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This study develops a computational economics framework for modeling and predicting rare financial
events, using cryptocurrency price shocks as an illustrative case. We treat shock detection as a binary
classification problem, where extreme returns are defined by the 90th percentile of absolute log
returns. To address the rarity of such events, we integrate the Synthetic Minority Over-sampling
Technique (SMOTE) with ensemble learning methods (Random Forest, XGBoost, Light GBM) and
benchmark against logistic regression. Using daily Bitcoin data from August 2024 to August 2025,
our results show that ensemble models—especially Light GBM-—achieve strong predictive
performance (AUC = 0.919) and substantially higher recall for shock detection. Feature importance
analysis highlights the predictive role of short-term volatility memory and liquidity variation,
consistent with theoretical constructs such as EVT, EMH deviations, and the Mixture of Distributions
Hypothesis. Beyond crypto currencies, the proposed framework provides a generalizable
computational approach to rare-event forecasting in economics, with direct applications to crises,
systemic liquidity shocks, credit defaults, and exchange rate collapses. By combining imbalance
correction with ensemble learners, this study contributes methodologically to the computational
economics literature on tail-risk prediction and systemic stability.
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INTRODUCTION

Cryptocurrency markets have rapidly evolved since Bitcoin’s 2009
inception. Analysts note that Bitcoin’s academic literature “has grown
very fast in recent years,” reflecting the intense research interest(Baur
& Dimpfl, 2021). Likewise, cryptocurrency’s decentralized design has
“garnered significant interest from both retail and institutional
investors”(4 Comparative Analysis of Statistical and Machine
Learning Models for Outlier Detection in Bitcoin Limit Order Books,
n.d.). Proponents cite benefits like cheaper and faster transactions and
the elimination of single points of failure(Team, 2024), as well as
open global access for anyone with an internet connection. Critics
counter that crypto markets exhibit extreme volatility — for example,
Bitcoin’s price swings are “almost 10 times higher” than those of
major currency exchange rates(Baur & Dimpfl, 2021b) — along with
pronounced  liquidity  fluctuations and a  “comparatively
underdeveloped market microstructure”(4 Comparative Analysis of
Statistical and Machine Learning Models for Outlier Detection in
Bitcoin  Limit Order Books, n.d.-b). These factors make
cryptocurrencies highly sensitive to large price moves. In particular,
price shocks — sudden, substantial spikes or drops in returns — pose
serious challenges to portfolio risk management, automated trading
systems, and regulatory oversight. Indeed, researchers emphasize that
accurately modelling and forecasting cryptocurrency volatility is
“vital for risk assessment, asset management, and regulatory policy”
in these markets (Zhou et al., 2025), highlighting the need for
effective shock prediction and hedging strategies. Financial

researchers have extensively applied time-series and statistical models
to forecast asset returns and volatility. For example, early
cryptocurrency studies used econometric models like GARCH and
ARIMA on Bitcoin returns(Zhou et al., 2025). However, because
crypto price series tend to be nonstationary, highly nonlinear, and
clustered, traditional models often struggle to capture their complex
patterns(Zhou et al., 2025). In response, many recent studies have
turned to machine learning. Advanced AI/ML methods (including
neural networks and ensemble techniques) have proven more flexible
and adaptive for volatile, non-linear data(Zhang et al., 2023). He
observed that deep learning models “perform better in prediction tasks
than linear and machine learning models in the financial field,
especially in the cryptocurrency market”. These techniques can ingest
large sets of features (e.g. lagged returns, volume, sentiment indices)
and uncover hidden signals. Nonetheless, most existing work still
targets general price prediction or volatility forecasting rather than
specifically identifying rare shock events. In fact, some literature
reviews note that the transmission mechanisms of cryptocurrency
price shocks remain understudied(Chen, 2025). In other words, few
studies explicitly tackle the classification of high-impact, low-
frequency jumps in crypto prices. This represents a critical gap in the
forecasting literature: most methods are optimized for average-case
movements, with relatively little attention to extreme tail events.
Several methodological gaps motivate this study. First, very few
studies have compared the performance of different ML classifiers
(e.g. linear versus ensemble methods) specifically for detecting crypto
price shocks, especially under severe class imbalance. Second, it
remains unclear which market-based variables (such as past returns,
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rolling volatility, or trading volume) might serve as early warning
indicators of an impending shock. Third, class imbalance is a
significant issue: shock events are rare, so naive models tend to
predict the non-shock class overwhelmingly. While techniques like
Synthetic Minority Over-sampling (SMOTE) are known to help in
imbalanced settings (Chawla et al., 2002), their use in crypto-shock
forecasting has been limited. Addressing these gaps could improve
hedging and risk-management tools for crypto portfolios. To fill these
gaps, we develop a supervised ML framework to predict rare price
shocks in the Bitcoin market using daily data over one year. The
process begins by cleaning the raw price series and constructing
feature variables, including lagged returns, volatility measures, and
volume indicators. A binary shock label is then defined by flagging
days when the absolute log-return exceeds the 90th percentile (a high-
return threshold). Because shocks are scarce, we apply the Synthetic
Minority Over-sampling Technique (SMOTE) to the training set,
creating synthetic shock examples to balance the classes(Chawla et
al., 2002). Finally, four classifiers — Logistic Regression, Random
Forest, XGBoost, and LightGBM — are trained on the features. We
evaluate their ability to predict shocks using metrics such as accuracy,
recall, F1 score, and the area under the ROC curve.

The study is guided by the following research questions

. Can supervised ML models reliably predict rare cryptocurrency
price shocks using limited but relevant market data?

. What are the most influential market predictors—such as
volatility, trading volume, or lagged returns—of impending
Bitcoin price shocks?

. How do different classification algorithms compare in terms of
performance, sensitivity to rare events, and robustness under
class-imbalanced conditions?

Beyond cryptocurrency-specific applications, this study contributes
more broadly to computational economics by offering a rare-event
modeling framework applicable to other domains where extreme
events play a disproportionate role. Financial crises, exchange rate
collapses, systemic liquidity shocks, and credit defaults share the
same statistical and computational challenges as cryptocurrency price
shocks: nonlinearity, volatility clustering, and severe class imbalance.
By integrating machine learning with statistical theories such as EVT,
EMH, and MDH, the framework provides a generalizable
computational architecture for anticipating tail events in economic
systems. In this sense, the contribution extends beyond Bitcoin
prediction and offers methodological insights into how computational
economics can more effectively address low-frequency, high-impact
events across different markets and macroeconomic contexts. The
remainder of this paper is structured as follows. Section 2 reviews
related work on machine learning applications in financial risk
prediction. Section 3 presents the theoretical context for rare-event
modeling. Section 4 details the methodology, including data
processing, feature engineering, and model development. Section 5
reports and interprets the empirical findings. Section 6 concludes with
practical implications and future research directions.

LITERATURE REVIEW

Cryptocurrency price prediction: Predicting cryptocurrency prices
is challenging due to extreme volatility and lack of historical
structure(John et al., 2024). Bouri et al. found that cryptocurrencies
exhibit far greater volatility than conventional stocks. Machine
learning methods are therefore favored. Recent studies show that
ensemble and deep learning models (e.g. GRUs, RNNs, LightGBM)
outperform traditional approaches for crypto forecasting (Bouteska,
2024). Sun et al introduced a LightGBM-based model combining
multiple cryptocurrency and economic indicators, reporting higher
robustness than other techniques. Incorporating alternative data can
also help. Gurrib and Kamalov (2021) used Bitcoin prices plus news
sentiment in LDA/SVM models, improving next-day directional
accuracy to 58.5% (better than chance). A recent survey highlights
emerging architectures as promising directions to further boost

prediction accuracy (John ef al., 2024). Overall, these works suggest
that advanced ML algorithms (ensemble, deep nets, gradient boosting)
are effective for cryptocurrency price forecasting under high
volatility.

Volatility forecasting and shock detection: Accurately modeling
volatility and detecting market shocks is critical in finance. Machine
learning models have been applied to capture volatility spikes and
regime changes. In an adaptive forecasting framework, Sun et al
demonstrate that their hypernetwork-LSTM model maintains
accuracy during extreme conditions by dynamically adjusting to
heightened volatility. Similarly, simpler recurrent models like LSTM
often outperform more complex transformers in crisis periods: one
study reports that during the 2008 financial crisis, an LSTM continued
to capture sudden volatility increases while a Transformer failed to
adapt(Bouteska, 2024). In systematic evaluations, Mansilla-Lopez et
al. (2025) review stock market volatility forecasting and find that
hybrid ML models (e.g. LSTM+GARCH) can reduce forecast errors
by over 10% in terms of MAE/MSE. These results indicate that
combining deep learning with traditional volatility models
significantly enhances performance, and that adaptive ML
architectures can effectively detect and adjust to shocks.

Imbalanced classification in finance: Many financial datasets are
highly imbalanced (e.g., fraud detection, credit defaults), requiring
specialized ML techniques. Approaches combine sampling with
learning to improve minority-class detection. For example:

Weighted oversampling + ensemble: Abedin et al. (2022) propose a
WSMOTE-ensemble method for small-business credit risk. By
generating synthetic defaults and using a bagged ensemble, they
improved minority (default) accuracy by 15.16% over baseline
methods. They show sampling-based classifiers significantly
outperform no-sampling approaches.

GAN-based augmentation: Adiputra ef al. (2025) benchmark GAN
oversampling for multi-class credit scoring. Using methods like
WGAN-GP to synthesize minority-class data, the best model
(WGAN-GP + Random Forest) achieved accuracy 0.873 and F1-
scores 0.806-0.936 across classes. This demonstrates that GAN-
generated samples can greatly improve classification on highly
imbalanced credit datasets.

Generative autoencoders and VAEs: Tayebi & El Kathali (2025)
develop autoencoder, VAE, and GAN models to augment fraudulent
transaction data. Their generative models synthesize new fraud
examples, which markedly boost detection performance compared to
conventional oversampling (SMOTE/ADASYN). They report
superior balanced accuracy and introduce a composite score (BFDS)
to evaluate improvements.

Differentiated sampling ensembles: Wang et al. (2024) introduce a
KSDE algorithm that detects and removes outliers, then creates
multiple balanced subsets via varying sampling rates. The weighted
ensemble of submodels attains a 12.46% higher true positive rate than
prior methods on credit risk data. These works collectively highlight
that advanced resampling (weighted SMOTE, GAN/autoencoder
augmentation) and ensemble strategies are effective for imbalanced
financial classification, substantially improving minority-class recall
and overall detection accuracy. Machine learning has become
indispensable for financial applications under challenging conditions.
For wvolatile and unpredictable markets like cryptocurrencies,
ensemble deep-learning models currently yield the best price forecasts
(Sun, 2020). In volatility forecasting, hybrid ML models reduce error
and can adapt quickly to shocks (Y. Sun et al., 2025). Handling
imbalanced data is crucial in finance: techniques such as weighted
oversampling, generative augmentation (GAN/VAE), and ensemble
learning have all proven successful in improving minority-class
classification (Abedin et al., 2022). Future research is focusing on
integrating emerging architectures (e.g. Transformers, hypernetworks)
and novel data sources (news sentiment, on-chain indicators) to
further enhance prediction accuracy and robustness in financial ML
models (Kamalov, 2021).
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Theoretical Framework: The conceptual foundation of this study is
grounded in a confluence of statistical theories, financial market
hypotheses, and machine learning paradigms that collectively inform
the behavior of extreme price movements in cryptocurrency markets.
The application of machine learning to predict rare events such as
cryptocurrency price shocks is supported by the increasingly complex,
noisy, and non-linear structure of digital financial systems—
conditions that often diverge from traditional assumptions of
normality and market efficiency.

Extreme Value Theory (EVT): Extreme Value Theory (EVT) offers
a statistical basis for modeling tail events that exceed high thresholds,
making it particularly suitable for identifying rare but impactful
phenomena in financial markets. Originally advanced by Tippett
(1928) and later developed through the work of Gumbel (1958),
Pickands, Balkema, and de Haan (1970s), EVT culminated in widely
used models such as the Generalized Pareto Distribution (GPD). In
this study, a percentile-based approach is used to define price
shocks—specifically, instances where the absolute return exceeds the
90th percentile of all observed returns—consistent with EVT’s
threshold exceedance framework (Extreme Value Theory,” 1989).

Efficient Market Hypothesis (EMH): According to the Efficient
Market Hypothesis (Fama, 1970), asset prices in fully efficient
markets reflect all available information, rendering prediction
theoretically infeasible(Team, 2024). However, the cryptocurrency
market frequently deviates from this ideal due to high volatility,
information asymmetry, and regulatory fragmentation. These
deviations create exploitable patterns such as autocorrelation and
volatility clustering, which this study incorporates through lagged
returns and rolling volatility measures. Such empirical irregularities
challenge the strong-form EMH and justify the use of predictive
learning algorithms in this domain.

Mixture of Distributions Hypothesis (MDH): The Mixture of
Distributions Hypothesis (Clark, 1973; Tauchen & Pitts, 1983) posits
that observed asset returns arise from a mixture of normal
distributions, where the variance of each component distribution is
determined by the rate of information arrival(Darolles ef al., 2017). In
this context, trading volume and market capitalization are considered
proxies for latent information flow and serve as key variables in
modeling return heteroskedasticity. These features are retained in the
predictive framework to enhance the model’s ability to capture the
changing volatility structure associated with extreme events.

Liquidity—Volatility Linkage: The Liquidity—Volatility Linkage
Hypothesis provides further justification for including volume and
capitalization metrics. As argued by Karpoff (1987) and extended by
Chordia, Roll, and Subrahmanyam (2000), a positive relationship
exists between trading volume and price volatility, driven by common
information flow and heightened investor activity. This theoretical
relationship supports the hypothesis that increases in market activity
often precede price shocks. Accordingly, the study incorporates both
trading volume change and market capitalization as predictive
features to reflect this dynamic.

Supervised Learning and Imbalanced Classification: The
predictive architecture of this study is grounded in supervised
learning, where historical data are used to classify future events. The
selected models—Logistic Regression (Hosmer & Lemeshow, 2000),
Random Forest (Breiman, 2001), XGBoost (Friedman, 2001), and
LightGBM (Ke et al., 2017)—are well-suited to handle non-linear
interactions, feature heterogeneity, and high-dimensional financial
datasets. These algorithms are especially relevant in cryptocurrency
markets, which exhibit complex structure and high levels of noise.
Given the rarity of price shocks, the classification problem is
inherently imbalanced. This imbalance can skew learning algorithms
toward the majority class and reduce the ability to detect minority
events. To address this issue, the study adopts the Synthetic Minority
Over-sampling Technique (SMOTE), developed by Chawla et al.
(2002), which synthetically generates new samples from the minority
class by interpolating between nearest neighbors. SMOTE has proven

effective in improving minority class recall and overall robustness in
rare-event detection.

METHODOLOGY

This study adopts a supervised machine learning framework to
forecast extreme price shocks in the Bitcoin market. The
methodological design integrates data preprocessing, binary target
construction, financial feature engineering, class imbalance correction
using SMOTE, and the training and evaluation of multiple predictive
models. All implementation was conducted in Python, using libraries
such as pandas, scikit-learn, imbalanced-learn, xgboost, and lightgbm.

Data Collection and Preprocessing: Daily historical data for Bitcoin
were collected from the CoinGecko platform (https:
/Iwww.coingecko.com/en/coins/bitcoin/historical_data), covering the
period from August 1, 2024, to August 1, 2025. The dataset includes
market capitalization, trading volume, and closing price in USD,
commonly used as indicators of market activity and liquidity. To
ensure data integrity, the dataset was arranged chronologically,
checked for missing values, and cleaned for anomalies. Daily log
returns were computed as

Ry = In(P;/Pr-1)

where P; denotes the closing price on day t. This transformation
stabilizes variance and expresses relative price changes in additive
form. The log returns were used to construct lag features and rolling
statistics for improved signal extraction.

Target Variable Construction: To define the binary classification
target, a price shock was identified when the absolute return exceeded
the 90th percentile of all absolute returns over the sample period.
Formally,

_ (1, if|R¢| > Pyo(|R])
Shock, = {0, otherwise
where Pgo(|R|) denotes the 90th percentile of absolute log returns.
This threshold-based approach enables systematic detection of
extreme market fluctuations without reliance on external event
labeling.

Feature Engineering: To enhance the model's predictive capabilities,
several engineered variables were introduced. These included lagged
returns (R,_; and R;_;) to capture short-term memory effects,
moving averages over 7-day and 14-day windows to reflect medium-
term momentum, and rolling standard deviations over equivalent
windows (Volatility7 and Volatilityl4) to measure price fluctuation
intensity. In addition, the percentage change in daily trading volume
was included as a proxy for liquidity shifts. All features were
normalized using z-score standardization to ensure numerical stability
and accelerate convergence during training.

Handling Class Imbalance: The distribution of the target variable
revealed significant class imbalance, with shock events comprising
less than 10% of the total observations. To address this, the Synthetic
Minority Over-sampling Technique (SMOTE) was employed
exclusively on the training dataset. SMOTE creates synthetic
examples of the minority class by interpolating between existing
samples, thereby mitigating the model’s tendency to overfit the
majority class. A comparative analysis was also conducted by training
models on the original imbalanced dataset, allowing for before-and-
after resampling evaluation to quantify the improvement in detecting
rare events.

Model Development and Evaluation: Four supervised classification
algorithms were applied to the final dataset: Logistic Regression,
Random Forest, Extreme Gradient Boosting (XGBoost), and Light
Gradient Boosting Machine (LightGBM). Logistic Regression served
as a baseline linear model, while Random Forest and XGBoost, both
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tree-based ensemble methods, were employed for their robustness in
capturing non-linear interactions. LightGBM was included due to its
computational efficiency and proven performance in large-scale
classification tasks. The dataset was partitioned into 80% training and
20% testing subsets, and SMOTE was applied only to the training set.
Each model was trained independently, and performance was
evaluated using accuracy, precision, recall, F1-score, and Area Under
the Receiver Operating Characteristic Curve (AUC). Empirical results
indicated that LightGBM and Random Forest outperformed other
classifiers, both achieving an AUC of 0.919 and demonstrating strong
recall for the shock class. XGBoost and Logistic Regression also
showed competitive AUC scores, though with relatively lower recall.
Feature importance analysis, particularly from XGBoost, identified
seven-day volatility, volume change, and lagged returns as the most
influential predictors. These findings affirm the relevance of short-
term volatility memory and liquidity variation in anticipating sudden
market disruptions in the cryptocurrency domain.

RESULTS AND DISCUSSION

This section presents the empirical findings from the application of
supervised learning models to predict extreme price shocks in the
Bitcoin market. The performance of four classifiers—Logistic
Regression, Random Forest, XGBoost, and LightGBM—was
evaluated on a feature-engineered dataset comprising daily market
indicators such as lagged returns, rolling volatility, moving averages,
and volume changes. The classification task was designed to
distinguish between normal market activity and shock days, defined
as instances where the absolute return exceeded the 90th percentile
threshold of the return distribution (see Figure 1).

Bitcoin Price & Price Shocks (>0th Percentile of Returns)

120008

100000
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Figure 1. Bitcoin closing prices (USD) from August 2024 to
August 2025

Class Imbalance and the Need for Resampling: Initial models
trained on the imbalanced dataset (without resampling) exhibited high
overall accuracy but performed poorly in detecting shock events.
Logistic Regression and Decision Tree models, in particular, achieved
high accuracy due to their correct classification of the dominant non-
shock class, yet they demonstrated zero recall for the minority class.
This limitation reinforced the need for addressing class imbalance in
rare-event forecasting. The class distribution before and after SMOTE
application is summarized in Table 1, showing a balanced sample
post-resampling, which allowed the models to learn more effectively
from minority-class patterns.

Table 1. Class Distribution Before and After SMOTE Resampling

Class Label Befo.re. SMOTE Aftef' ) SMOTE
(Training Set) (Training Set)

No Shock (0) 2710 2710

Shock (1) 370 2710

Total 3080 5420

Model Performance after SMOTE: To improve the models'
sensitivity to shocks, the training data were resampled using the
Synthetic Minority Over-sampling Technique (SMOTE). After
applying SMOTE, all classifiers demonstrated improved ability to
detect shocks, as evidenced by significant increases in recall and F1-

score for the minority class. Post-resampling classification
performance is reported in Table 2, highlighting that Random Forest
and LightGBM outperformed the other models in terms of both
accuracy and discriminative power. LightGBM achieved the highest
Area Under the ROC Curve (AUC = 0.919), followed closely by
Random Forest (AUC = 0.919), XGBoost (AUC = 0.906), and
Logistic Regression (AUC = 0.901).

Table 2. Classification Metrics for Each Model
(After SMOTE Resampling)

Precision | Recall F1-Score
Model Accuracy (Shock) (Shock) | (Shock) AUC
Logistic Regression | 0.83 0.32 0.81 0.46 0.901
Random Forest 0.90 0.47 0.71 0.57 0.919
XGBoost 0.89 0.46 0.64 0.51 0.906
LightGBM 0.90 0.46 0.73 0.56 0.919

In terms of classification metrics, LightGBM demonstrated strong
balance between precision and recall, particularly for the shock class,
achieving a recall of 0.73 and an overall accuracy of 90%. XGBoost,
although slightly lower in recall, maintained competitive precision
and Fl-score, highlighting its robustness in modeling noisy, non-
linear relationships. Random Forest exhibited similarly high
performance, reinforcing the utility of ensemble tree-based methods
in financial prediction tasks where signal complexity and volatility
clustering are prominent.

ROC Curve Comparison: The ROC curve comparison in Figure 2
further supported the superiority of ensemble methods over the linear
baseline. All tree-based models consistently outperformed Logistic
Regression across the full range of threshold values, indicating better
discriminative ability under varying sensitivity-specificity trade-offs.
This visual evidence complements the AUC values reported in Table
2, validating the models' robustness. LightGBM and Random Forest
showed the highest AUC of 0.919, indicating superior discriminative

power.
ROC Curve Comparisen (After Resampling)

10 — =y

BT

:,f“
g

-1
506
2
$
8

;

f

True
e,

———

f

o ~ — LightGBM (AUC = 0.919)

a0 [} 04 06 L1} 10

False Positive Rate

Figure 2. Receiver Operating Characteristic (ROC) curves for
Logistic Regression, Random Forest, XGBoost, and Light GBM
classifiers after SMOTE resampling

Feature Importance Analysis: Feature importance analysis from
XGBoost, visualized in Figure 3, provided further insight into the
predictors that contributed most significantly to model performance.
The seven-day rolling volatility emerged as the most influential
feature, followed by trading volume change, the seven-day moving
average of price, and lagged returns. These findings validate the
hypothesis that short-term volatility memory, price momentum, and
liquidity shifts play critical roles in signalling upcoming extreme
market movements. The prominence of volatility-based features also
aligns with the Mixture of Distributions Hypothesis and volatility
clustering patterns observed in speculative financial markets.
Volatility over a 7-day window (Volatility7) was the most influential
predictor, followed by volume change and short-term moving
averages.

Implications: Overall, the empirical results confirm that the
application of resampling techniques such as SMOTE, combined with
advanced ensemble models like LightGBM and XGBoost,
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XGBoost Feature Importance
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Figure 3. Relative feature importance values from
the XGBoost model

significantly enhances the predictive capacity of machine learning
systems in rare-event classification problems. These models offer
strong potential for early warning systems, risk-sensitive trading
algorithms, and volatility forecasting frameworks within the
cryptocurrency ecosystem. Future extensions may incorporate deep
learning architectures or hybrid models, and explore the integration of
exogenous variables such as sentiment indicators or macroeconomic
news to further enrich prediction quality.

Operational Use Case and Practical Significance: The predictive
framework developed in this study holds substantial operational value
for various stakeholders in the cryptocurrency ecosystem, particularly
for algorithmic traders, portfolio risk managers, fintech firms, and
regulatory bodies. The early identification of extreme price shocks
enables more responsive and adaptive decision-making in high-
volatility environments, where traditional forecasting tools often fail
to detect abrupt market disruptions. From a trading perspective, the
proposed ensemble-based classification system can be integrated into
real-time risk alert engines, providing early warnings of shock
probabilities based on daily input features such as volatility, volume
shifts, and lagged returns. This capability is crucial for automated
trading systems that must dynamically adjust asset allocation, stop-
loss parameters, or hedge positions to mitigate exposure to sudden
losses. For fintech platforms and crypto exchanges, the framework
can serve as the foundation for volatility dashboards or risk-sensitive
order routing systems, where liquidity constraints and user trade
execution are directly affected by price stability. Additionally,
regulators and compliance teams can utilize such a model as part of
market surveillance systems to flag anomalous behavior and pre-empt
systemic risks triggered by sudden price moves.

Operationally, the use of SMOTE to counteract data imbalance,
coupled with efficient ensemble learners like LightGBM and
XGBoost, ensures scalability and robustness even in noisy, high-
frequency environments. The model’s lightweight architecture and
reliance on commonly available market indicators make it deployable
in cloud-based or edge environments, enabling high-speed inference
without the need for excessive computational resources. Importantly,
the framework also advances the computational economics literature
on rare-event prediction. By combining resampling techniques with
ensemble learners, this study demonstrates how data-driven methods
can improve the detection of shocks that traditional econometric
approaches struggle to capture. These insights are relevant not only
for cryptocurrency markets but also for the study of systemic risk in
interbank lending, sovereign defaults, and exchange rate crashes.
Thus, the model serves as a template for embedding machine learning
approaches into economic simulation and forecasting environments
where rare, high-impact events are of central concern. In summary,
this study bridges methodological innovation with operational
feasibility, offering a practical blueprint for deploying predictive
analytics in the dynamic and often unpredictable landscape of digital
finance.

Conclusion and Future Research Directions

This paper introduced a rare-event prediction framework that
integrates imbalance correction with ensemble machine learning,
demonstrating its effectiveness in forecasting extreme price shocks in
the cryptocurrency market. While Bitcoin provided a suitable testbed
due to its high volatility and data availability, the computational
architecture extends well beyond digital assets. Rare but impactful
events—such as financial crises, exchange rate crashes, sovereign
defaults, or systemic liquidity breakdowns—share the same statistical
challenges of nonlinearity, volatility clustering, and class imbalance.
The framework presented here thus offers a generalizable tool for
computational economics, supporting both theoretical exploration and
practical applications in risk-sensitive environments. The findings
highlight three main contributions. First, they show how resampling
strategies (SMOTE) can improve the detection of low-frequency
events in economic data. Second, they confirm that ensemble learners
outperform linear models when predicting tail outcomes in volatile
markets. Third, they bridge computational methods with economic
theory (EVT, EMH deviations, MDH, liquidity—volatility linkages),
positioning machine learning within a broader theoretical context. For
future work, integrating alternative data (e.g., sentiment, news flows,
on-chain metrics) and hybrid architectures (deep learning with
econometric models) could further enhance rare-event prediction.
Moreover, applying the framework to multi-asset settings and
systemic simulations would strengthen its role in crisis modeling and
policy design. In this sense, the study contributes not only to
cryptocurrency  research but also to the computational
economicsliterature on systemic risk and volatility dynamics,
providing a methodological foundation for anticipating high-impact,
low-probability events in complex economic systems.
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Abbreviation | Full Form

SMOTE Synthetic Minority Over-sampling Technique

EVT Extreme Value Theory

EMH Efficient Market Hypothesis

MDH Mixture of Distributions Hypothesis

GPD Generalized Pareto Distribution

ML Machine Learning

AI/ML Artificial Intelligence / Machine Learning

AUC Area Under the ROC Curve

ROC Receiver Operating Characteristic

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

RNN Recurrent Neural Network

GARCH Generalized Autoregressive Conditional Heteroskedasticity
ARIMA Autoregressive Integrated Moving Average

GAN Generative Adversarial Network

VAE Variational Autoencoder

WGAN-GP Wasserstein GAN with Gradient Penalty

BFDS Balanced Fraud Detection Score

KSDE Kernel Smoothing Differential Ensemble (from cited work)
MAE Mean Absolute Error

MSE Mean Squared Error

USD United States Dollar

XGBoost Extreme Gradient Boosting

LightGBM Light Gradient Boosting Machine

LR Logistic Regression (used contextually)

RF Random Forest

F1-Score Harmonic mean of precision and recall

JEL Journal of Economic Literature (classification codes)
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