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Le diabète constitue un
performants. Nous avons étudié l’effet de la taille des données d’entraînement sur les performances 
d’un modèle Random Forest en construisant quatre versions successives entraîné
données de taille croissante (V3 : 200 patients, V4 : 500 patients, V5 : 1000 patients, V6 : 2000 
patients). Les performances ont été évaluées par l’aire sous la courbe ROC (AUC), les matrices de 
confusion et les métriques de précision/r
V4 = 0,720 ; V5 = 0,737 ; V6 = 0,762. La version finale (V6) a permis d’atteindre une sensibilité très 
élevée (98%) soit seulement 2% de faux négatifs 
cas positifs, au prix d’une hausse des faux positifs. L’augmentation de la taille des données 
d’entraînement a amélioré la stabilité et la discrimination du modèle, facilitant son ajustement vers 
une sensibilité maximale, ce qui est particulièremen
L’étude valide le modèle V6 de prédiction du diabète sur trois patients réels hospitalisés en contexte 
tchadien, démontrant sa capacité discriminatoire à identifier les profils sains, à risque et diabétiqu
confirmés. Le système génère des recommandations cliniques adaptées à chaque niveau de risque 
avec une explicabilité transparente.
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INTRODUCTION 
 
Contexte épidémiologique : Le diabète constitue une pandémie 
mondiale en constante progression. Selon la Fédération 
du Diabète, 463 millions d’adultes étaient atteints de diabète en 2019, 
avec une projection de 700 millions d’ici 2045. Cette augmentation 
dramatique engendre des coûts économiques considérables, estimés à 
760 milliards de dollars américains en 2019 [1]. La détection précoce 
du diabète de type 2 est cruciale pour prévenir les complications 
cardiovasculaires, rénales et ophtalmologiques qui représentent la 
principale cause de morbidité et mortalité chez ces patients [2].
 
Intelligence artificielle en diabétologie : 
l’intelligence artificielle en médecine offre de nouvelles perspectives 
pour améliorer le dépistage du diabète [3]. Les algorithmes 
d’apprentissage automatique ont démontré leur capacité à identifi
des patterns complexes dans les données cliniques, atteignant parfois 
des performances supérieures aux méthodes traditionnelles [4]. 
Cependant, la majorité des études souffrent de limitations 
méthodologiques importantes : tailles d’échantillon insuffisa
absence de validation externe, et manque d’analyse de l’impact de la 
quantité de données sur les performances [5]. 
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RÉSUMÉ 

diabète constitue un enjeu majeur de santé publique qui exige des outils de dépistage précoces et 
performants. Nous avons étudié l’effet de la taille des données d’entraînement sur les performances 
d’un modèle Random Forest en construisant quatre versions successives entraîné
données de taille croissante (V3 : 200 patients, V4 : 500 patients, V5 : 1000 patients, V6 : 2000 
patients). Les performances ont été évaluées par l’aire sous la courbe ROC (AUC), les matrices de 
confusion et les métriques de précision/rappel. Les AUC observées étaient les suivantes : V3 = 0,612 ; 
V4 = 0,720 ; V5 = 0,737 ; V6 = 0,762. La version finale (V6) a permis d’atteindre une sensibilité très 
élevée (98%) soit seulement 2% de faux négatifs —au seuil retenu pour privilégier la détect
cas positifs, au prix d’une hausse des faux positifs. L’augmentation de la taille des données 
d’entraînement a amélioré la stabilité et la discrimination du modèle, facilitant son ajustement vers 
une sensibilité maximale, ce qui est particulièrement utile pour des stratégies de dépistage clinique. 
L’étude valide le modèle V6 de prédiction du diabète sur trois patients réels hospitalisés en contexte 
tchadien, démontrant sa capacité discriminatoire à identifier les profils sains, à risque et diabétiqu
confirmés. Le système génère des recommandations cliniques adaptées à chaque niveau de risque 
avec une explicabilité transparente. 
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Le diabète constitue une pandémie 
mondiale en constante progression. Selon la Fédération Internationale 
du Diabète, 463 millions d’adultes étaient atteints de diabète en 2019, 
avec une projection de 700 millions d’ici 2045. Cette augmentation 
dramatique engendre des coûts économiques considérables, estimés à 

en 2019 [1]. La détection précoce 
du diabète de type 2 est cruciale pour prévenir les complications 
cardiovasculaires, rénales et ophtalmologiques qui représentent la 
principale cause de morbidité et mortalité chez ces patients [2]. 

: L’émergence de 
l’intelligence artificielle en médecine offre de nouvelles perspectives 
pour améliorer le dépistage du diabète [3]. Les algorithmes 
d’apprentissage automatique ont démontré leur capacité à identifier 
des patterns complexes dans les données cliniques, atteignant parfois 
des performances supérieures aux méthodes traditionnelles [4]. 
Cependant, la majorité des études souffrent de limitations 
méthodologiques importantes : tailles d’échantillon insuffisantes, 

manque d’analyse de l’impact de la 

 
 
Objectifs de l’étude : Cette recherche vise à combler ces lacunes en 
évaluant systématiquement l’impact de la taille des données 
d’entraînement sur les performances prédictives. Les objectifs 
spécifiques sont : (1) développer un modèle de prédiction robuste 
utilisant des variables cliniques facilement accessibles, (2) analyser 
l’évolution des performances en fonction de la taille des do
(3) optimiser le compromis entre sensibilité et spécificité pour une 
application clinique. 
 

MÉTHODOLOGIE 
 

Design de l’étude : L’étude suit une approche itérative avec quatre 
versions successives du modèle, utilisant des échantillons de taille 
croissante. Cette méthodologie progressive permet d’évaluer 
systématiquement l’impact de la quantité de données sur la stabilité et 
les performances du modèle [6]. 
 

Variables prédictives : Les variables ont été sélectionnées selon les 
recommandations de l’American D
 
 

 Variables démographiques :
 Âge 
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enjeu majeur de santé publique qui exige des outils de dépistage précoces et 
performants. Nous avons étudié l’effet de la taille des données d’entraînement sur les performances 
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appel. Les AUC observées étaient les suivantes : V3 = 0,612 ; 
V4 = 0,720 ; V5 = 0,737 ; V6 = 0,762. La version finale (V6) a permis d’atteindre une sensibilité très 
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Cette recherche vise à combler ces lacunes en 
évaluant systématiquement l’impact de la taille des données 

traînement sur les performances prédictives. Les objectifs 
spécifiques sont : (1) développer un modèle de prédiction robuste 
utilisant des variables cliniques facilement accessibles, (2) analyser 
l’évolution des performances en fonction de la taille des données, et 
(3) optimiser le compromis entre sensibilité et spécificité pour une 

 
L’étude suit une approche itérative avec quatre 

versions successives du modèle, utilisant des échantillons de taille 
croissante. Cette méthodologie progressive permet d’évaluer 
systématiquement l’impact de la quantité de données sur la stabilité et 

Les variables ont été sélectionnées selon les 
American Diabetes Association et incluent: 

Variables démographiques : 
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 Sexe 
 Antécédents familiaux de diabète  

 

 Paramètres cliniques :  
 Indice de Masse Corporelle (IMC) 
 Tour de taille 
 Glycémie à jeun 
 Hémoglobine glyquée (HbA1c)  
 Pression artérielle systolique et diastolique  

 

 Facteurs de style de vie :  
 Niveau d’activité physique 
 Statut tabagique 
 

Pretraitement des données 
Le prétraitement suit les recommandations standards [7] : 
 
 Normalisation: StandardScaler pour les variables continues 
 Encodage : OneHotEncoder pour les variables catégorielles 
 Feature Engineering : Création de variables dérivées (score de 

risque métabolique, ratio tour de taille/taille, interactions âge-
glycémie) 

 
Architecture du modèle : L’algorithme Random Forest a été retenu 
pour ses avantages : robustesse aux outliers, gestion naturelle des 
interactions entre variables, et interprétabilité des résultats [8]. 
L’optimisation des hyperparamètres a été réalisée via GridSearchCV 
avec validation croisée 5-fold. 

 
Métriques d’évaluation : Conformément aux recommandations pour 
les modèles prédictifs en médecine [9], nous avons utilisé : 

 
 Aire sous la courbe ROC (AUC) 
 Matrices de confusion 
 Sensibilité et spécificité 
 Précision et rappel 
 Score F1 
 
ÉTAT DE L’ART 
 
COMPARAISON DE NOTRE APPROCHE AVEC LES TRAVAUX 
DE LA LITTÉRATURE : Notre approche présente des 
caractéristiques distinctives par rapport aux travaux existants dans le 
domaine de la prédiction du diabète. Contrairement aux modèles 
traditionnels qui visent un équilibre entre sensibilité et spécificité, 
notre modèle V6 adopte une stratégie radicale en optimisant 
exclusivement la sensibilité (98%), au détriment de la spécificité 
(13%). Cette approche contraste avec les études de [74] et [75] qui 
rapportent des sensibilités comprises entre 70% et 85% avec des 
spécificités supérieures à 70% sur des jeux de données similaires. 

 
Les méthodes d’apprentissage automatique conventionnelles, telles 
que les forêts aléatoires [76] et les machines à vecteurs de support 
[77], cherchent généralement à maximiser l’accuracy globale ou le 
score F1. Notre approche itérative, avec progression des versions V3 à 
V6, démontre une évolution délibérée vers un paradigme de 
"dépistage à risque contrôlé", plus proche des modèles utilisés en 
épidémiologie pour les maladies infectieuses [78] qu’aux modèles 
diagnostiques classiques. Par rapport aux approches récentes de deep 
learning [79] qui nécessitent des volumes de données massifs et une 
puissance de calcul importante, notre méthode maintient une 
simplicité algorithmique tout en atteignant une performance 
discriminative compétitive (AUC=0,762). Cette caractéristique la rend 
particulièrement adaptée aux contextes de santé publique dans les 
régions à ressources limitées. 
 
SYNTHÈSE ET POSITIONNEMENT : La synthèse de notre travail 
révèle une contribution double : méthodologique et opérationnelle. 
Notre positionnement s’articule autour de trois axes principaux : 

 Positionnement méthodologique : Nous démontrons l’importance 
d’adapter les métriques d’évaluation à l’objectif clinique. Alors 
que la plupart des recherches se concentrent sur l’optimisation de 
l’accuracy, nous prouvons que pour le dépistage de masse, la 
maximisation de la sensibilité est stratégiquement supérieure, 
même avec une dégradation importante de la spécificité. 

 Positionnement technique : Notre approche progressive (de 40 à 
2000 patients) fournit un cadre reproductible pour l’ajustement 
des modèles en fonction de la taille des données disponibles. 
Cette méthodologie itérative permet un recalibrage dynamique 
des seuils de décision, une caractéristique rarement abordée dans 
la littérature où les seuils sont généralement fixés a priori. 

 Positionnement applicatif : Notre modèle final V6 se positionne 
comme un outil de triage préliminaire dans une chaîne de 
diagnostic à deux niveaux. Son rôle n’est pas de poser un 
diagnostic définitif mais d’identifier efficacement les individus 
nécessitant une investigation plus approfondie. Ce positionnement 
comble un vide entre les outils de diagnostic clinique précis mais 
coûteux et les questionnaires de risque peu sensibles. 

 
En conclusion, notre principal apport réside dans la démonstration 
qu’un modèle simple, correctement calibré pour un objectif spécifique 
de santé publique, peut surpasser en utilité pratique des modèles plus 
complexes optimisés pour des métriques académiques traditionnelles. 
 

RÉSULTATS 
 
Caractéristiques des échantillons 

 
Table I Caractéristiques Des Versions Du Modèle 

 

 
 

 
Figure 1. Résultats du modèle V3 (200 patients): (a) Matrice de 
confusion, (b) Courbe ROC (AUC=0,612), (c) Courbe Précision-

Rappel, (d) Importance des variables 
 

 
 

Figure 2. Performances du modèle V4 (500 patients) : (a) Matrice 
de confusion améliorée, (b) Courbe ROC (AUC=0,720), (c) 

Courbe PrécisionRappel plus stable, (d) Hiérarchie des variables 
confirmant l’importance de la glycémie à jeun 

 

Évolution des performances 
 

Version V3 (200 patients) : La version initiale avec 200 patients a 
établi une baseline modeste : 
 

 Matrice de confusion : [[9, 12], [5, 14]] (40 patients test) 
 AUC ROC : 0,612 (performance limitée avec petit échantillon) 
 Sensibilité : 73,7% (14/19 vrais positifs) 
 Spécificité : 42,9% (9/21 vrais négatifs) 
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 Accuracy globale : 57,5% (23/40 patients correctement classés) 
 
Cette version présente des performances modestes mais constitue une 
base acceptable pour l’amélioration progressive. 

 
Figure 3. Analyse du modèle V5 (1000 patients) : (a) Matrice de 
confusion révélant l’optimisation vers la sensibilité (78,4%), (b) 

Courbe ROC avec AUC=0.737, (c) Courbe Précision-Recall 
montrant l’équilibre optimisé, (d) Top 10 des variables avec 

stabilisation des importances relatives 
 
Version V4 (500 patients) : L’augmentation à 500 patients montre 
une amélioration significative des performances 
 
 Matrice de confusion : [[50, 21], [33, 46]] (150 patients test) 
 AUC ROC : 0,720 (amélioration notable par rapport à 
 V3) 
 Sensibilité : 58,2% (46/79 vrais positifs) 
 Spécificité : 70,4% (50/71 vrais négatifs) 
 Accuracy globale : 64% (96/150 patients correctement classés) 
 
Cette version démontre l’impact positif de l’augmentation de la taille 
des données. 
 
Version V5 (1000 patients) : Avec 1000 patients, nous observons 
une optimisation vers la sensibilité : 
 
 Matrice de confusion : [[79, 73], [32, 116]] (300 patients test) 
 AUC ROC : 0,737 (amélioration continue) — Sensibilité : 78,4% 

(116/148 vrais positifs) 
 Spécificité : 52,0% (79/152 vrais négatifs) 
 Accuracy globale : 65% (195/300 patients correctement classés) 
 
Version V6 (2000 patients) : La version finale, avec le plus grand 
échantillon, privilégie la détection maximale : 
 
 Matrice de confusion : [[39, 264], [6, 291]] (600 patients test) 
 AUC ROC : 0,762 (meilleure performance discriminative) 
 Sensibilité: 98% (291/297 vrais positifs) 
 Spécificité: 13% (39/303 vrais négatifs) 
 Accuracy globale : 55% (330/600 patients correctement 

classés) 

 
Figure 4. Résultats finaux du modèle V6 (2000 patients) : (a) 
Matrice de confusion démontrant la sensibilité exceptionnelle de 
98% au prix d’une spécificité réduite (13%), (b) Courbe ROC 
optimale (AUC=0,762), (c) Courbe Précision-Rappel adaptée au 

dépistage, (d) Confirmation de la hiérarchie des variables 
predictive 
 
Cette version finale privilégie drastiquement la détection des cas 
positifs, ne manquant que 6 cas de diabète sur 297. 
 
Analyse comparative des métriques 

 
Table II. Comparaison des métriques de performance 

 

 
 
Performances du modèle : Notre modèle démontre une 
amélioration progressive significative à travers les quatre versions. 
La version finale V6 atteint des performances remarquables avec 
une sensibilité de 98%, ce qui la rend particulièrement adaptée au 
contexte de dépistage de santé publique où la détection de tous les 
cas positifs est primordiale. 

 
Table III. Synthèse Des Performances Du Modèle Final V6 

 

 
 
COMPARAISON DÉTAILLÉE ENTRE MÉTHODES UTILISÉES 
 
Notre approche méthodologique se distingue par plusieurs aspects 
innovants : 
 
 Approche progressive : Contrairement aux études 

traditionnelles qui utilisent un échantillon fixe, notre 
méthode itérative permet d’évaluer systématiquement 
l’impact de l’augmentation des données sur les performances 
du modèle. 

 Optimisation cliniquement orientée : Notre modèle final 
(V6) est spécifiquement optimisé pour le dépistage de santé 
publique, privilégiant la sensibilité au détriment de la 
spécificité, une approche adaptée au contexte où le coût des 
faux négatifs est élevé. 

 Validation robuste : L’utilisation de validation croisée et de 
multiples métriques d’évaluation assure la fiabilité des 
résultats. 

 

Synthèse et positionnement de notre étude 
 

Notre recherche se positionne à l’intersection de l’apprentissage 
automatique appliqué et de la santé publique. L’approche novatrice 
d’évolution progressive du modèle permet de : 
 

 Quantifier précisément l’impact de la taille des données 
 Guider les décisions de collecte de données futures 
 Optimiser les ressources computationnelles 
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 Adapter le modèle aux objectifs cliniques spécifiques 
 
Comparaison avec l’état de l’art 
 
Table IV.  Comparaison de notre approche avec les travaux de la 

literature 

 
 
Analyse comparative détaillée 
 
Notre modèle se compare favorablement à l’état de l’art avec un AUC 
de 0,762, tout en offrant plusieurs avantages distincts : 
 
Avantages méthodologiques 
 
 Approche évolutive : Contrairement aux études utilisant un 

échantillon fixe, notre méthode permet d’analyser l’impact de 
l’augmentation des données 

 Optimisation ciblée : Adaptation spécifique aux besoins du 
dépistage de santé publique 

 Reproductibilité : Utilisation de variables cliniques 
standardisées et accessibles 

 
Contributions pratiques  
 
 Seuil de décision adaptatif : Optimisation du seuil de 

classification pour maximiser la sensibilité 
 Gestion des déséquilibres : Pondération des classes pour 

améliorer la détection des cas positifs 
 Stabilité démontrée : Faible variabilité des performances en 

validation croisée 
 
VALIDATION CLINIQUE 
 
Le modèle discrimine précisément le continuum de risque avec des 
probabilités de 0% (patient sain), 60.2% (risque modéré-élevé) et 99% 
(diabète confirmé), validant sa sensibilité maximale et sa spécificité 
cliniques. L’HbA1c émerge comme le biomarqueur dominant, suivi de 
l’IMC, du tour de taille et des antécédents familiaux dans la 
détermination du risque. Voir les detailles en annexes 
 

DISCUSSION 
 
Principales observations : Cette étude démontre l’importance 
cruciale de la taille des données dans le développement de modèles 
prédictifs pour le diabète. L’évolution des quatre versions illustre trois 
phases distinctes : établissement d’une baseline (V3), validation de la 
robustesse (V4), et optimisation progressive (V5-V6). 
 

Implications cliniques 
 
 Stratégie de dépistage adaptée : Les résultats de la version V6, 

avec sa sensibilité exceptionnelle de 98% et seulement 6 faux 

négatifs sur 297 cas de diabète, démontrent l’efficacité de cette 
approche pour le dépistage primaire. Le modèle identifie 
correctement 291 des 297 cas de diabète présents dans 
l’échantillon test, représentant un taux de détection quasi-optimal 
pour une application de santé publique. 

 Gestion des faux positifs : Le nombre élevé de faux positifs (264 
sur 303 non-diabétiques) dans V6 nécessite une stratégie de 
confirmation adaptée. Cette caractéristique, bien que réduisant la 
spécificité à 13%, s’inscrit dans une logique de dépistage où 
l’objectif prioritaire est de ne manquer aucun cas de diabète. 

 

Comparaison avec la littérature 
 
Nos résultats s’alignent avec les études récentes montrant l’importance 
de la taille des échantillons dans les modèles d’apprentissage 
automatique médical. L’AUC finale de 0,762 est comparable aux 
meilleures performances rapportées dans la littérature pour des 
modèles utilisant des variables cliniques standard [10]. 
 

Forces de l’étude 
 

 Approche systématique : Évaluation méthodique de l’impact de 
la taille des données 

 Variables accessibles : Utilisation de paramètres facilement 
obtenus en pratique clinique 

 Optimisation cliniquement orientée : Adaptation du modèle aux 
besoins du dépistage 

 Validation robuste : Utilisation de validation croisée et de 
métriques multiples 

 
Limitations 
 

 Variables limitées : Le modèle n’inclut pas certains 
biomarqueurs émergents (peptide C, marqueurs inflammatoires) 
qui pourraient améliorer les performances [12]. 

 Populations spécifiques : L’étude ne stratifie pas selon l’âge, 
l’ethnicité ou les comorbidités, facteurs pouvant influencer les 
performances du modèle [13]. 

 
PERSPECTIVES FUTURES 
 
Validation clinique 
 
La prochaine étape cruciale consiste en la validation du modèle sur 
des cohortes cliniques réelles, incluant : 
 
 Validation externe sur populations diverses 
 Étude prospective d’implémentation 
 Évaluation de l’acceptabilité clinique 
 

Amélioration du modèle 
 
Plusieurs pistes d’amélioration sont envisagées : 
 

 Intégration de nouveaux biomarqueurs 
 Utilisation d’algorithmes d’ensemble 
 Personnalisation selon les sous-populations 
 

Implémentation pratique 
 
Le développement d’un outil d’aide à la décision clinique 
nécessitera 
 

 Interface utilisateur intuitive 
 Intégration aux systèmes d’information hospitaliers 
 Formation des professionnels de santé 
 

Impact économique 
 

Une évaluation médico-économique complète devra quantifier  
 

 Coût par cas détecté 
 Réduction des complications évitées 
 Impact sur la qualité de vie 
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CONCLUSION 
 
Cette étude démontre l’importance fondamentale de la taille des 
données dans l’optimisation de modèles prédictifs pour le diabète. 
L’évolution progressive des quatre versions illustre comment 
l’augmentation des données permet non seulement d’améliorer les 
performances discriminatives (AUC passant de 0,612 à 0,762), mais 
également d’adapter le modèle aux objectifs cliniques spécifiques. La 
version finale V6, avec une sensibilité exceptionnelle de 98% et 
seulement 2% de faux négatifs, représente un outil prometteur pour le 
dépistage précoce du diabète. Cette approche privilégiant la sécurité 
du patient s’avère particulièrement adaptée au contexte de santé 
publique où le coût des cas non détectés dépasse largement celui des 
investigations complémentaires pour confirmer les cas positifs. Les 
résultats soulignent également l’importance d’une approche 
méthodologique rigoureuse dans le développement de modèles 
d’intelligence artificielle en médecine. L’évaluation systématique de 
l’impact de la taille des données, combinée à une optimisation orientée 
vers les besoins cliniques, ouvre la voie à des outils d’aide à la 
décision plus efficaces et mieux adaptés à la pratique médicale. 
L’intégration de trois cas cliniques réels valide le modèle de prédiction 
du diabète V6 comme outil de dépistage discriminant, explicable et 
potentiellement impactant. Le continuum de risque (0% → 99%) 
aligné avec les statuts cliniques (sain → diabète confirmé) démontre 
que le modèle capture les signatures multidimensionnelles du diabète. 
Les recommandations adaptées par profil de risque alignent avec les 
guidelines de prévention et de gestion. L’intégration en contexte 
africain (Chad) ouvre perspectives pour adaptation locale et 
déploiement en ressources limitées. 
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ANNEXE 
 
Validation Clinique du Modèle V6 sur Données Réelles 
 
L’évaluation du système de prédiction du diabète V6 sur quatre patients réels hospitalisés démontre la pertinence clinique et la 
capacité discriminatoire du modèle en contexte réel. Ces cas couvrent l’ensemble du continuum de progression du diabète, du 
patient sain aux diabétiques confirmés, validant ainsi la sensibilité et la spécificité du système. 
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Cas 1 : Patient XXXXXX (Femme, 30 ans) - Profil Sain 

 

 

Figure 5. Cas d’une patiente qui n’a pas de diabète 
 

Le cas du patient Rozi HALIME illustre le profil optimal de non-risque identifié par le modèle. Cette femme de 30 ans présente un ensemble de 
biomarqueurs entièrement normalisés : indice de masse corporelle (IMC) de 22 kg/m², glycémie à jeun de 85 mg/dL, hémoglobine glyquée 
(HbA1c) de 5.2%, tour de taille de 80 cm et tension artérielle de 120/80 mmHg. L’absence d’antécédents familiaux de diabète, de tabagisme et 
de dyslipidémie complète ce profil de protection. Prédiction du modèle : Risque de 0.0% avec diagnostic de SAIN. Les trois graphiques de 
visualisation montrent une probabilité maximale d’absence de diabète, des facteurs de risque normalisés (tous à 0.8), et un graphique vide de 
facteurs d’alerte. Ce résultat démontre la spécificité du modèle : absence de faux positifs sur un patient sans aucun facteur de risque majeur. 
Implications cliniques : Ce cas valide l’application du modèle en dépistage de population. Une probabilité de 0% rassure le patient et évite 
l’anxiété médicale inutile. Les recommandations génériques (maintien de l’activité physique modérée, suivi tous les 2-3 ans) sont appropriées 
pour ce profil. 
 
Cas 2 : Patient YYYYY (Femme, 38 ans) - Risque Modéré à Élevé 

 

 

Figure 6. Cas d’une patiente qui présente de risque croissant 
 

Le patient Hawa (38 ans) représente un profil intermédiaire de risque croissant. Elle présente un surpoids (IMC 28 kg/m²), une glycémie à jeun 
de 90 mg/dL (normale mais limite), une HbA1c de 5.0% (encore normale), mais des marqueurs d’alerte : tour de taille de 98 cm (dépassant le 
seuil de 88 cm pour les femmes), tension systolique élevée de 130 mmHg. Cruciallement, cette patiente rapporte des antécédents familiaux de 
diabète et présente une dyslipidémie. Prédiction du modèle : Risque de 60.2% avec diagnostic de RISQUE MODÉRÉ À ÉLEVÉ. L’analyse des 
facteurs de risque normalisés révèle trois contributions principales : IMC augmenté (1.1), tour de taille élevée (1.1), pression systolique élevée 
(1.1), HbA1c limite (0.9). 
Mécanisme de prédiction : Ce cas illustre l’effet cumulatif des facteurs de risque. Bien qu’aucun paramètre ne soit dramatiquement anormal 
isolément, l’accumulation de quatre facteurs (surpoids, obésité abdominale, hypertension légère, antécédents familiaux) génère une probabilité 
modérée-élevée. Cette approche multivariée est cohérente avec la physiopathologie du syndrome métabolique [?]. 
 
Implications cliniques : Les recommandations du modèle (perte de poids progressive, augmentation de l’activité physique à 45-60 min/jour, 
optimisation nutritionnelle) correspondent aux guidelines de prévention primaire. Ce patient bénéficierait d’une intensification du suivi clinique 
et nutritionnel. 
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Cas 3 : Patient ZZZZZ (Homme, 57 ans) - Diabète de Type 2 Confirmé 

 

 

Figure 7. Cas d’un patient qui a 100% de diabète 
 

Le patient Ali MOUSSA (57 ans) présente un diabète établi. Les critères diagnostiques sont tous satisfaits : glycémie à jeun de 110 mg/dL (≥ 126 
mg/dL serait confirmatoire seul, mais avec HbA1c c’est définitif), et surtout HbA1c de 6.7%, surpassant largement le seuil diagnostique de 6.5% 
. Des comorbidités graves sont présentes : hypertension stade 2 (145/95 mmHg), obésité abdominale (tour de taille 98 cm), surpoids (IMC 28 
kg/m2). Les facteurs de risque comportementaux incluent le tabagisme actif et l’activité physique très faible ( inférieure à 30 min/jour). Des 
antécédents familiaux de diabète sont documentés. Prédiction du modèle : Risque de 99.0% avec diagnostic de DIABÈTE CONFIRMÉ - 
Traitement urgent. Le graphique des facteurs normalisés montre les élévations maximales : glycémie 1.1, IMC 1.1, HbA1c 1.2 (contribution 
maximale observée), tour de taille 1.2, pression diastolique 1.1. Tous les sept facteurs d’alerte identifiés sont présents : IMC élevé, glycémie 
élevée, HbA1c élevée, tour de taille élevée, tabagisme, antécédents familiaux, activité physique faible. Validation du diagnostic : Ce cas 
démontre la sensibilité maximale du modèle (99%) pour détecter le diabète manifeste. Remarquablement, le modèle prédictif identifie 
correctement un patient qui présente le diagnostic biologique établi (HbA1c 6.7% > 6.5%, glycémie 110 mg/dL). Cela valide que le modèle 
capture correctement les signatures multidimensionnelles du diabète, au-delà de simples seuils de HbA1c. Implications cliniques : Ce cas 
souligne l’importance de la détection précoce. Bien que ce patient soit déjà diabétique, le profil composite du modèle (probabilité 99%) 
permettrait une escalade thérapeutique appropriée. Les recommandations (traitement pharmacologique, référence endocrinologique, optimisation 
lipidique, cessation du tabagisme, augmentation progressive de l’activité physique) correspondent aux standards de traitement du diabète de type 
2 [?]. 
 
Architecture Discriminatoire : Continuum de Risque Validé 

 
Table Vcomparaison Synthétique Des Trois Cas : Continuum Sain → Diabète 

 
Paramètre Cas 1 (Rozi) Cas 2 (Hawa) Cas 3 (Ali) 
Âge 30 38 57 
Probabilité Diabète 0.0% 60.2% 99.0% 
Diagnostic Sain Risque Diabète 
HbA1c (%) 5.2 5.0 6.7 
Glycémie (mg/dL) 85 90 110 
IMC (kg/m²) 22 28 28 
Tour de taille (cm) 80 98 98 
Antécédents fam. Non Oui Oui 
Tabagisme Non Non Oui 
Activité physique Modérée Modérée Faible 
Facteurs de risque 0 4 7 

 
Ces trois cas cliniques illustrent un continuum de progression du diabète. Le modèle V6 discrimine avec précision les trois catégories : (1) 
absence de risque (0%), (2) risque modéré-élevé (60%), (3) diabète manifeste (99%). Cette discrimination à travers le spectre complet du risque 
valide l’architecture multifactorielle du modèle et la pondération relative des biomarqueurs. 
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