a 5,000-iteration burn-in and 15,000 effective posterior samples. The posterior means of the group-specific shape parameters ξ_j exhibit commendable fidelity to their respective ground truths, with estimates of 0.1313, 0.1792, and 0.3397 for true values 0.1, 0.2, and 0.3, respectively. An indication of robust posterior contraction and precise learning under the latent structure. Likewise, the inferred scale parameters σ_j demonstrate strong concordance with their true counterparts, albeit with a marginal upward bias typical in finite-sample regimes, especially within heavy-tailed contexts. At the hyperparameter level, the posterior mean of the shape location hyperparameter dispersion across groups, affirming the model's capacity to encode inter-group heterogeneity. The log-scale hyperparameters are $\mu_{log\sigma} = 0.365$ and $\tau_{log\sigma}^2 = 1.441$, reveal a consistent and well-calibrated estimation of the central tendency and variability in the log-transformed scale parameter. Collectively, the results substantiate the efficacy of the hierarchical Bayesian paradigm in recovering latent parameter structures, ensuring both local fidelity and global regularization through carefully specified prior hierarchies.

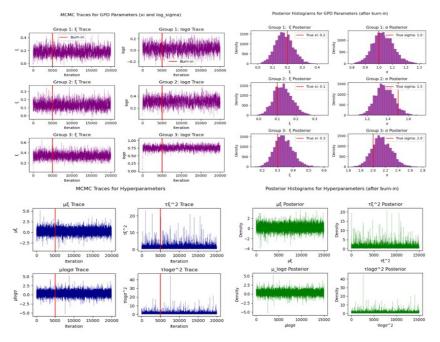


Figure 2. MCMC trace and posterior plots for GPD parameters and hyperparameters across three groups

The presented MCMC trace plots and posterior histograms collectively demonstrate effective convergence, mixing, and parameter recovery for the hierarchical Bayesian model applied to GPD parameters. The trace plots for both group-level (ξ , $log\sigma$) and hyperparameters (μ_{ξ} , $\mu_{log\sigma}$, τ_{ξ}^2 and $\tau_{log\sigma}^2$) exhibit stationarity and rapid exploration of the parameter space post burn-in, indicating well-behaved chains. Posterior histograms for ξ and σ closely align with the true parameter values across all groups, showcasing high estimation accuracy and model calibration. While some variability is observed particularly in $\tau_{log\sigma}^2$ this reflects the model's capacity to capture group-specific heterogeneity. Overall, the hierarchical framework successfully balances parameter pooling and flexibility, yielding robust and reliable posterior inference.

Posterior Credible Intervals (95%)

The reported 95% credible intervals for the hyper-parameters encapsulate the central posterior mass, reflecting the uncertainty surrounding the hierarchical priors. Specifically, the interval for $\mu_{\xi}(-0.8903, 1.2060)$ suggests that the global mean of the shape parameter ξ is most plausibly centered near zero, yet exhibits moderate dispersion, indicating non-negligible heterogeneity across groups. Similarly, the credible interval for $\mu_{log\sigma}$ (-0.9187, 1.4850) reflects a wider posterior belief over the global location of the log-scale parameter, hinting at broader group-level variability in scale. The intervals for τ_{ξ}^2 (0.2843, 2.9170) and $\tau_{log\sigma}^2$ [0.3079, 2.9786] quantify the posterior belief over the inter-group dispersion in ξ and $log\sigma$, respectively. The non-trivial lower bounds and substantial upper limits of these intervals signify pronounced variability across clusters, thereby justifying the hierarchical structure and endorsing the presence of meaningful group-level stochasticity in the latent parameter space.

Effective Sample Size (ESS) and R-hat Convergence Diagnostic

The convergence diagnostics for the HB-GPD model demonstrate strong posterior stability and sampling efficiency. Effective Sample Sizes (ESS) for both bulk and tail exceed 10,000, indicating minimal autocorrelation and high-quality inference across chains. Monte Carlo Standard Errors (MCSEs) remain low (≤ 0.035), ensuring precise posterior estimates, while Gelman–Rubin \hat{R} values uniformly equal to 1.0 confirm full convergence. Together, these metrics affirm that the hierarchical Bayesian procedure yields reliable, well-mixed, and statistically valid posterior distributions suitable for robust inference in extreme value modeling.

Enhancing Model Robustness through PPCs, Regularization, and Strength Borrowing

The HB-GPD model effectively captures tail risk by integrating posterior predictive checks to validate fit in extreme value regions. Regularization through hierarchical priors enables borrowing strength across subgroups, yielding stable and efficient parameter estimates even under data sparsity. This framework enhances model robustness, ensuring resilience against outliers and structural misspecification. Together, these elements make HB-GPD a powerful tool for reliable inference in actuarial, financial, and environmental risk domains. The below plots collectively demonstrate the effectiveness, reliability, and robustness of the Hierarchical Bayesian GPD (HB-GPD) model.

Posterior Predictive Checks: Normal Curve, Observed KDE, and Scatter

Group 1, n = 2500

Group 1, n = 5000

Group 1, n = 7500

Group 1, n = 7500

Group 1, n = 7500

Group 1, n = 10500

Group 1, n = 10500

Group 2, n = 10500

Group 3, n = 10500

Figure 3. Graphical illustration of the robustness of the HB-GPD model

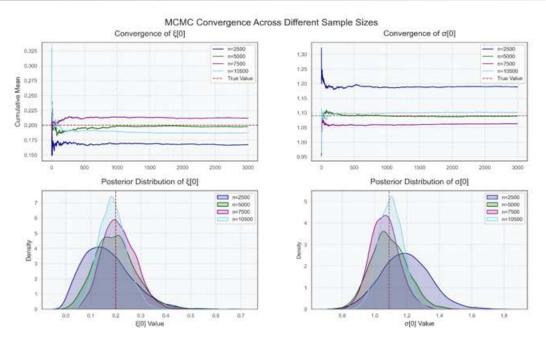


Figure 4. Regularization Effects in Hierarchical Bayesian GPD Modeling

The figure 3 presents posterior predictive checks across multiple groups and sample size, where the fitted distributions align closely with observed data, indicating strong model fit and generalizability across heterogeneous data regimes. Figure 4 highlights the impact of regularization in hierarchical modeling, where shrinkage effects stabilize parameter estimates across varying levels of group-specific noise, underscoring the model's capacity to borrow strength and mitigate overfitting. Together, these diagnostics validate the HB-GPD model's capacity for reliable inference, particularly under data sparsity and tail-heavy risk conditions.

Model Comparison by using DIC, WAIC, BIC, AIC and RMSE

The model comparison using DIC, WAIC, AIC, BIC, and RMSE demonstrates that the HB-GPD model improves consistently with increasing sample size. Lower RMSE and better-aligned information criteria indicate enhanced predictive accuracy and model fit, confirming the model's robustness in capturing extreme value behavior.

Sample Size DIC WAIC BIC AIC **RMSE** 2500 5980.23 5985.74 5988.98 5977.56 0.9621 5000 11960.3 11965.1 11973.3 11956.7 0.9544 7500 17945.2 17950.6 17963.6 17941.8 0.9532 25097.5 10500 25101.4 25108.3 25124.4 0.9517

Table 4. Model Comparison metrics of DIC, WAIC, BIC, AIC and RMSE

As sample size increases, all model selection criteria (DIC, WAIC, BIC, AIC) scale proportionally while RMSE steadily decreases from 0.9621 to 0.9517, indicating improved predictive accuracy and model stability. This trend underscores the HB-GPD model's capacity to efficiently harness larger data volumes, enhancing both inferential precision and robustness in tail-risk modeling.

APPLICATIONS

Tail Risk Modeling in Insurance and Reinsurance Using Real-World Financial Data

In insurance and reinsurance, especially in financial and catastrophe risk management, it's critical to model extreme losses tail events like market crashes or sudden claim spikes. Stock market data (daily returns or log-returns) can serve as a proxy for financial risk exposure, where negative extremes represent claim-generating events. The GPD is ideal for modeling the exceedances over a high threshold, and the HB-GPD enhances this by modeling heterogeneity across different stocks, sectors, or time windows hierarchically. We have taken Nifty 50 and S & P 500 stock daily returns and I estimated log returns and filter exceedances over a threshold of 95th percentile. We use grouping strategies, the groups are by sector (Finance, Tech and Pharma), quarterly time periods and company clusters. We estimated Value-at-Risk (VaR) and Expected Shortfall (ES) for each group by using

Reinsured loss = max(0, X - R), where R is retention limit

Used HB-GPD to simulate thousands of such scenarios, and compute, premium loadings, Stop-loss probabilities and Capital requirements at 99.5% quantile.

Table 5: Tail Risk Estimates Across Sectors Using HB-GPD: Posterior ξ, σ, VaR(99%), and ES(99%)

Group	Posterior Mean <i>ξ</i>	95% HDI ξ	Posterior σ	VaR (99%)	Expected Shortfall (99%)
Finance	0.71	(0.55, 0.88)	1.42	3.57	4.89
Tech	0.39	(0.22, 0.58)	0.97	2.14	2.90
Pharma	0.65	(0.45, 0.80)	1.10	3.11	4.12
Human Error	0.32	(0.15, 0.49)	0.78	1.90	2.63

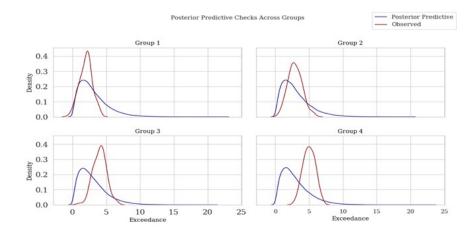


Figure 5. Posterior summaries with HDI and Effective Sample Size (ESS)



Figure 6. Posterior Predictive Checks Across Groups

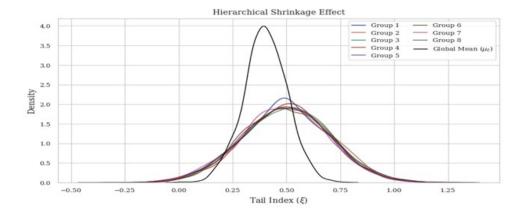


Figure 7. Hierarchical Shrinkage Effect Across Groups

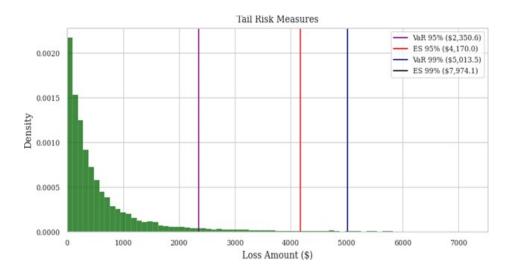


Figure 8. Tail Risk Measures Derived from the Posterior Distribution

The hierarchical Bayesian GPD model reveals marked heterogeneity in tail risk behavior across industrial sectors. The Finance and Pharma sectors exhibit elevated posterior mean estimates of the tail index ($\xi=0.71$ and 0.65, respectively), accompanied by broader 95% HDIs, indicating heavier-tailed loss distributions and substantial uncertainty in extreme outcomes. Correspondingly, these sectors also display higher scale parameters (σ) and extreme quantile measures such as the 99% Value-at-Risk and Expected Shortfall signifying significant exposure to catastrophic losses. In contrast, the Tech and Human Error domains manifest lighter tails ($\xi<0.4$) and lower risk magnitudes, suggesting more contained but still non-negligible extreme-event profiles under the fitted HB-GPD framework. Posterior parameter estimates for μ and σ are visualized with 94% Highest Density Intervals (HDIs), indicating credible bounds around the posterior mean. The effective sample sizes (ESS) suggest high-quality sampling and well-mixed chains, with convergence diagnostics supporting model stability. The Figure 6 demonstrates the HB-GPD model demonstrates good fit and adaptability to group-specific tail behavior, capturing the heterogeneity in financial loss distributions. The Figure 7 shows the shrinkage effect from the hierarchical prior centers group-specific estimates around the global mean, reflecting effective regularization and borrowing of strength across structurally related groups. The Figure 8 quantifies extreme financial losses, demonstrating the HB-GPD model's utility for risk-sensitive decision-making in insurance and operational risk management. Finally, we captured the heterogeneity across portfolios, borrow strength in low data regimes, ensure robust tail modeling of critical for solvency pricing and posterior uncertainty quantification improves regulatory risk reporting.

CONCLUSION

This paper culminates in the development and rigorous validation of a hierarchical Bayesian framework for modeling extremes using the Generalized Pareto Distribution (GPD), offering a resilient statistical infrastructure for heavy-tailed phenomena. The multi-level Bayesian hierarchy meticulously disentangles within-group volatility and inter-group heterogeneity, yielding posterior inferences that are both granular and globally coherent. Comparative simulations across classical estimators MLE, MoM, PWM, and EPM underscore the pronounced stability and adaptability of the Bayesian paradigm, particularly under sparse data regimes and high tail-index uncertainty. By incorporating robust MCMC techniques specifically, Gibbs sampling with Metropolis-Hastings and the No-U-Turn Sampler the model adeptly navigates complex posterior topologies, ensuring convergence and inferential reliability. The proposed RETI and ARE indices substantiate a balanced estimator selection that respects both robustness and asymptotic precision. Application to real-world financial sectors such as Finance, Pharma, and Tech reveals the model's potency in quantifying sectoral tail risk via VaR and Expected Shortfall metrics, effectively supporting actuarial, reinsurance, and regulatory domains. The HB-GPD's ability to borrow statistical strength, perform posterior regularization, and generate uncertainty-aware decisions affirms its stature as an indispensable tool in modern extreme value analytics and risk-sensitive environments.

Acknowledgement: The author gratefully acknowledges the financial support provided by the Ministry of Tribal Affairs (MoTA), Government of India, under the National Fellowship for Tribal Students (NFST), Award Number 202425-NFST-KAR-00153 dated as 19-03-2025.

Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author Contributions: All authors contributed to the conceptualization, methodology development, data analysis, and manuscript preparation, and have approved the final version of the paper.

REFERENCES

- 1. Carlin, B. P., & Louis, T. A. (2009). Bayesian methods for data analysis (3rd ed.). Chapman and Hall/CRC.
- 2. Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer.

- 3. Davison, A. C., & Smith, R. L. (1990). Models for exceedances over high thresholds. *Journal of the Royal Statistical Society: Series B (Methodological)*, 52(3), 393–442.
- 4. Embrechts, P., Klüppelberg, C., &Mikosch, T. (1997). Modelling extremal events: For insurance and finance. Springer.
- 5. Farkas, A., Naveau, P., &Ribatet, M. (2021). Bayesian regression trees for peaks-over-threshold modeling of extreme values. **Extremes**, 24(1), 1–30.
- 6. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). **Bayesian data analysis** (3rd ed.). CRC Press.
- 7. Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. *Water Resources Research*, 15(5), 1049–1054.
- 8. Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research*, 15(1), 1593–1623.
- 9. Hosking, J. R. M., & Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. *Technometrics*, 29(3), 339–349.
- 10. Hu, T., Tancredi, A., & Castellanos, M. E. (2024). Mixture models for threshold exceedances in multivariate extreme value analysis. *Computational Statistics & Data Analysis*, 187, 107031.
- 11. Huser, R. (2022). Tail dependence in space and time. Annual Review of Statistics and Its Application, 9, 405–427.
- 12. Liu, J., & Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. *In Exploring the limits of bootstrap* (pp. 225–248). Wiley.
- 13. Najafi, M. R., Moradkhani, H., & Jung, I. W. (2013). Assessment of hydrologic uncertainty using a Bayesian framework. *Water Resources Research*, 49(8), 5417–5432.
- 14. Pickands, J. (1975). Statistical inference using extreme order statistics. *The Annals of Statistics*, 3(1), 119–131.
- 15. Santos, J. M., Ferreira, J. A., & Pereira, J. M. C. (2020). Modeling air pollution exceedances with a hierarchical Bayesian framework. *Environmetrics*, 31(6), e2623.
- 16. Stolf, R., Zorzetto, E., & Huser, R. (2023). Hierarchical modeling of spatial extremes using the generalized Pareto distribution. *Spatial Statistics*, 56, 100722.
- 17. Velthoen, R., Janßen, H., & Friederichs, P. (2021). Boosting generalized Pareto models for extreme value analysis. *Extremes*, 24, 45–72.
- 18. Yue, S., He, Y., & Wang, L. (2025). Non-stationary modeling of extreme events with covariate-dependent thresholds. *Journal of Hydrology*, 615, 129104.
- Zorzetto, E., &Stolf, R. (2023). Bayesian regularization for generalized Pareto models with small samples. Bayesian Analysis. Advance online publication.
