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Automatic Vehicle Recognition (AVR) has become a cornerstone technology for Intelligent
Transportation Systems, smart city infrastructure, traffic monitoring, and border security. Recent
advancements in Artificial Intelligence (Al), particularly deep learning, have markedly improved
vehicle detection, classification, and tracking. However, real-world deployment of AVR systems
remains challenged by factors such as high computational demands, limited cross-domain
generalization, scalability constraints, and the need for privacy-preserving operation. This paper
presents a comprehensive state-of-the-art review and critical gap analysis of Al-based vehicle
recognition techniques. We systematically examine contemporary approaches, including CNN-based
one-stage and two-stage object detectors, transformer-based architectures with global self-attention,
fine-grained vehicle classification models, and vehicle re-identification methods. Additionally, we
explore multimodal sensor fusion strategies and Edge Al deployment to evaluate their effectiveness in
enhancing robustness and real-time performance under diverse environmental conditions. The
analysis identifies key limitations in current systems, such as the absence of unified end-to-end
frameworks, the high computational cost of transformer models for edge deployment, insufficient
generalization across geographic regions and vehicle types, and limited explainability and privacy
safeguards. Finally, we outline promising research directions aimed at developing lightweight,
adaptive, and privacy-conscious AVR systems capable of bridging the gap between laboratory
research and large-scale real-world applications.
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I. INTRODUCTION

The rapid growth of vehicle traffic worldwide has created significant
challenges for transportation management, public safety, and security
infrastructures. Urban areas, highways, and international borders
increasingly require intelligent systems capable of automatically
detecting, classifying, and monitoring vehicles in real time. Automatic
Vehicle Recognition (AVR) is a critical component of such systems
and is used in a variety of applications, including traffic surveillance,
law enforcement, toll collection, customs inspection, smart city
management, and autonomous driving systems. AVR encompasses
multiple tasks, such as vehicle detection, fine-grained classification,
vehicle re-identification across multiple cameras, and, in some cases,
automatic license plate recognition (ALPR). Traditional AVR
approaches relied heavily on handcrafted features such as Histogram
of Oriented Gradients (HOG), Haar-like features, and Scale-Invariant
Feature Transform (SIFT), combined with classical classifiers such as
Support Vector Machines or Random Forests. While these methods
achieved reasonable performance in controlled environments, they are
highly sensitive to real-world conditions, including variations in
illumination, occlusions, viewpoint changes, weather conditions, and
complex backgrounds. These limitations often result in reduced
detection accuracy, high false positive rates, and poor scalability

when deployed across large-scale traffic networks (1), (2). The
emergence of Artificial Intelligence (Al), and particularly deep
learning, has dramatically transformed the field of AVR.
Convolutional Neural Networks (CNNs) enable end-to-end feature
learning from raw images, eliminating the need for handcrafted
descriptors and significantly improving detection and classification
performance. More recently, transformer-based architectures and
attention mechanisms have been introduced to capture global context,
further enhancing recognition accuracy in crowded or complex
scenes. Additionally, advanced tasks such as vehicle re-identification
(Re-ID) and fine-grained classification allow systems to track
vehicles across multiple cameras, identify their make, model, and
color, and detect anomalous behavior. Edge Al and multimodal sensor
fusion strategies provide further improvements in real-time
performance, robustness under adverse conditions, and privacy
preservation. Despite these advances, several critical challenges
remain. Current AVR systems are often implemented as independent
modules rather than unified, end-to-end frameworks, limiting
scalability and adaptability. Transformer-based models, while highly
accurate, are computationally expensive and difficult to deploy in
resource-constrained environments. Generalization across geographic
regions, vehicle types, and environmental conditions is still limited.
Furthermore, issues related to explainability, transparency, and
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privacy protection have received insufficient attention, creating
barriers to large-scale deployment in public safety and border control
contexts. Motivated by these challenges, this paper presents a
comprehensive state-of-the-art review of Al-based techniques for
automatic vehicle recognition. It systematically examines modern
deep learning detection frameworks, transformer-based architectures,
fine-grained classification, vehicle re-identification, multimodal
fusion, and Edge Al deployment. Furthermore, the paper identifies
existing research gaps and proposes directions for future studies,
bridging the divide between academic advancements and practical
real-world applications in transportation and security systems.

II. RELATED WORK

Early Automatic Vehicle Recognition (AVR) systems relied on
handcrafted features such as Histogram of Oriented Gradients (HOG),
Haar-like features, and Scale-Invariant Feature Transform (SIFT),
often combined with classical classifiers (11)—(15). While effective in
controlled scenarios, these approaches struggled with real-world
challenges such as varying illumination, occlusions, weather
conditions, and complex backgrounds. Their limited robustness
motivated the adoption of deep learning techniques (16)—(18). The
introduction of Convolutional Neural Networks (CNNs)
revolutionized vehicle detection and recognition. One-stage object
detectors like YOLO and SSD provide high-speed detection suitable
for traffic surveillance and real-time monitoring (19)—(23), while two-
stage detectors such as Faster R-CNN and Mask R-CNN achieve
higher accuracy and improved localization performance at the cost of
increased computational complexity (24)—(27). Recent variants,
including YOLOv4 through YOLOvll, have further improved
detection precision, robustness to small and occluded vehicles, and
real-time efficiency (28)—(33). Transformer-based architectures have
recently been applied to vehicle detection to capture global contextual
information. DETR and its derivatives utilize self-attention
mechanisms for end-to-end detection without handcrafted anchors,
while Swin Transformer leverages hierarchical attention windows for
improved efficiency (34)—(38). These methods outperform traditional
CNNs in crowded and complex traffic scenes (39)—(41). Fine-grained
vehicle recognition extends detection to classify vehicle type, make,
model, and color, enabling advanced applications such as forensic
analysis and automated inspections. Deep CNN classifiers and hybrid
CNN-LSTM models have been widely employed for these tasks (42)—
(46). Additionally, remote sensing applications combine deep learning
with aerial imagery for vehicle detection and classification, useful for
border security and traffic management (47)-(49). Vehicle re-
identification (Re-ID) focuses on matching the same vehicle across
multiple cameras and times. State-of-the-art Re-ID systems employ
deep metric learning, Siamese networks, attention-based feature
extractors, and spatio-temporal modeling to improve cross-camera
matching accuracy (50)—(54). These methods are particularly useful in
multi-camera surveillance systems in smart cities and border control
environments (55)—(57). Multimodal sensor fusion methods combine
camera images with LiDAR, radar, or infrared data to enhance
robustness under adverse conditions such as low-light, fog, or rain.
Early fusion, feature-level fusion, and late fusion strategies have all
been explored, with recent studies incorporating transformer-based
cross-attention mechanisms for optimal multi-sensor integration (58)—
(60). Benchmark datasets such as KITTI, Waymo Open, nuScenes,
ApolloScape, and CityFlow provide multi-sensor annotations across
varied scenarios, supporting training, evaluation, and comparison of
deep learning models (11), (12), (19), (22), (25), (33), (38). These
datasets are instrumental for developing robust detection,
classification, and Re-ID algorithms. Edge AI deployment and
optimization enable real-time vehicle recognition on resource-
constrained devices. Techniques such as model compression,
quantization, and hardware-aware neural architecture search allow
high-accuracy models to run efficiently in embedded systems for
traffic surveillance and customs inspection (13), (14), (20), (26), (29).
Despite these advancements, most research focuses on isolated tasks
(detection, classification, or Re-ID) rather than unified, end-to-end
frameworks. Transformer-based models, while accurate, are
computationally intensive, limiting practical deployment on edge

devices. Generalization across geographic regions, diverse vehicle
types, and environmental conditions is still limited. Furthermore,
explainability and privacy-preserving approaches are rarely
integrated, highlighting areas for future research (16), (18), (21), (24),
(31),(35), (3D).

III. DEEP LEARNING-BASED VEHICLE DETECTION

This section reviewed deep learning-based vehicle detection
approaches, focusing on one-stage and two-stage object detection
frameworks. One-stage detectors, such as YOLO and SSD, offer high
processing speed and low latency, making them well suited for real-
time applications including traffic surveillance and border control. In
contrast, two-stage detectors, including Faster R-CNN and Mask R-
CNN, provide superior localization accuracy and robustness in
complex scenes at the expense of higher computational cost. Recent
architectural improvements and optimization techniques have
narrowed the performance gap between accuracy and efficiency,
enabling broader deployment across both edge and high-performance
computing environments.

One-Stage Object Detectors: One-stage object detectors perform
vehicle localization and classification simultaneously in a single
forward pass through the network, eliminating the need for a separate
region proposal stage. This architectural design significantly reduces
inference time, making one-stage detectors highly suitable for real-
time and large-scale deployment scenarios. Among these models, the
You Only Look Once (YOLO) family and the Single Shot MultiBox
Detector (SSD) are the most widely adopted. YOLO-based detectors
divide the input image into a grid and directly predict bounding
boxes, objectness scores, and class probabilities, enabling fast and
efficient detection even in dense traffic environments (2), (59), (60).
SSD employs multi-scale feature maps to detect objects of varying
sizes, improving detection performance for both small and large
vehicles while maintaining high processing speed (20). Due to their
low latency and relatively simple network pipelines, one-stage
detectors are extensively used in applications requiring real-time
responsiveness, such as traffic surveillance, intelligent transportation
systems, toll monitoring, and border control operations. Recent
improvements to one-stage architectures, including feature pyramid
networks, attention mechanisms, and anchor-free designs, have
further enhanced detection accuracy and robustness against occlusions
and illumination variations without compromising speed (21), (22),
(28), (33). These advancements make one-stage detectors a practical
choice for deployment on edge devices and embedded platforms
where computational resources are limited.

One Stage Object Detection
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Fig. 1. Architecture of a one-stage deep learning detector
for vehicle recognition (64)

Two-Stage Object Detectors: Two-stage object detectors decompose
the vehicle detection task into two sequential phases: region proposal
generation and object classification with bounding box refinement. In
the first stage, a Region Proposal Network (RPN) identifies candidate
regions that are likely to contain vehicles. In the second stage, these
proposed regions are further processed to classify vehicle categories
and refine bounding box coordinates. This two-step strategy
significantly improves localization precision and reduces false
detections, particularly in complex traffic scenes with occlusions and
overlapping vehicles (3), (4). Faster R-CNN represents a major
milestone in two-stage detection frameworks by integrating the RPN
directly into the deep convolutional backbone, enabling end-to-end
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training and efficient feature sharing between proposal generation and
classification stages (4). Mask R-CNN further extends this
architecture by introducing a parallel segmentation branch, allowing
pixel-level instance segmentation in addition to bounding box
detection. This capability is particularly beneficial for precise vehicle
boundary estimation, occlusion handling, and fine-grained analysis in
surveillance and forensic applications (21). Despite their superior
accuracy, two-stage detectors typically require higher computational
resources and longer inference times compared to one-stage models.
As a result, they are often deployed in offline analysis systems or
high-performance computing environments where accuracy is
prioritized over real-time constraints. However, recent optimizations,
such as lightweight backbone networks, feature pyramid networks,
and model compression techniques, have partially mitigated these
limitations, making two-stage detectors increasingly viable for near
real-time applications in traffic monitoring and border control
scenarios (22), (37).

Two Stage Object Detection

Bounding
Regression | Boxes
Box
Image Object
Proposal : Object
Classification | Class
Box

Fig. 2. Two-stage vehicle detection framework based on region
proposal networks (64)

IV. TRANSFORMER-BASED ARCHITECTURES

Transformer-based models have recently emerged as powerful
alternatives to convolutional neural networks for vehicle detection
and recognition tasks. Unlike CNNs, which primarily rely on local
receptive fields, Vision Transformers (ViTs) leverage self-attention
mechanisms to model long-range dependencies and global contextual
relationships across the entire image. This capability is particularly
beneficial in complex traffic environments, where vehicles may be
partially occluded, densely packed, or captured under challenging
viewpoints and lighting conditions. The Detection Transformer
(DETR) reformulates the object detection problem as a direct set
prediction task, eliminating the need for handcrafted components such
as anchor boxes and non-maximum suppression. DETR employs a
transformer encoder—decoder architecture in which global self-
attention enables the model to reason holistically about object
relationships and scene context (5). While DETR demonstrates strong
localization accuracy and conceptual simplicity, its original
formulation suffers from slow convergence and high computational
demands. Subsequent variants, including Deformable DETR and
Efficient DETR, address these limitations by introducing sparse
attention mechanisms and multi-scale feature representations,
significantly improving training efficiency and detection performance
in large-scale traffic scenes (34), (35). The Swin Transformer further
advances transformer-based detection by introducing a hierarchical
architecture with shifted window-based self-attention. This design
allows the model to capture both local and global features while
maintaining computational efficiency, making it well suited for high-
resolution vehicle imagery (6). Swin-based detectors have
demonstrated competitive performance on vehicle detection
benchmarks, particularly in scenarios involving dense traffic flow,
occlusions, and varying environmental conditions (38), (39). Hybrid
architectures that combine CNN backbones with transformer modules
have also gained attention. These models exploit the strong local
feature extraction capabilities of CNNs alongside the global reasoning
power of transformers, achieving a balance between accuracy and
computational efficiency. Such hybrid approaches are increasingly
explored for real-time vehicle detection and edge deployment in
intelligent transportation systems and border surveillance applications

(40), (41). Despite their advantages, transformer-based models remain
computationally intensive and memory-demanding, posing challenges
for deployment on resource-constrained devices. Ongoing research
focuses on lightweight transformers, attention pruning, and hardware-
aware optimization to enable practical real-time deployment without
sacrificing detection accuracy.

Task-specific

Parameters

Detection
hy

Classification
hy
Tracking
hy

[ (30.201,5040) |
(123,125,50,20)
(74.105,20,10)

Fig. 3. Transformer-based vehicle detection framework
illustrating global self-attention mechanisms for modeling long-
range dependencies in complex traffic scenes (65)

V. FINE-GRAINED VEHICLE CLASSIFICATION

Fine-grained vehicle classification addresses the problem of
discriminating between visually similar vehicle categories by
identifying detailed semantic attributes such as vehicle type,
manufacturer, model, production year, and color. Unlike generic
vehicle detection, this task requires capturing subtle inter-class
variations and low-level visual cues, making it a challenging yet
essential component of intelligent transportation systems. Accurate
fine-grained recognition supports high-level applications including
forensic vehicle search, automated customs verification, cross-border
vehicle tracking, and advanced traffic analytics. Recent advances in
deep learning have significantly improved fine-grained vehicle
classification performance. Deep convolutional neural networks
(CNNs), including ResNet, DenseNet, EfficientNet, and Inception-
based architectures, have demonstrated strong discriminative power
when trained on large-scale vehicle datasets (42), (43), (46). These
networks automatically learn hierarchical representations that encode
fine visual patterns such as grille structures, headlamp geometry, logo
placement, and body proportions. Transfer learning from large image
classification benchmarks is commonly employed to improve
convergence and generalization, particularly in scenarios where
labeled vehicle data are limited. To further enhance recognition
accuracy, state-of-the-art methods integrate attention mechanisms and
part-based learning strategies. Attention-based models selectively
emphasize discriminative vehicle regions, while part-aware
approaches explicitly model key components such as headlights,
wheels, and windshields, enabling robust differentiation between
closely related vehicle models (44), (45). Multi-task learning
frameworks that jointly predict multiple vehicle attributes—such as
model and color—have also been shown to improve feature sharing
and classification robustness. Moreover, recent research explores fine-
grained recognition using vision transformers and hybrid CNN-
Transformer architectures to better capture global structural
relationships among vehicle components (61). In practical systems,
fine-grained vehicle classification is typically implemented as a
downstream module following vehicle detection. Detected vehicle
instances are cropped, normalized, and passed to specialized
classification networks, allowing modular system design and scalable
deployment. Video-based approaches further exploit temporal
consistency across frames to reduce ambiguity caused by motion blur,
occlusion, or viewpoint variation. Despite substantial progress, fine-
grained vehicle classification remains constrained by factors such as
viewpoint diversity, occlusion, and the long-tailed distribution of
vehicle models. Emerging research directions include synthetic data
generation, self-supervised and few-shot learning, and cross-domain
adaptation to enhance generalization across geographic regions and
vehicle populations.
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Fig. 4. Architecture for fine-grained vehicle detection (66)

VI. VEHICLE RE-IDENTIFICATION

Vehicle re-identification (Re-ID) addresses the problem of associating
the same vehicle across multiple cameras and non-overlapping fields
of view over different time instances. Unlike license plate recognition,
which may fail due to occlusion, low resolution, or deliberate
tampering, vehicle Re-ID relies on visual appearance cues and spatio-
temporal consistency to achieve robust matching. This capability is
essential for large-scale traffic surveillance, cross-camera vehicle
tracking, forensic investigation, and border control applications.
Modemn vehicle Re-ID systems are predominantly based on deep
metric learning, where the objective is to learn discriminative feature
embeddings that minimize intra-class variations while maximizing
inter-class separability. Siamese and triplet network architectures are
commonly employed, training the network using contrastive or triplet
loss functions to ensure that images of the same vehicle are mapped
closer in the embedding space than those of different vehicles (7),
(50). These embeddings encode a combination of global vehicle
appearance and fine-grained details such as color distribution, shape,
decals, and structural patterns. To further enhance Re-ID
performance, recent studies incorporate attention mechanisms and
part-based feature extraction to focus on discriminative vehicle
regions, including headlights, license plate areas, wheels, and roof
structures. Temporal modeling and spatio-temporal constraints are
also integrated to exploit contextual information such as vehicle
motion patterns, camera topology, and time consistency, significantly
reducing false matches in large-scale camera networks (51), (52).
Additionally, transformer-based Re-ID architectures have emerged as
powerful alternatives to CNN-based models, enabling improved
global feature reasoning and robustness to viewpoint variations (61).
Vehicle Re-ID remains particularly challenging due to high inter-class
similarity among vehicles of the same model and color, as well as
significant intra-class variation caused by illumination changes,
occlusions, and viewpoint diversity. To address these challenges,
recent research explores multi-task learning strategies that jointly
perform Re-ID and attribute recognition, as well as unsupervised and
domain-adaptive Re-ID methods that reduce reliance on large labeled
datasets. In real-world deployments, vehicle Re-ID systems are often
integrated with vehicle detection and fine-grained classification
modules to form end-to-end vehicle analytics pipelines. Such
integrated frameworks are increasingly adopted in intelligent
transportation systems and border surveillance platforms, enabling
scalable, accurate, and privacy-aware vehicle tracking without
exclusive dependence on license plate information.

VII. MULTIMODAL SENSOR FUSION

Vision-based vehicle recognition systems often suffer performance
degradation under challenging environmental conditions such as low
illumination, nighttime operation, fog, rain, and occlusions. To
address these limitations, recent research increasingly focuses on
multimodal sensor fusion, integrating complementary data from
sensors such as infrared (IR) cameras, LiDAR, and radar with
conventional RGB imagery. By exploiting the strengths of multiple
sensing modalities, multimodal fusion significantly enhances
robustness, reliability, and operational continuity in adverse

conditions (8). Infrared and thermal imaging sensors provide valuable
information in low-light and nighttime scenarios by capturing heat
signatures that are invariant to illumination changes. LIDAR sensors
contribute accurate depth and 3D structural information, enabling
precise vehicle localization and shape estimation, while radar systems
offer robust velocity and range measurements that remain effective
under adverse weather conditions. The fusion of these heterogeneous
data sources enables more comprehensive scene understanding and
improves detection, classification, and tracking performance in
complex traffic environments. Multimodal fusion strategies can be
broadly categorized into early fusion, middle (feature-level) fusion,
and late (decision-level) fusion. Early fusion combines raw sensor
data prior to feature extraction, allowing the network to learn joint
representations but requiring precise sensor calibration. Feature-level
fusion integrates modality-specific features extracted by separate
neural networks, providing a balance between representational
richness and flexibility. Late fusion combines independent modality-
specific predictions, offering robustness and modularity at the cost of
reduced cross-modal interaction. Recent studies employ attention
mechanisms and transformer-based cross-modal fusion architectures
to dynamically weight sensor contributions based on environmental
conditions and task relevance (58), (60). Multimodal sensor fusion
has demonstrated significant performance gains in vehicle recognition
benchmarks, particularly in scenarios involving nighttime
surveillance, adverse weather, and complex urban environments.
These approaches are increasingly adopted in intelligent
transportation systems, autonomous driving platforms, and border
surveillance applications, where reliability and safety are critical.
However, challenges such as sensor synchronization, increased
system complexity, higher deployment costs, and real-time processing
constraints remain open research problems. Ongoing research focuses
on lightweight fusion architectures, self-supervised cross-modal
learning, and adaptive fusion strategies that selectively activate
sensors based on contextual cues. These advances aim to enable
scalable, cost-effective, and energy-efficient multimodal vehicle
recognition systems suitable for real-world deployment.
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Fig. 6. Multimodal fusion architecture for robust vehicle
recognition (67)

VIII. EDGE AI AND REAL-TIME DEPLOYMENT

Edge Artificial Intelligence (Edge AI) has emerged as a
transformative approach for real-time vehicle recognition, enabling
computation to occur directly on edge devices such as roadside units,
traffic cameras, and border checkpoint embedded systems. By
processing data locally, Edge Al reduces system latency, minimizes
network bandwidth requirements, and preserves sensitive information,
addressing both performance and privacy concerns in large-scale
intelligent transportation systems (9), (10). To achieve high accuracy
within the limited computational resources of edge devices, modern
vehicle recognition frameworks employ lightweight deep learning
architectures, including MobileNet, EfficientNet, and quantized
YOLO variants. Model compression techniques such as pruning,
quantization, knowledge distillation, and low-rank factorization
reduce model size and inference time while maintaining accuracy,
making deployment feasible on embedded GPUs, FPGAs, and Al
accelerators (62). Hardware-aware neural architecture search (NAS)
further optimizes models for specific edge platforms, balancing
detection speed, energy efficiency, and memory footprint. Edge Al
deployment also enables continuous and scalable monitoring in
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distributed transportation networks. For instance, vehicle detection
and fine-grained classification pipelines can be executed in real time
at multiple traffic intersections or border control stations, providing
immediate insights without relying on cloud connectivity. Combined
with efficient video pre-processing and adaptive inference scheduling,
these systems can handle high vehicle densities while maintaining
frame-level responsiveness (63). Recent advancements integrate Edge
Al with multimodal sensor fusion and transformer-based recognition
models, leveraging the complementary strengths of multiple
modalities and global attention mechanisms without overloading
hardware constraints. Such hybrid approaches allow real-time vehicle
analytics even under challenging conditions, including nighttime,
adverse weather, and heavy traffic, while ensuring data privacy and
compliance with regulatory standards. Despite these advancements,
challenges remain in optimizing transformer-based architectures for
edge devices, managing power consumption in large-scale
deployments, and maintaining robust performance under variable
environmental conditions. Future research is focused on ultra-
lightweight attention modules, edge-friendly self-supervised learning,
and adaptive inference strategies that dynamically adjust model
complexity according to real-time computational budgets.

IX. CHALLENGES, RESEARCH GAPS, AND FUTURE
DIRECTIONS

Despite significant advances in Al-driven vehicle recognition, real-
world deployment remains constrained by technical, environmental,
and operational challenges. These limitations highlight research gaps
that must be addressed to achieve robust, scalable, and privacy-
compliant vehicle analytics.

Environmental Robustness: Vehicle recognition systems continue to
face performance degradation under diverse operational conditions.
Low illumination, nighttime traffic, rain, fog, glare, and dynamic
shadows significantly affect detection, fine-grained classification, and
re-identification accuracy (2), (6), (8). Dense urban traffic with
overlapping or occluded vehicles further complicates recognition.
While multimodal sensor fusion partially mitigates these issues,
practical integration introduces calibration, synchronization, and
computational overheads (8), (58), (60).

Model Efficiency and Edge Deployment: High-accuracy models,
particularly transformer-based architectures, often require substantial
computational and memory resources, limiting their real-time
deployment on edge devices (5), (6), (61). Two-stage detectors,
though precise, demand high-end GPUs and may be unsuitable for
roadside or checkpoint embedded systems (3), (4). Lightweight one-
stage detectors trade accuracy for speed but remain vulnerable to
complex traffic scenarios. Recent advances in model compression,
pruning, quantization, knowledge distillation, and hardware-aware
neural architecture search provide promising solutions for edge
deployment, but careful balancing of speed, power consumption, and
detection performance is still required (9), (10), (62), (63).

Generalization Across Domains: Most models are trained on
benchmark datasets with limited geographic and environmental
diversity. Domain shifts—including regional variations in vehicle
appearance, sensor heterogeneity, and camera perspectives—reduce
model generalization (12), (16), (47). Fine-grained classification and
Re-ID systems, in particular, struggle with rare vehicle types or
models absent from training datasets (42), (50), (61). Cross-domain
adaptation, few-shot learning, and meta-learning approaches are
critical for ensuring reliable performance in heterogeneous, real-world
traffic environments.

Data Availability and Annotation Complexity: High-quality, large-
scale datasets are crucial for training robust vehicle recognition
systems. Collecting detailed labels for vehicle attributes, cross-camera
identities, and multimodal sensor readings is resource-intensive and
subject to privacy regulations (43), (44). Synthetic data generation
using simulation, generative models, or data augmentation techniques

offers a promising avenue to alleviate data scarcity while expanding
model exposure to rare scenarios (61), (62).

Explainability and Trustworthiness: Current Al models function
largely as “black boxes,” limiting their interpretability in safety-
critical applications such as border surveillance, autonomous traffic
control, and law enforcement (44), (45), (50). The integration of
explainable Al (XAI) techniques—including attention maps, feature

visualization, and uncertainty quantification—is essential for
transparent decision-making, regulatory compliance, and error
diagnosis.

Future Research Directions

To overcome these challenges, several research directions are
recommended:

. Edge-Optimized Hybrid Architectures: Develop transformer—
CNN hybrids and ultra-lightweight attention modules to
maintain accuracy while ensuring real-time execution on
embedded devices (61), (62).

. Adaptive Multimodal Fusion: Design dynamic fusion
strategies that selectively leverage RGB, infrared, LiDAR, and
radar inputs depending on environmental conditions and
computational budgets (58), (60).

. Cross-Domain and Few-Shot Adaptation: Employ meta-
learning, self-supervised, and domain-adaptive frameworks to
generalize across geographic regions, vehicle types, and novel
camera viewpoints (16), (50).

. Synthetic and Augmented Data Generation: Leverage GANSs,
simulators, and photorealistic augmentation to expand dataset
diversity, mitigate rare vehicle classes, and simulate challenging
traffic conditions (61), (62).

. Explainable AI Integration: Incorporate interpretable
architectures and uncertainty modeling to enhance transparency,
foster trust, and support decision-making in high-stakes
applications (44), (45).

Energy-Efficient Edge Al Deployment: Advance model
compression, pruning, quantization, and hardware-aware optimization
to deploy high-performing recognition systems on resource-
constrained edge devices at scale (9), (10), (62), (63). Addressing
these gaps will enable next-generation vehicle recognition systems
capable of robust, real-time, and privacy-preserving operation across
diverse environments, facilitating safer, more intelligent, and
operationally resilient transportation networks.

X. CONCLUSION

This paper provides a comprehensive review and critical analysis of
the latest Artificial Intelligence (AI) techniques for Automatic
Vehicle Recognition (AVR). Recent developments in deep learning,
including CNN-based one-stage and two-stage object detectors,
transformer-based architectures, fine-grained vehicle classification,
and vehicle re-identification, have substantially enhanced the
accuracy, robustness, and adaptability of vehicle recognition systems.
Complementary strategies such as multimodal sensor fusion and Edge
Al deployment have further improved reliability and enabled real-
time performance in challenging environments, including dense
traffic, low-light conditions, and adverse weather. Despite these
advances, several key challenges remain. Most AVR solutions are
implemented as modular, task-specific systems rather than unified,
end-to-end frameworks, which limits scalability, integration, and
practical  deployment across  heterogeneous  environments.
Transformer-based models, while demonstrating strong performance,
remain computationally intensive and underutilized in resource-
constrained edge settings. Fine-grained vehicle recognition and Re-ID
approaches often exhibit limited generalization across geographic
regions, rare vehicle types, and dynamic environmental conditions.
Additionally, privacy preservation, interpretability of Al decisions,
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and ethical considerations have not been adequately addressed in the
majority of current systems. To bridge these gaps, future research
should focus on the development of lightweight, explainable, and
unified AVR architectures capable of real-time operation on

embedded platforms.

Adaptive learning and cross-domain

generalization techniques should be integrated to ensure robustness
across diverse traffic scenarios and geographic regions. Furthermore,
privacy-aware Edge Al solutions and ethical design principles must

be

incorporated to enable responsible deployment in smart cities,

border control infrastructures, and intelligent transportation systems.
By addressing these challenges, next-generation AVR systems can
achieve scalable, reliable, and ethically compliant performance,
effectively translating academic advances into real-world impact.
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