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captures within-group volatility and cross-group heterogeneity through structured prior and
hyperprior hierarchies. To address the limitations of classical estimators under sparse data and heavy-
tailed regimes, we compare Maximum Likelihood Estimation (MLE), Method of Moments (MoM),
Probability-Weighted Moments (PWM), and Empirical Percentile Method (EPM) against our
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Value Theory, No-U-Turn Sampler, Sampler (NUTS), ensuring efficient posterior exploration in high-dimensional spaces. Asymptotic
Effective sample size, Markov Chain Relative Efficiency (ARE) as performance diagnostics. Simulation studies and empirical financial
Monte Carlo (MCMC).

data from Nifty 50 and S&P 500 sectors substantiate the model's superiority in estimating Value-at-
Risk and Expected Shortfall, thereby affirming its relevance in actuarial science, operational risk, and
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INTRODUCTION

The statistical modeling of extreme events has seen significant evolution over the past decade, driven by the need to quantify and
predict rare but impactful phenomena in domains such as environmental science, traffic safety, and finance. Extreme value theory
(EVT) serves as a foundational framework for quantifying rare, high-impact events in domains such as finance, insurance,
hydrology, and climate science. Among EVT models, the generalized Pareto distribution (GPD) has emerged as a pivotal tool
under the Peaks-Over-Threshold (POT) paradigm for modeling tail exceedances (2)(4). The classical method such as maximum
likelihood estimation (MLE), while asymptotically efficient, often exhibit instability in small samples or under model
misspecification (9)(3). To mitigate these issues, alternative approaches including the method of moments (MoM) (14),
probability-weighted moments (PWM) (7), and empirical percentile methods (12) have been proposed, albeit with limitations in
robustness and adaptability. Recent advances in Bayesian inference offer a compelling solution through hierarchical modeling
frameworks, which not only accommodate parameter uncertainty but also enable partial pooling across heterogeneous groups

(6)(1).

Hierarchical Bayesian GPD models have been effectively utilized in hydrology (13), spatial extremes (16)(11), and air pollution
exceedances (15), often outperforming their classical counterparts in both interpretability and stability. Furthermore, mixture
models combining bulk and tail distributions have been explored for better posterior calibration in multivariate settings (10).
Gradient-based sampling methods like the No-U-Turn Sampler (NUTS) and Hamiltonian Monte Carlo (8) have revolutionized
computational efficiency in high-dimensional posteriors. Comparative studies highlight the superiority of Bayesian regularization
in finite-sample regimes (5)(17)(19). Recent innovations include Bayesian regression trees for POT modeling (5), gradient-
boosted GPD estimators (17), and non-stationary hybrid models incorporating covariate-driven thresholds (18). This paper builds
on these developments by integrating multi-level priors, robust inference techniques, and simulation-based diagnostics into a
comprehensive framework for hierarchical Bayesian GPD modeling, tailored for actuarial, operational, and financial tail-risk
estimation.
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METHODOLOGY

Model Framework

A three-level hierarchical Bayesian structure allows us to incorporate multiple layers of uncertainty and dependence, accounting
for both within-group variability and across-group heterogeneity. The levels are:

Level 1: GPD likelihood for exceedances above a threshold. For group j € {1, ...,/}, and observations x;; such that x;; > u;,
assume: u; = quantile (p(xl.j)),
(xl-j - uj) ~ GPD(§;, 0)), fori = 1,...,n

The GPD density function is defined as

1

f§(1+%")_a if € #0
f(x|&,0) = Vx>0 >0 (1
2e@) if =0

Level 2: Group-specific priors forfj and o;. Each group j has its own shape and scale parameters drawn from normal priors (log-
transformed scale parameter for positivity):

§~N(upi),  logo; ~ N(u,,75)
This layer captures the between-group variability in tail behavior and spread of the excesses.

Level 3: Hyperpriors on e M, and T?, Tﬁ. It is reflecting uncertainty in population-level effects. We assume non-informative or
weakly informative priors for the hyperparameters to allow the data to inform the population-level inference:

ue~NOD, o ~NO1)

We choose variance as 10 because the prior variance because it provides a weakly informative prior to the data dominate
inference while still stabilizing computation. The exact choice N(0,1)is not universal, but it is consistent with the standard
practice of using weakly informative Normal priors for hierarchical GPD modeling.

‘r? ~ Inverse — Gamma(a;, bf), Ti ~ Inverse — Gamma(aa, b,,)
Cumulative Distribution Function (CDF)
The cumulative distribution function of (xl-j |Ej, aj) is given by

1

Feo) = [{2(1+5)den )
After simplifying, the cumulative distribution function becomes
(1—(1+%")_§ ifE#0
F(x|),05) = Vx>0, 1+%">0 3)
\1—es if€=0

Estimation methods for the parameters of the HB-GPD
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Let (X,,X,,...,X,) be a random sample of size n from a GPD with d.f. given in (1) and let (X.,,X,.,...,X,.,) be the
ascending ordered sample. The observed and its corresponding ascending ordered samples will be denoted respectively by

x = (X1, %, %) and (Xp., X e o) X))

i. Maximum Likelihood Estimation (MLE)

ML estimators only exist for & # 0 and § = 0, the log-likelihood
( n

1 &x; _(E—Ll) '
[[F0+3) 7 wewo

i=1

nle_(g) ifé=0
o

log[L(§, 05 2)] = §

\ i=1
n 1
11 \(79)
ogleeoil = | [2(1+2) 7 im0
i=1
n(-1)=¢&X%, (W) (4)
Zil(a:—?x-)
0= i (5)
i:1(0+§’xi>

The equation (3) and (4) are non-linear in ¢ and o. The MLE of ¢ and o are obtained using numerical optimization techniques.

ii. Method of Moments (MoM)

Let xq, X;, ..., X¢be the sample and let f(x;&;,¢,, .., §x) be the density function with parameters §,,¢,, ..., §, . If u; is the rt
moment about origin, then

1x" X\ -1
B el U ) if €% 0
M, =
1" X
L—eam ifé=0
6
i . (6)
. x X\ "Fio1
T =—(1+—) ¢ 1dx
T EU o
2
E=(1—2§) (7)

- (-F)

2&-1
)y (=
ot 120—0( f_1) &
; = k
W= r+k+1
&) _L &) L
o1 Z;}“;o( f,{‘l)fk o1 Z;}“;o( fk‘l)fk
Put r =1 then p, = is the mean and p, = . Variance of the HB-GPD distribution is

k+2 k+3

; \2 A ~ . .
Hy = W, — (“1) .The moments estimates §,, . anday,yare computed via MCMC techniques.

iii. Probability Weighted Moments (PWM)
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Let F(x) be the CDF of the r™™ PWM and then B, =E [xF(x)]
11k 1
1 (=)
; -j [ (2 (20+2) e
o o
( -4
( ) 9)

9)-)
e ()

,—\ ,_.

- I/l I
N e=a)

(¢-1)?
284783 +(6+8/)§%~(5+2)j§+j?

Therefore, T(¢,)) = [ ] The probability weighted moment is

k

Mo =0 ) (1) O™ 166))

Jj=0

The estimates &, and& pyy,are computed via MCMC techniques.

PWM

i.  Empirical Percentile Method (EPM)

The Empirical Percentile Method estimates a quantile of a distribution by ordering the data and selecting the value corresponding
to a specific percentile rank. Unlike parametric methods, EPM relies solely on the empirical distribution of the sample, making it

robust against model misspecification. Given a sample of size n, let X (1) < X() < -+ < X(;,) denote the ordered statistics.

1
The inverse CDF of F(x|é,0) =p=1— (1 + fxp) *The pth empirical percentile is defined as:

2, -<[a-n) 1 "

£ = é[(l —p) ¢ —1] (11)

S = (12)
[G-p) " 1]

. A . ~ Q
If p = Median = %then Ogpy 1S becomes Gppy = 3010 . Empirical percentile estimates EEPM

ando zpyare computed via MCMC

techniques.
Bayesian Approach of Prior and Hyperprior Parameters

The prior distribution for the parameter o and ¢ is defined by the level two of our hierarchy

p(0,¢la b, ug te) = p(ola,b) * p(§|ue, te)

a

Where,p(cla, b) = Ea“‘le_b”, Vo > 0 (Gamma distribution)
T i3 2
p(§|u§, Tf) = /%(6_7(5_”5) ) ,V&eR (Normal distribution)

20 (®)

The prior distribution for the hyper parameters a, b, u(t) 72 P Vp and‘rz( )i

is defined by level three of our hierarchy

p(a' b' UE'Tflaa' Ba' dp, ﬁb'mo'so' Az, ﬁ‘r) = p(alaa' ﬁa) * p(blab' Bb) * P(H{|mo) * p(T$|ar' ﬁ‘r)
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B aa-1 —Baa B%b ap—1,—-Lpb
Where,p(alaa,ﬁa)=ma a~le7Pal g > 0 and p(blab,ﬂb)=r7bb b=le=PbP vh > 0

S _S_O 2 ar _
p(pe|m,) = ﬁ(e #(1e-mo) )Vufe]R and p(t¢|a,, B;) = I":xT T?T Lo—bat Ve >0

The posterior distribution is proportional to the joint probability distribution

p(0,¢,a,b, pg, Te|x) < p(x,0,€,a,b, pg, ¢ )
p(0.§ a,b, ug, 7e|x) o
_r a T aa @
{[a_n n (1 n %) ;—1] . [?_aaa_le_b ] * [\/g (e_?s(f—uf)z)] % [?Ta aaa—le—ﬁaa] * [% bab—le—ﬁbb] *
[ [ (o)) [ rese] (13)
21 ra; §

The hyperparameters ugt), 7 gt) , ugt) andt? ,(f) have conjugate priors, due to normality assumption

P(ug) Xi) [ H{zl p (E ]-|u§, 72 ¢ ), the hyperparameters ugt)andugt) follow normal and the hyperparameters ng) and‘rzg) follow
inverse- gamma distribution. That is

T & B
Me ~ N : £21]’ (J'TEZ)I

20 I 1 (_ )2
7°¢ “~Inv — Gamma a§+2, b§+zz Ej Mg

Comparison of Estimation Methods

We compare the performance of various parameter estimation techniques, Hierarchical Bayesian approaches-based on their bias,
variance, robustness, and efficiency.

Asymptotic Relative efficiency (ARE)

Let us assume the both parameters are consistent for parameter 6 and asymptotically normal for [ 4 and@B, \/;(/H\A -0)
d A~

- N(0,V,), whereV, = Avar(6,)

\/Z(@B - B)E)N(O, V), whereV, = Avar(@B)

V, and V are asymptotic variance being the variance of the limiting distribution. The asymptotic efficiency of 0 4 relative to 0 g 18
defined by the ratio of their asymptotic variances

~ Avar(fMLE)
ARE(@A‘BB) Avar(éMoM)
0.2
(%)
n(l—2§&)
=(1-28<1 (14)

The asymptotic efficiency of [ 4 relative to @B is conclude that by the ratio of their asymptotic variances. If ARE (éA, 93) < 1then
Vg <Vy— @B is more efficient. And if ARE(@A, @B) >1thenVy >V, — @A is more efficient. This ratio emerges naturally

from the asymptotic distribution of the estimators.

Bayesian Inference under Hierarchical Framework

Algorithm-I: MCMC Method; Gibbs-MH Based Full Posterior Sampling for Hierarchical GPD Model
The Gibbs Sampling with Metropolis-Hastings (MH) algorithm for the Hierarchical Bayesian GPD Model is
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(i) Initialize

T: Total number of MCMC iterations
J: Number of groups
N; : Number of exceedances in group j

x;;: Exceedances such that x;; > u;
0, = (¢, 10go;)

J
Group-Specific parameters {EJ@, a]@}
j=1

2(0)  (0) . 2(0)
§

Hyperparameters: ,ugo), T w7,
(ii)For each iteration (t = 1,2,3,..T)

The iteration t is: Sampling Hyperparameters and Group-Specific Parameters. Samples of Hyperparameters: Let J be the number
of groups. Gibbs step Sample Hyperparameters are

(o1 e} (4 1 o) o 2 an 2 o)

il v _

T?Zl:l J J 1\
~N _—, —_ 4 —
Ke A 2 100

— + —
2
T¢ 100
J
2 J 1 :
7z ~ Inv — Gamma a+5,b+5=1 (Ej—uf)
j=1
1
‘r_ﬁzf'zl logo; )i 1\"!
~ N —_—, —_ 4 —
Ho L. 1 (rg 100)
2
27 100
J
5 ] 1 2
7, ~ Inv — Gamma| a + E' b +E (logo'j — uj)
j=1

Metropolis-Hastings Step: For Each Group (j = 1,2,3,...,J) or Samples of Group-Specific Parameters Ej ando;: Let 6; =

g(t—l)

(E](t—l)‘ log Jj(t—l)), The purposed new values that are 6, ~ N ( i ,Z) then compute the log posterior and acceptance

probability for HB-GPD density.

nj

logp(6; | x;) = Zlogf(yij | &5,0) + logN(&; | pg, 78 ) + logN(loga; | o, 73)
i=1

Where f(x;; | £}, 0;) is the HB-GPD density:
1
1 x\ §-1
( (1 + S(—) if €0

o o
f(x|§,0) = Vx>0 ¢>0

10

ifé=0

o(6]x:) © 8;, withprobability a
—pEny | Where 6,7 =1 1) ,
p(ﬂj Ix;) 6, 7, otherwise
(iii) Mixture Proposal (for robustness when (fj = 0):

{0?_1) + €, with probability 0.5
sample from prior, with probability 0.5

The acceptance probability is @ = min (1,

0; =

(iv) Repeat for all T Iterations
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Algorithm-II: NUTS-Based Full Posterior Sampling for Hierarchical GPD Model

A structured algorithm loop for NUTS (No-U-Turn Sampler) applied in our hierarchical Bayesian GPD model as a replacement
for Metropolis-Hastings (MH) steps in the Gibbs sampling framework. The inputs are

no
Grouped data: {xij}, ,Jj=1,..,]
=n
Model structure: i. Likelihood: Xy — U~ GPD (fj, aj)

ii. Priors: §; ~ TruncatedNormal(uf, T?) and loga; ~ N(Hioger Thgo)
Hyperpriors: Ber By ™ N(0,10?) and T?,leogg ~ InverseGamma(2,2)

(i) Initialization

Set number of samples T, burn-in T, and number of chains C. Then choose initial values
0 = (f' O B Hipgor T Tlogo)'

(ii) NUTS Sampling Loop:

Fort=1toT

Evaluate Joint Log Posterior:

] )
logp(8 1x) = ) logn(x;15;.5) + ) 10gn(E; u.72)
HB—GPD likelihood Shape Prior

J
+ Zfogp(fogﬂ,,- | Hioge:Tiage ) + logp(pz) +10gP(Hiags)

:;'=1 Hyperprior Hyperprior

Scale Prior
+ logp(ef) + logp(vi,4.)

Hyperprior Hyperprior

Compute Gradient of Log Posterior

Vologp(6 | x) = —v,U(6)
The leapfrog integrator (Discretized Hamiltonian Dynamics) is defined as the total energy

HO,r)=U®)+K()

Where: 0: Vector of model parameters are ugt),‘rzét), u,(,t) and 1 f,t)
r: auxiliary momentum variable

U(8): potential energy,

U(8) = —logp(6 | x) = —(likelihood + priors + hyperpriors)
K (r): kinetic energy, K (r) = %rTM 1y

The updated gradient steps are rt% =71, - 2 v,U(6,)

_ -1
0,41 =60, +eM rt%

€
Tey1 = rt+% - E |79U(0t+1)

These steps are repeated to simulate the path of (6,7) in phase space. The stopping rule of NO-U-TURN method is (6t -
07 ) r <0or(6"—67)r" <o0.

Simulate Hamiltonian Trajectory

e Start with random momentum r ~ N(0,[)
e Simulate leapfrog steps for (6,7)
e Stop when trajectory turns back (No-U-Turn condition)
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Propose new state 8

e Select a point from the trajectory with Metropolis-adjusted weights
e Accept/reject automatically handled via NUTS mechanics

Adapt step size and Mass Matrix (During burn - in)
e During t < Ty, adaptively tune:

e Step size €
e Mass matrix (covariance of parameter
(iii) Output

T
Posterior samples {G(t)}tzlfor: Ej, Tjr Ko Hypgor Tzandr, , these estimate the trace diagnostics, give posterior summaries and
plots.

(iv) Repeat for all T Iterations

RESULTS AND DISCUSSION

A Simulation Study

Our modeling framework integrates a three-level hierarchical Bayesian structure utilizing the Generalized Pareto
Distribution (GPD) to model threshold exceedances. This structure allows for:

e Level 1: Modeling individual exceedances via GPD.
e Level 2: Group-specific parameters governed by hyperpriors to allow within-group variation.
e Level 3: Population-level hyperparameters capturing across-group heterogeneity.

Given the analytical intractability of the full posterior, we rely on Markov Chain Monte Carlo (MCMC)techniques to draw
samples from the joint posterior distribution. These simulations serve as the foundation for parameter estimation, credible
intervals, and uncertainty quantification.

In hierarchical Bayesian frameworks, efficient posterior sampling is critical due to the complex, high-dimensional parameter
spaces involved. The Gibbs sampler with Metropolis-Hastings (Gibbs-MH) provides a hybrid approach, where conditionally
conjugate parameters are updated via Gibbs steps, while non-conjugate parameters are sampled using the MH algorithm. This
method ensures flexibility and robustness, especially when dealing with partially tractable posterior structures. However, it may
suffer from slow convergence and poor mixing in correlated spaces. To address these limitations, the No-U-Turn Sampler
(NUTS), an adaptive variant of Hamiltonian Monte Carlo (HMC), offer a gradient-based solution that avoids random walk
behavior by simulating Hamiltonian dynamics. NUTS automatically tunes trajectory length and step size, improving exploration
efficiency and eliminating the need for manual tuning. Its capacity to handle high curvature and strong dependencies makes it
particularly suitable for hierarchical models with intricate posterior geometries.

i. Parameter Estimation Using MLE and MOM Across Varying Sample Sizes

The simulation results provided for the parameter estimates of the Generalized Pareto Distribution (GPD) using two
estimation methods MLE, MOM, PWM and EPM across four sample sizes. All four estimation methods MLE, MOM, PWM and
EPM demonstrate consistent performance in estimating the shape parameter ¢, converging toward the true value (¢ = 0.3) as
sample size increases.

While initial estimates at n = 2500 slightly underestimate ¢ due to limited extreme value representation, accuracy improves
notably at n = 5000, where all methods yield tightly clustered values near 0.3. A minor dip observed at n = 7500 appears to stem
from sample variability rather than methodological shortcomings.

By n = 10500, all methods align closely with the true &, confirming their asymptotic consistency. Among them, MLE and PWM
exhibit slightly faster and smoother convergence. The table 1 gives that all four methods converge toward the true values of ¢ and
o as sample size increases. The model provides a good fit for the HB-GPD parameters (¢ and o), especially at moderate to large
sample sizes (n = 5000). All four estimation methods (MLE, MOM, PWM, EPM) show asymptotic consistency, meaning their
estimates converge closely to the true values (§ = 0.3,0 = 1.0). The slight deviations at smaller sample sizes are expected due
to sample variability, not model inadequacy. Overall, the model demonstrates robustness and reliability across methods and
sample sizes.
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Table 1. Estimation of (¢) and (o) parameters of the HB-GPD using MLE, MOM, PWM, and EPM across varying sample sizes

Parameter & a
n MLE MOM | PWM EPM MLE MOM | PWM EPM
2500 0.2685 | 0.2644 | 0.2651 | 0.2665 | 1.0405 | 1.0468 | 1.0401 | 1.0499
5000 0.3019 | 0.3010 | 0.3035 | 0.3034 | 0.9896 | 0.9862 | 0.9901 | 0.9831
7500 0.2890 | 0.2899 | 0.2897 | 0.2894 | 1.0033 | 1.0010 | 1.0040 | 1.0068
10500 0.3032 | 0.3010 | 0.3000 | 0.2999 | 0.9999 | 1.0009 | 1.0026 | 0.9996

Table 2. Impact of sample size on hierarchical GPD hyperparameter estimation

. Hyper HDI MCSE ESS o
Sample size pargrfleter Mean SD 3% 97% Mean SD Bulk Tail R
e -7.412 4.756 -16.469 -0.483 0.097 0.098 2825 2243 1.0
2500 Hiogs 0.121 0.380 -0.626 0.819 0.007 0.008 3422 2145 1.0
T¢ 1.454 0.995 0.280 3.144 0.019 0.033 3055 3508 1.0
Tiogs 0.674 0.461 0.163 1.378 0.009 0.035 3708 2690 1.0
e -7.240 4.691 -15.676 -0.269 0.078 0.085 4566 3915 1.0
5000 Hiogo 0.149 0.368 -0.530 0.858 0.004 0.005 8374 6119 1.0
T¢ 1.561 1.097 0.295 3453 0.016 0.026 5190 5844 1.0
Tiogo 0.696 0.433 0.186 1.462 0.006 0.019 9963 6371 1.0
e -6.857 4.569 -15.438 -0.302 0.058 0.060 7553 7204 1.0
7500 Hiogo 0.104 0.369 -0.601 0.797 0.004 0.006 10195 7452 1.0
s 1.611 1.130 0.281 3.606 0.014 0.022 7830 9331 1.0
Tiogo 0.678 0.458 0.179 1.408 0.006 0.015 10723 8010 1.0
e -6.857 4.533 -15.388 -0.357 0.045 0.047 11926 11571 1.0
10500 Hioge 0.102 0.378 -0.596 0.832 0.003 0.004 16726 12363 1.0
T¢ 1.609 1.170 0.272 3.577 0.012 0.022 11413 13913 1.0
Tiogo 0.697 0.499 0.176 1.467 0.005 0.016 17660 11142 1.0

Performance of MLE, MOM, PWM and EPM: In this hierarchical Bayesian modeling of GPD exceedances, MLE is optimal
for large, clean datasets but suffers near boundary cases. PWM strikes a practical balance between robustness and interpretability,
making it a strong candidate for prior generation. MoM and EPM serve as simple alternatives or backups when other methods fail.
The hierarchical framework enhances these methods by regularizing unstable estimates and borrowing strength across groups,
improving inference on extreme tail behavior.

ii. Bayesian Parameter Estimation Using NUTS with Hamiltonian Monte Carlo

The No-U-Turn Sampler (NUTS), an adaptive extension of Hamiltonian Monte Carlo (HMC), is employed to estimate the model
parameters efficiently by leveraging gradient information to explore the posterior distribution. This method avoids random walk
behavior and automatically tunes path lengths, resulting in faster convergence and more effective sampling of complex posterior
landscapes.

Sampla Slze = 2500 Sample Size = 5000

| ape

Sample Slze = 7500 Sampla Si5e & 10300

[p— [Eu—

Figure 1. Trace and Density Diagnostics for Hierarchical GPD hyperparameters
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As the sample size increases from 2,500 to 10,500, the posterior mean of the location hyperparameter He becomes slightly less

negative, suggesting stabilization in parameter estimation with more data. The standard deviations (SD) and Monte Carlo standard
errors (MCSE) for all parameters decrease, indicating improved precision. The effective sample sizes (ESS) for both bulk and tail
distributions increase notably, confirming better sampling efficiency and convergence. All R values are 1.0 across the board,
reflecting excellent convergence of the MCMC chains. Overall, the hierarchical Bayesian GPD model demonstrates improved
parameter stability, efficiency, and robustness as the sample size grows. These plots demonstrate excellent MCMC convergence,
posterior stabilization, and parameter learning as data increases. The hierarchical Bayesian GPD model improves significantly
with larger datasets, showing more confident and reliable inference of both location and scale components.

iii. Bayesian Hyper Parameter Estimation Using Gibbs-Sampling with Metropolis-Hestings Algorithm

This analysis uses a Bayesian hierarchical model to estimate the parameters of the Generalized Pareto Distribution (GPD)
specifically the shape parameter ¢ and the scale parameter o across multiple groups. The model assumes group-level parameters &;
and gj, which are drawn from hyperpriors governed by hyperparameters i, rgfor ¢j» ), ,ulogaandrlzoga . Estimation is performed
using Markov Chain Monte Carlo (MCMC) sampling with a Gibbs sampler, where Metropolis-Hastings (MH) steps are
employed for parameters without closed-form conditionals. The MCMC was run for a sufficient number of iterations, with the first
5000 samples treated as burn-in, and 15000 effective samples retained for posterior analysis.

Table 3: Posterior mean estimates of group-level HB-GPD parameters and hyperparameters

Burn-in: 5000 Iterations
Effective Samples after burn-in 15000
Posterior Means (after burn-in)

True §; ¢; (Mean) True g; g; (Mean)
0.1 0.1313 0.1 1.0310
0.2 0.1792 1.2 1.3661
0.3 0.3397 2.0 2.1347

Hyperparameter Posterior Means
ug T? u‘ngG' leogzr
0.211 1.007 0.365 1.441

This technique encapsulates the inferential outcomes derived from a hierarchical Bayesian framework applied to the Generalized
Pareto Distribution (GPD), utilizing a Markov Chain Monte Carlo (MCMC) scheme with a 5,000-iteration burn-in and 15,000
effective posterior samples. The posterior means of the group-specific shape parameters ¢;exhibit commendable fidelity to their
respective ground truths, with estimates of 0.1313, 0.1792, and 0.3397 for true values 0.1, 0.2, and 0.3, respectively. An indication
of robust posterior contraction and precise learning under the latent structure. Likewise, the inferred scale parameters o;
demonstrate strong concordance with their true counterparts, albeit with a marginal upward bias typical in finite-sample regimes,
especially within heavy-tailed contexts. At the hyperparameter level, the posterior mean of the shape location hyperparameter
pe = 0.211 closely mirrors the empirical average of the true &;, while the associated variance ‘rg = 1.007 captures moderate
dispersion across groups, affirming the model’s capacity to encode inter-group heterogeneity. The log-scale hyperparameters are
Hioge = 0.365 and leoga = 1.441, reveal a consistent and well-calibrated estimation of the central tendency and variability in the
log-transformed scale parameter. Collectively, the results substantiate the efficacy of the hierarchical Bayesian paradigm in
recovering latent parameter structures, ensuring both local fidelity and global regularization through carefully specified prior
hierarchies.
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Figure 2. MCMC trace and posterior plots for GPD parameters and hyperparameters across three groups
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The presented MCMC trace plots and posterior histograms collectively demonstrate effective convergence, mixing, and parameter
recovery for the hierarchical Bayesian model applied to GPD parameters. The trace plots for both group-level (¢,logo ) and
hyperparameters (U¢, Hioggs T? and t%, go) exhibit stationarity and rapid exploration of the parameter space post burn-in, indicating
well-behaved chains. Posterior histograms for § and o closely align with the true parameter values across all groups, showcasing
high estimation accuracy and model calibration. While some variability is observed particularly inrlzogg this reflects the model’s

capacity to capture group-specific heterogeneity. Overall, the hierarchical framework successfully balances parameter pooling and
flexibility, yielding robust and reliable posterior inference.

Posterior Credible Intervals (95%)

The reported 95% credible intervals for the hyper-parameters encapsulate the central posterior mass, reflecting the uncertainty
surrounding the hierarchical priors. Specifically, the interval for ,uf(—0.8903, 1.2060) suggests that the global mean of the shape
parameter ¢ is most plausibly centered near zero, yet exhibits moderate dispersion, indicating non-negligible heterogeneity across
groups. Similarly, the credible interval for Hiogo (—0.9187, 1.4850) reflects a wider posterior belief over the global location of

the log-scale parameter, hinting at broader group-level variability in scale. The intervals for T? (0.2843, 2.9170) and

legga [0.3079, 2.9786]quantify the posterior belief over the inter-group dispersion in ¢ and logo, respectively. The non-trivial

lower bounds and substantial upper limits of these intervals signify pronounced variability across clusters, thereby justifying the
hierarchical structure and endorsing the presence of meaningful group-level stochasticity in the latent parameter space.

Effective Sample Size (ESS) and R-hat Convergence Diagnostic

The convergence diagnostics for the HB-GPD model demonstrate strong posterior stability and sampling efficiency. Effective
Sample Sizes (ESS) for both bulk and tail exceed 10,000, indicating minimal autocorrelation and high-quality inference across
chains. Monte Carlo Standard Errors (MCSEs) remain low (< 0.035), ensuring precise posterior estimates, while Gelman—Rubin R
values uniformly equal to 1.0 confirm full convergence. Together, these metrics affirm that the hierarchical Bayesian procedure
yields reliable, well-mixed, and statistically valid posterior distributions suitable for robust inference in extreme value modeling.

Enhancing Model Robustness through PPCs, Regularization, and Strength Borrowing

The HB-GPD model effectively captures tail risk by integrating posterior predictive checks to validate fit in extreme value
regions. Regularization through hierarchical priors enables borrowing strength across subgroups, yielding stable and efficient
parameter estimates even under data sparsity. This framework enhances model robustness, ensuring resilience against outliers and
structural misspecification. Together, these elements make HB-GPD a powerful tool for reliable inference in actuarial, financial,
and environmental risk domains. The below plots collectively demonstrate the effectiveness, reliability, and robustness of the
Hierarchical Bayesian GPD (HB-GPD) model.

Posterior Predictive Checks: Normal Curve, Observed KDE, and Scatter
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Figure 3. Graphical illustration of the robustness of the HB-GPD model
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Figure 4. Regularization Effects in Hierarchical Bayesian GPD Modeling

The figure 3 presents posterior predictive checks across multiple groups and sample size, where the fitted distributions align
closely with observed data, indicating strong model fit and generalizability across heterogeneous data regimes. Figure 4 highlights
the impact of regularization in hierarchical modeling, where shrinkage effects stabilize parameter estimates across varying levels
of group-specific noise, underscoring the model’s capacity to borrow strength and mitigate overfitting. Together, these diagnostics
validate the HB-GPD model's capacity for reliable inference, particularly under data sparsity and tail-heavy risk conditions.

Model Comparison by using DIC, WAIC, BIC, AIC and RMSE
The model comparison using DIC, WAIC, AIC, BIC, and RMSE demonstrates that the HB-GPD model improves consistently

with increasing sample size. Lower RMSE and better-aligned information criteria indicate enhanced predictive accuracy and
model fit, confirming the model’s robustness in capturing extreme value behavior.

Table 4. Model Comparison metrics of DIC, WAIC, BIC, AIC and RMSE

Sample Size DIC WAIC BIC AIC RMSE
2500 5980.23 5985.74 5988.98 5977.56 0.9621
5000 11960.3 11965.1 119733 11956.7 0.9544
7500 17945.2 17950.6 17963.6 17941.8 0.9532
10500 25101.4 25108.3 251244 25097.5 0.9517

As sample size increases, all model selection criteria (DIC, WAIC, BIC, AIC) scale proportionally while RMSE steadily decreases
from 0.9621 to 0.9517, indicating improved predictive accuracy and model stability. This trend underscores the HB-GPD model's
capacity to efficiently harness larger data volumes, enhancing both inferential precision and robustness in tail-risk modeling.

APPLICATIONS

Tail Risk Modeling in Insurance and Reinsurance Using Real-World Financial Data

In insurance and reinsurance, especially in financial and catastrophe risk management, it's critical to model extreme losses tail
events like market crashes or sudden claim spikes. Stock market data (daily returns or log-returns) can serve as a proxy for
financial risk exposure, where negative extremes represent claim-generating events. The GPD is ideal for modeling the
exceedances over a high threshold, and the HB-GPD enhances this by modeling heterogeneity across different stocks, sectors, or
time windows hierarchically. We have taken Nifty 50 and S & P 500 stock daily returns and I estimated log returns and filter
exceedances over a threshold of 95™ percentile. We use grouping strategies, the groups are by sector (Finance, Tech and Pharma),
quarterly time periods and company clusters. We estimated Value-at-Risk (VaR) and Expected Shortfall (ES) for each group by
using

Reinsured loss = max(0,X — R),where R is retention limit

Used HB-GPD to simulate thousands of such scenarios, and compute, premium loadings, Stop-loss probabilities and Capital
requirements at 99.5% quantile.
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Table 5: Tail Risk Estimates Across Sectors Using HB-GPD: Posterior &, 6, VaR(99%), and ES(99%)

Density

. . Expected
0, 0,

Group Posterior Mean ¢ | 95% HDI & | Posterior ¢ | VaR (99%) Shortfall (99%)

Finance 0.71 (0.55, 0.88) 142 3.57 4.89

Tech 0.39 (0.22,0.58) 0.97 2.14 2.90

Pharma 0.65 (0.45, 0.80) 1.10 3.11 4.12

Human Error 0.32 (0.15, 0.49) 0.78 1.90 2.63
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Figure 5. Posterior summaries with HDI and Effective Sample Size (ESS)
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Figure 8. Tail Risk Measures Derived from the Posterior Distribution

The hierarchical Bayesian GPD model reveals marked heterogeneity in tail risk behavior across industrial sectors. The Finance
and Pharma sectors exhibit elevated posterior mean estimates of the tail index (§ = 0.71 and 0.65, respectively), accompanied
by broader 95% HDIs, indicating heavier-tailed loss distributions and substantial uncertainty in extreme outcomes.
Correspondingly, these sectors also display higher scale parameters (o) and extreme quantile measures such as the 99% Value-at-
Risk and Expected Shortfall signifying significant exposure to catastrophic losses. In contrast, the Tech and Human Error domains
manifest lighter tails (¢ < 0.4) and lower risk magnitudes, suggesting more contained but still non-negligible extreme-event
profiles under the fitted HB-GPD framework. Posterior parameter estimates for 1 and ¢ are visualized with 94% Highest Density
Intervals (HDIs), indicating credible bounds around the posterior mean. The effective sample sizes (ESS) suggest high-quality
sampling and well-mixed chains, with convergence diagnostics supporting model stability. The Figure 6 demonstrates the HB-
GPD model demonstrates good fit and adaptability to group-specific tail behavior, capturing the heterogeneity in financial loss
distributions. The Figure 7 shows the shrinkage effect from the hierarchical prior centers group-specific estimates around the
global mean, reflecting effective regularization and borrowing of strength across structurally related groups. The Figure 8
quantifies extreme financial losses, demonstrating the HB-GPD model’s utility for risk-sensitive decision-making in insurance and
operational risk management. Finally, we captured the heterogeneity across portfolios, borrow strength in low data regimes, ensure
robust tail modeling of critical for solvency pricing and posterior uncertainty quantification improves regulatory risk reporting.

CONCLUSION

This paper culminates in the development and rigorous validation of a hierarchical Bayesian framework for modeling extremes
using the Generalized Pareto Distribution (GPD), offering a resilient statistical infrastructure for heavy-tailed phenomena. The
multi-level Bayesian hierarchy meticulously disentangles within-group volatility and inter-group heterogeneity, yielding posterior
inferences that are both granular and globally coherent. Comparative simulations across classical estimators MLE, MoM, PWM,
and EPM underscore the pronounced stability and adaptability of the Bayesian paradigm, particularly under sparse data regimes
and high tail-index uncertainty. By incorporating robust MCMC techniques specifically, Gibbs sampling with Metropolis-Hastings
and the No-U-Turn Sampler the model adeptly navigates complex posterior topologies, ensuring convergence and inferential
reliability. The proposed RETI and ARE indices substantiate a balanced estimator selection that respects both robustness and
asymptotic precision. Application to real-world financial sectors such as Finance, Pharma, and Tech reveals the model’s potency
in quantifying sectoral tail risk via VaR and Expected Shortfall metrics, effectively supporting actuarial, reinsurance, and
regulatory domains. The HB-GPD’s ability to borrow statistical strength, perform posterior regularization, and generate
uncertainty-aware decisions affirms its stature as an indispensable tool in modern extreme value analytics and risk-sensitive
environments.
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