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I. INTRODUCTION 
 
The rapid growth of vehicle traffic worldwide has created significant 
challenges for transportation management, public safety, and security 
infrastructures. Urban areas, highways, and international borders 
increasingly require intelligent systems capable of automatically 
detecting, classifying, and monitoring vehicles in real time. Automatic 
Vehicle Recognition (AVR) is a critical component of such systems 
and is used in a variety of applications, including traffic surveillance, 
law enforcement, toll collection, customs inspection, smart city 
management, and autonomous driving systems. AVR encompasses 
multiple tasks, such as vehicle detection, fine-grained classification, 
vehicle re-identification across multiple cameras, and, in some cases, 
automatic license plate recognition (ALPR). Traditional AVR 
approaches relied heavily on handcrafted features such as Histogram 
of Oriented Gradients (HOG), Haar-like features, and Scale
Feature Transform (SIFT), combined with classical classifiers
Support Vector Machines or Random Forests. While these methods 
achieved reasonable performance in controlled environments, they are 
highly sensitive to real-world conditions, including variations in 
illumination, occlusions, viewpoint changes, wea
complex backgrounds. These limitations often result in reduced 
detection accuracy, high false positive rates, and poor scalability
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ABSTRACT 

Automatic Vehicle Recognition (AVR) has become a cornerstone technology for 
Transportation Systems, smart city infrastructure, traffic monitoring, and border security. Recent 
advancements in Artificial Intelligence (AI), particularly deep learning, have markedly improved 
vehicle detection, classification, and tracking. However, real-world deployment of AVR systems 
remains challenged by factors such as high computational demands, limited cross
generalization, scalability constraints, and the need for privacy
presents a comprehensive state-of-the-art review and critical gap analysis of AI
recognition techniques. We systematically examine contemporary approaches, including CNN

stage and two-stage object detectors, transformer-based architectures with global sel
grained vehicle classification models, and vehicle re-identification methods. Additionally, we 

explore multimodal sensor fusion strategies and Edge AI deployment to evaluate their effectiveness in 
enhancing robustness and real-time performance under diverse environmental conditions. The 
analysis identifies key limitations in current systems, such as the absence of unified end
frameworks, the high computational cost of transformer models for edge deployment, insufficient 
generalization across geographic regions and vehicle types, and limited explainability and privacy 
safeguards. Finally, we outline promising research directions aimed at developing lightweight, 
adaptive, and privacy-conscious AVR systems capable of bridging the gap be
research and large-scale real-world applications. 
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when deployed across large-scale traffic networks 
emergence of Artificial Intelligence 
learning, has dramatically transformed the field of AVR. 
Convolutional Neural Networks (CNNs) enable end
learning from raw images, eliminating the need for handcrafted 
descriptors and significantly improving detec
performance. More recently, transformer
attention mechanisms have been introduced to capture global context, 
further enhancing recognition accuracy in crowded or complex 
scenes. Additionally, advanced tasks s
(Re-ID) and fine-grained classification allow systems to track 
vehicles across multiple cameras, identify their make, model, and 
color, and detect anomalous behavior. Edge AI and multimodal sensor 
fusion strategies provide further improvements in real
performance, robustness under adverse conditions, and privacy 
preservation. Despite these advances, several critical challenges 
remain. Current AVR systems are often implemented as independent 
modules rather than unified, 
scalability and adaptability. Transformer
accurate, are computationally expensive and difficult to deploy in 
resource-constrained environments. Generalization across geographic 
regions, vehicle types, and environmental conditions is still limited. 
Furthermore, issues related to explainability, transparency, and 
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scale traffic networks (1), (2). The 
emergence of Artificial Intelligence (AI), and particularly deep 
learning, has dramatically transformed the field of AVR. 
Convolutional Neural Networks (CNNs) enable end-to-end feature 
learning from raw images, eliminating the need for handcrafted 
descriptors and significantly improving detection and classification 
performance. More recently, transformer-based architectures and 
attention mechanisms have been introduced to capture global context, 
further enhancing recognition accuracy in crowded or complex 
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privacy protection have received insufficient attention, creating 
barriers to large-scale deployment in public safety and border control 
contexts. Motivated by these challenges, this paper presents a 
comprehensive state-of-the-art review of AI-based techniques for 
automatic vehicle recognition. It systematically examines modern 
deep learning detection frameworks, transformer-based architectures, 
fine-grained classification, vehicle re-identification, multimodal 
fusion, and Edge AI deployment. Furthermore, the paper identifies 
existing research gaps and proposes directions for future studies, 
bridging the divide between academic advancements and practical 
real-world applications in transportation and security systems. 
 
II. RELATED WORK 
 
Early Automatic Vehicle Recognition (AVR) systems relied on 
handcrafted features such as Histogram of Oriented Gradients (HOG), 
Haar-like features, and Scale-Invariant Feature Transform (SIFT), 
often combined with classical classifiers (11)–(15). While effective in 
controlled scenarios, these approaches struggled with real-world 
challenges such as varying illumination, occlusions, weather 
conditions, and complex backgrounds. Their limited robustness 
motivated the adoption of deep learning techniques (16)–(18). The 
introduction of Convolutional Neural Networks (CNNs) 
revolutionized vehicle detection and recognition. One-stage object 
detectors like YOLO and SSD provide high-speed detection suitable 
for traffic surveillance and real-time monitoring (19)–(23), while two-
stage detectors such as Faster R-CNN and Mask R-CNN achieve 
higher accuracy and improved localization performance at the cost of 
increased computational complexity (24)–(27). Recent variants, 
including YOLOv4 through YOLOv11, have further improved 
detection precision, robustness to small and occluded vehicles, and 
real-time efficiency (28)–(33). Transformer-based architectures have 
recently been applied to vehicle detection to capture global contextual 
information. DETR and its derivatives utilize self-attention 
mechanisms for end-to-end detection without handcrafted anchors, 
while Swin Transformer leverages hierarchical attention windows for 
improved efficiency (34)–(38). These methods outperform traditional 
CNNs in crowded and complex traffic scenes (39)–(41). Fine-grained 
vehicle recognition extends detection to classify vehicle type, make, 
model, and color, enabling advanced applications such as forensic 
analysis and automated inspections. Deep CNN classifiers and hybrid 
CNN-LSTM models have been widely employed for these tasks (42)–
(46). Additionally, remote sensing applications combine deep learning 
with aerial imagery for vehicle detection and classification, useful for 
border security and traffic management (47)–(49). Vehicle re-
identification (Re-ID) focuses on matching the same vehicle across 
multiple cameras and times. State-of-the-art Re-ID systems employ 
deep metric learning, Siamese networks, attention-based feature 
extractors, and spatio-temporal modeling to improve cross-camera 
matching accuracy (50)–(54). These methods are particularly useful in 
multi-camera surveillance systems in smart cities and border control 
environments (55)–(57). Multimodal sensor fusion methods combine 
camera images with LiDAR, radar, or infrared data to enhance 
robustness under adverse conditions such as low-light, fog, or rain. 
Early fusion, feature-level fusion, and late fusion strategies have all 
been explored, with recent studies incorporating transformer-based 
cross-attention mechanisms for optimal multi-sensor integration (58)–
(60). Benchmark datasets such as KITTI, Waymo Open, nuScenes, 
ApolloScape, and CityFlow provide multi-sensor annotations across 
varied scenarios, supporting training, evaluation, and comparison of 
deep learning models (11), (12), (19), (22), (25), (33), (38). These 
datasets are instrumental for developing robust detection, 
classification, and Re-ID algorithms. Edge AI deployment and 
optimization enable real-time vehicle recognition on resource-
constrained devices. Techniques such as model compression, 
quantization, and hardware-aware neural architecture search allow 
high-accuracy models to run efficiently in embedded systems for 
traffic surveillance and customs inspection (13), (14), (20), (26), (29). 
Despite these advancements, most research focuses on isolated tasks 
(detection, classification, or Re-ID) rather than unified, end-to-end 
frameworks. Transformer-based models, while accurate, are 
computationally intensive, limiting practical deployment on edge 

devices. Generalization across geographic regions, diverse vehicle 
types, and environmental conditions is still limited. Furthermore, 
explainability and privacy-preserving approaches are rarely 
integrated, highlighting areas for future research (16), (18), (21), (24), 
(31), (35), (37). 
 
III. DEEP LEARNING-BASED VEHICLE DETECTION 
 
This section reviewed deep learning-based vehicle detection 
approaches, focusing on one-stage and two-stage object detection 
frameworks. One-stage detectors, such as YOLO and SSD, offer high 
processing speed and low latency, making them well suited for real-
time applications including traffic surveillance and border control. In 
contrast, two-stage detectors, including Faster R-CNN and Mask R-
CNN, provide superior localization accuracy and robustness in 
complex scenes at the expense of higher computational cost. Recent 
architectural improvements and optimization techniques have 
narrowed the performance gap between accuracy and efficiency, 
enabling broader deployment across both edge and high-performance 
computing environments. 
 
One-Stage Object Detectors: One-stage object detectors perform 
vehicle localization and classification simultaneously in a single 
forward pass through the network, eliminating the need for a separate 
region proposal stage. This architectural design significantly reduces 
inference time, making one-stage detectors highly suitable for real-
time and large-scale deployment scenarios. Among these models, the 
You Only Look Once (YOLO) family and the Single Shot MultiBox 
Detector (SSD) are the most widely adopted. YOLO-based detectors 
divide the input image into a grid and directly predict bounding 
boxes, objectness scores, and class probabilities, enabling fast and 
efficient detection even in dense traffic environments (2), (59), (60). 
SSD employs multi-scale feature maps to detect objects of varying 
sizes, improving detection performance for both small and large 
vehicles while maintaining high processing speed (20). Due to their 
low latency and relatively simple network pipelines, one-stage 
detectors are extensively used in applications requiring real-time 
responsiveness, such as traffic surveillance, intelligent transportation 
systems, toll monitoring, and border control operations. Recent 
improvements to one-stage architectures, including feature pyramid 
networks, attention mechanisms, and anchor-free designs, have 
further enhanced detection accuracy and robustness against occlusions 
and illumination variations without compromising speed (21), (22), 
(28), (33). These advancements make one-stage detectors a practical 
choice for deployment on edge devices and embedded platforms 
where computational resources are limited. 
 

 
 

Fig. 1. Architecture of a one-stage deep learning detector 
for vehicle recognition (64) 

 
Two-Stage Object Detectors: Two-stage object detectors decompose 
the vehicle detection task into two sequential phases: region proposal 
generation and object classification with bounding box refinement. In 
the first stage, a Region Proposal Network (RPN) identifies candidate 
regions that are likely to contain vehicles. In the second stage, these 
proposed regions are further processed to classify vehicle categories 
and refine bounding box coordinates. This two-step strategy 
significantly improves localization precision and reduces false 
detections, particularly in complex traffic scenes with occlusions and 
overlapping vehicles (3), (4). Faster R-CNN represents a major 
milestone in two-stage detection frameworks by integrating the RPN 
directly into the deep convolutional backbone, enabling end-to-end 
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training and efficient feature sharing between proposal generation and 
classification stages (4). Mask R-CNN further extends this 
architecture by introducing a parallel segmentation branch, allowing 
pixel-level instance segmentation in addition to bounding box 
detection. This capability is particularly beneficial for precise vehicle 
boundary estimation, occlusion handling, and fine-grained analysis in 
surveillance and forensic applications (21). Despite their superior 
accuracy, two-stage detectors typically require higher computational 
resources and longer inference times compared to one-stage models. 
As a result, they are often deployed in offline analysis systems or 
high-performance computing environments where accuracy is 
prioritized over real-time constraints. However, recent optimizations, 
such as lightweight backbone networks, feature pyramid networks, 
and model compression techniques, have partially mitigated these 
limitations, making two-stage detectors increasingly viable for near 
real-time applications in traffic monitoring and border control 
scenarios (22), (37). 

 

 
 

Fig. 2. Two-stage vehicle detection framework based on region 
proposal networks (64) 

 
IV. TRANSFORMER-BASED ARCHITECTURES 

 
Transformer-based models have recently emerged as powerful 
alternatives to convolutional neural networks for vehicle detection 
and recognition tasks. Unlike CNNs, which primarily rely on local 
receptive fields, Vision Transformers (ViTs) leverage self-attention 
mechanisms to model long-range dependencies and global contextual 
relationships across the entire image. This capability is particularly 
beneficial in complex traffic environments, where vehicles may be 
partially occluded, densely packed, or captured under challenging 
viewpoints and lighting conditions. The Detection Transformer 
(DETR) reformulates the object detection problem as a direct set 
prediction task, eliminating the need for handcrafted components such 
as anchor boxes and non-maximum suppression. DETR employs a 
transformer encoder–decoder architecture in which global self-
attention enables the model to reason holistically about object 
relationships and scene context (5). While DETR demonstrates strong 
localization accuracy and conceptual simplicity, its original 
formulation suffers from slow convergence and high computational 
demands. Subsequent variants, including Deformable DETR and 
Efficient DETR, address these limitations by introducing sparse 
attention mechanisms and multi-scale feature representations, 
significantly improving training efficiency and detection performance 
in large-scale traffic scenes (34), (35). The Swin Transformer further 
advances transformer-based detection by introducing a hierarchical 
architecture with shifted window-based self-attention. This design 
allows the model to capture both local and global features while 
maintaining computational efficiency, making it well suited for high-
resolution vehicle imagery (6). Swin-based detectors have 
demonstrated competitive performance on vehicle detection 
benchmarks, particularly in scenarios involving dense traffic flow, 
occlusions, and varying environmental conditions (38), (39). Hybrid 
architectures that combine CNN backbones with transformer modules 
have also gained attention. These models exploit the strong local 
feature extraction capabilities of CNNs alongside the global reasoning 
power of transformers, achieving a balance between accuracy and 
computational efficiency. Such hybrid approaches are increasingly 
explored for real-time vehicle detection and edge deployment in 
intelligent transportation systems and border surveillance applications 

(40), (41). Despite their advantages, transformer-based models remain 
computationally intensive and memory-demanding, posing challenges 
for deployment on resource-constrained devices. Ongoing research 
focuses on lightweight transformers, attention pruning, and hardware-
aware optimization to enable practical real-time deployment without 
sacrificing detection accuracy. 
 

 
 

Fig. 3. Transformer-based vehicle detection framework 
illustrating global self-attention mechanisms for modeling long-

range dependencies in complex traffic scenes (65) 
 
V. FINE-GRAINED VEHICLE CLASSIFICATION 

 
Fine-grained vehicle classification addresses the problem of 
discriminating between visually similar vehicle categories by 
identifying detailed semantic attributes such as vehicle type, 
manufacturer, model, production year, and color. Unlike generic 
vehicle detection, this task requires capturing subtle inter-class 
variations and low-level visual cues, making it a challenging yet 
essential component of intelligent transportation systems. Accurate 
fine-grained recognition supports high-level applications including 
forensic vehicle search, automated customs verification, cross-border 
vehicle tracking, and advanced traffic analytics. Recent advances in 
deep learning have significantly improved fine-grained vehicle 
classification performance. Deep convolutional neural networks 
(CNNs), including ResNet, DenseNet, EfficientNet, and Inception-
based architectures, have demonstrated strong discriminative power 
when trained on large-scale vehicle datasets (42), (43), (46). These 
networks automatically learn hierarchical representations that encode 
fine visual patterns such as grille structures, headlamp geometry, logo 
placement, and body proportions. Transfer learning from large image 
classification benchmarks is commonly employed to improve 
convergence and generalization, particularly in scenarios where 
labeled vehicle data are limited. To further enhance recognition 
accuracy, state-of-the-art methods integrate attention mechanisms and 
part-based learning strategies. Attention-based models selectively 
emphasize discriminative vehicle regions, while part-aware 
approaches explicitly model key components such as headlights, 
wheels, and windshields, enabling robust differentiation between 
closely related vehicle models (44), (45). Multi-task learning 
frameworks that jointly predict multiple vehicle attributes—such as 
model and color—have also been shown to improve feature sharing 
and classification robustness. Moreover, recent research explores fine-
grained recognition using vision transformers and hybrid CNN–
Transformer architectures to better capture global structural 
relationships among vehicle components (61). In practical systems, 
fine-grained vehicle classification is typically implemented as a 
downstream module following vehicle detection. Detected vehicle 
instances are cropped, normalized, and passed to specialized 
classification networks, allowing modular system design and scalable 
deployment. Video-based approaches further exploit temporal 
consistency across frames to reduce ambiguity caused by motion blur, 
occlusion, or viewpoint variation. Despite substantial progress, fine-
grained vehicle classification remains constrained by factors such as 
viewpoint diversity, occlusion, and the long-tailed distribution of 
vehicle models. Emerging research directions include synthetic data 
generation, self-supervised and few-shot learning, and cross-domain 
adaptation to enhance generalization across geographic regions and 
vehicle populations.  
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Fig. 4. Architecture for fine-grained vehicle detection (66) 
 
VI. VEHICLE RE-IDENTIFICATION 

 
Vehicle re-identification (Re-ID) addresses the problem of associating 
the same vehicle across multiple cameras and non-overlapping fields 
of view over different time instances. Unlike license plate recognition, 
which may fail due to occlusion, low resolution, or deliberate 
tampering, vehicle Re-ID relies on visual appearance cues and spatio-
temporal consistency to achieve robust matching. This capability is 
essential for large-scale traffic surveillance, cross-camera vehicle 
tracking, forensic investigation, and border control applications. 
Modern vehicle Re-ID systems are predominantly based on deep 
metric learning, where the objective is to learn discriminative feature 
embeddings that minimize intra-class variations while maximizing 
inter-class separability. Siamese and triplet network architectures are 
commonly employed, training the network using contrastive or triplet 
loss functions to ensure that images of the same vehicle are mapped 
closer in the embedding space than those of different vehicles (7), 
(50). These embeddings encode a combination of global vehicle 
appearance and fine-grained details such as color distribution, shape, 
decals, and structural patterns. To further enhance Re-ID 
performance, recent studies incorporate attention mechanisms and 
part-based feature extraction to focus on discriminative vehicle 
regions, including headlights, license plate areas, wheels, and roof 
structures. Temporal modeling and spatio-temporal constraints are 
also integrated to exploit contextual information such as vehicle 
motion patterns, camera topology, and time consistency, significantly 
reducing false matches in large-scale camera networks (51), (52). 
Additionally, transformer-based Re-ID architectures have emerged as 
powerful alternatives to CNN-based models, enabling improved 
global feature reasoning and robustness to viewpoint variations (61). 
Vehicle Re-ID remains particularly challenging due to high inter-class 
similarity among vehicles of the same model and color, as well as 
significant intra-class variation caused by illumination changes, 
occlusions, and viewpoint diversity. To address these challenges, 
recent research explores multi-task learning strategies that jointly 
perform Re-ID and attribute recognition, as well as unsupervised and 
domain-adaptive Re-ID methods that reduce reliance on large labeled 
datasets. In real-world deployments, vehicle Re-ID systems are often 
integrated with vehicle detection and fine-grained classification 
modules to form end-to-end vehicle analytics pipelines. Such 
integrated frameworks are increasingly adopted in intelligent 
transportation systems and border surveillance platforms, enabling 
scalable, accurate, and privacy-aware vehicle tracking without 
exclusive dependence on license plate information. 
 
VII. MULTIMODAL SENSOR FUSION 
 
Vision-based vehicle recognition systems often suffer performance 
degradation under challenging environmental conditions such as low 
illumination, nighttime operation, fog, rain, and occlusions. To 
address these limitations, recent research increasingly focuses on 
multimodal sensor fusion, integrating complementary data from 
sensors such as infrared (IR) cameras, LiDAR, and radar with 
conventional RGB imagery. By exploiting the strengths of multiple 
sensing modalities, multimodal fusion significantly enhances 
robustness, reliability, and operational continuity in adverse 

conditions (8). Infrared and thermal imaging sensors provide valuable 
information in low-light and nighttime scenarios by capturing heat 
signatures that are invariant to illumination changes. LiDAR sensors 
contribute accurate depth and 3D structural information, enabling 
precise vehicle localization and shape estimation, while radar systems 
offer robust velocity and range measurements that remain effective 
under adverse weather conditions. The fusion of these heterogeneous 
data sources enables more comprehensive scene understanding and 
improves detection, classification, and tracking performance in 
complex traffic environments. Multimodal fusion strategies can be 
broadly categorized into early fusion, middle (feature-level) fusion, 
and late (decision-level) fusion. Early fusion combines raw sensor 
data prior to feature extraction, allowing the network to learn joint 
representations but requiring precise sensor calibration. Feature-level 
fusion integrates modality-specific features extracted by separate 
neural networks, providing a balance between representational 
richness and flexibility. Late fusion combines independent modality-
specific predictions, offering robustness and modularity at the cost of 
reduced cross-modal interaction. Recent studies employ attention 
mechanisms and transformer-based cross-modal fusion architectures 
to dynamically weight sensor contributions based on environmental 
conditions and task relevance (58), (60). Multimodal sensor fusion 
has demonstrated significant performance gains in vehicle recognition 
benchmarks, particularly in scenarios involving nighttime 
surveillance, adverse weather, and complex urban environments. 
These approaches are increasingly adopted in intelligent 
transportation systems, autonomous driving platforms, and border 
surveillance applications, where reliability and safety are critical. 
However, challenges such as sensor synchronization, increased 
system complexity, higher deployment costs, and real-time processing 
constraints remain open research problems. Ongoing research focuses 
on lightweight fusion architectures, self-supervised cross-modal 
learning, and adaptive fusion strategies that selectively activate 
sensors based on contextual cues. These advances aim to enable 
scalable, cost-effective, and energy-efficient multimodal vehicle 
recognition systems suitable for real-world deployment. 
 

 
Fig. 6. Multimodal fusion architecture for robust vehicle 

recognition (67) 
 
VIII. EDGE AI AND REAL-TIME DEPLOYMENT 
 
Edge Artificial Intelligence (Edge AI) has emerged as a 
transformative approach for real-time vehicle recognition, enabling 
computation to occur directly on edge devices such as roadside units, 
traffic cameras, and border checkpoint embedded systems. By 
processing data locally, Edge AI reduces system latency, minimizes 
network bandwidth requirements, and preserves sensitive information, 
addressing both performance and privacy concerns in large-scale 
intelligent transportation systems (9), (10). To achieve high accuracy 
within the limited computational resources of edge devices, modern 
vehicle recognition frameworks employ lightweight deep learning 
architectures, including MobileNet, EfficientNet, and quantized 
YOLO variants. Model compression techniques such as pruning, 
quantization, knowledge distillation, and low-rank factorization 
reduce model size and inference time while maintaining accuracy, 
making deployment feasible on embedded GPUs, FPGAs, and AI 
accelerators (62). Hardware-aware neural architecture search (NAS) 
further optimizes models for specific edge platforms, balancing 
detection speed, energy efficiency, and memory footprint. Edge AI 
deployment also enables continuous and scalable monitoring in 
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distributed transportation networks. For instance, vehicle detection 
and fine-grained classification pipelines can be executed in real time 
at multiple traffic intersections or border control stations, providing 
immediate insights without relying on cloud connectivity. Combined 
with efficient video pre-processing and adaptive inference scheduling, 
these systems can handle high vehicle densities while maintaining 
frame-level responsiveness (63). Recent advancements integrate Edge 
AI with multimodal sensor fusion and transformer-based recognition 
models, leveraging the complementary strengths of multiple 
modalities and global attention mechanisms without overloading 
hardware constraints. Such hybrid approaches allow real-time vehicle 
analytics even under challenging conditions, including nighttime, 
adverse weather, and heavy traffic, while ensuring data privacy and 
compliance with regulatory standards. Despite these advancements, 
challenges remain in optimizing transformer-based architectures for 
edge devices, managing power consumption in large-scale 
deployments, and maintaining robust performance under variable 
environmental conditions. Future research is focused on ultra-
lightweight attention modules, edge-friendly self-supervised learning, 
and adaptive inference strategies that dynamically adjust model 
complexity according to real-time computational budgets. 
 
IX. CHALLENGES, RESEARCH GAPS, AND FUTURE 
DIRECTIONS 

 
Despite significant advances in AI-driven vehicle recognition, real-
world deployment remains constrained by technical, environmental, 
and operational challenges. These limitations highlight research gaps 
that must be addressed to achieve robust, scalable, and privacy-
compliant vehicle analytics. 
 
Environmental Robustness: Vehicle recognition systems continue to 
face performance degradation under diverse operational conditions. 
Low illumination, nighttime traffic, rain, fog, glare, and dynamic 
shadows significantly affect detection, fine-grained classification, and 
re-identification accuracy (2), (6), (8). Dense urban traffic with 
overlapping or occluded vehicles further complicates recognition. 
While multimodal sensor fusion partially mitigates these issues, 
practical integration introduces calibration, synchronization, and 
computational overheads (8), (58), (60). 

 
Model Efficiency and Edge Deployment: High-accuracy models, 
particularly transformer-based architectures, often require substantial 
computational and memory resources, limiting their real-time 
deployment on edge devices (5), (6), (61). Two-stage detectors, 
though precise, demand high-end GPUs and may be unsuitable for 
roadside or checkpoint embedded systems (3), (4). Lightweight one-
stage detectors trade accuracy for speed but remain vulnerable to 
complex traffic scenarios. Recent advances in model compression, 
pruning, quantization, knowledge distillation, and hardware-aware 
neural architecture search provide promising solutions for edge 
deployment, but careful balancing of speed, power consumption, and 
detection performance is still required (9), (10), (62), (63). 

 
Generalization Across Domains: Most models are trained on 
benchmark datasets with limited geographic and environmental 
diversity. Domain shifts—including regional variations in vehicle 
appearance, sensor heterogeneity, and camera perspectives—reduce 
model generalization (12), (16), (47). Fine-grained classification and 
Re-ID systems, in particular, struggle with rare vehicle types or 
models absent from training datasets (42), (50), (61). Cross-domain 
adaptation, few-shot learning, and meta-learning approaches are 
critical for ensuring reliable performance in heterogeneous, real-world 
traffic environments. 

 
Data Availability and Annotation Complexity: High-quality, large-
scale datasets are crucial for training robust vehicle recognition 
systems. Collecting detailed labels for vehicle attributes, cross-camera 
identities, and multimodal sensor readings is resource-intensive and 
subject to privacy regulations (43), (44). Synthetic data generation 
using simulation, generative models, or data augmentation techniques 

offers a promising avenue to alleviate data scarcity while expanding 
model exposure to rare scenarios (61), (62). 

 
Explainability and Trustworthiness: Current AI models function 
largely as “black boxes,” limiting their interpretability in safety-
critical applications such as border surveillance, autonomous traffic 
control, and law enforcement (44), (45), (50). The integration of 
explainable AI (XAI) techniques—including attention maps, feature 
visualization, and uncertainty quantification—is essential for 
transparent decision-making, regulatory compliance, and error 
diagnosis. 

 
Future Research Directions 

 
To overcome these challenges, several research directions are 
recommended: 
 
 Edge-Optimized Hybrid Architectures: Develop transformer–

CNN hybrids and ultra-lightweight attention modules to 
maintain accuracy while ensuring real-time execution on 
embedded devices (61), (62). 

 Adaptive Multimodal Fusion: Design dynamic fusion 
strategies that selectively leverage RGB, infrared, LiDAR, and 
radar inputs depending on environmental conditions and 
computational budgets (58), (60). 

 Cross-Domain and Few-Shot Adaptation: Employ meta-
learning, self-supervised, and domain-adaptive frameworks to 
generalize across geographic regions, vehicle types, and novel 
camera viewpoints (16), (50). 

 Synthetic and Augmented Data Generation: Leverage GANs, 
simulators, and photorealistic augmentation to expand dataset 
diversity, mitigate rare vehicle classes, and simulate challenging 
traffic conditions (61), (62). 

 Explainable AI Integration: Incorporate interpretable 
architectures and uncertainty modeling to enhance transparency, 
foster trust, and support decision-making in high-stakes 
applications (44), (45). 

 
Energy-Efficient Edge AI Deployment: Advance model 
compression, pruning, quantization, and hardware-aware optimization 
to deploy high-performing recognition systems on resource-
constrained edge devices at scale (9), (10), (62), (63). Addressing 
these gaps will enable next-generation vehicle recognition systems 
capable of robust, real-time, and privacy-preserving operation across 
diverse environments, facilitating safer, more intelligent, and 
operationally resilient transportation networks. 
 

X. CONCLUSION 
 
This paper provides a comprehensive review and critical analysis of 
the latest Artificial Intelligence (AI) techniques for Automatic 
Vehicle Recognition (AVR). Recent developments in deep learning, 
including CNN-based one-stage and two-stage object detectors, 
transformer-based architectures, fine-grained vehicle classification, 
and vehicle re-identification, have substantially enhanced the 
accuracy, robustness, and adaptability of vehicle recognition systems. 
Complementary strategies such as multimodal sensor fusion and Edge 
AI deployment have further improved reliability and enabled real-
time performance in challenging environments, including dense 
traffic, low-light conditions, and adverse weather. Despite these 
advances, several key challenges remain. Most AVR solutions are 
implemented as modular, task-specific systems rather than unified, 
end-to-end frameworks, which limits scalability, integration, and 
practical deployment across heterogeneous environments. 
Transformer-based models, while demonstrating strong performance, 
remain computationally intensive and underutilized in resource-
constrained edge settings. Fine-grained vehicle recognition and Re-ID 
approaches often exhibit limited generalization across geographic 
regions, rare vehicle types, and dynamic environmental conditions. 
Additionally, privacy preservation, interpretability of AI decisions, 
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and ethical considerations have not been adequately addressed in the 
majority of current systems. To bridge these gaps, future research 
should focus on the development of lightweight, explainable, and 
unified AVR architectures capable of real-time operation on 
embedded platforms. Adaptive learning and cross-domain 
generalization techniques should be integrated to ensure robustness 
across diverse traffic scenarios and geographic regions. Furthermore, 
privacy-aware Edge AI solutions and ethical design principles must 
be incorporated to enable responsible deployment in smart cities, 
border control infrastructures, and intelligent transportation systems. 
By addressing these challenges, next-generation AVR systems can 
achieve scalable, reliable, and ethically compliant performance, 
effectively translating academic advances into real-world impact. 
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