

RESEARCH ARTICLE

VARIETAL CHARACTERISTICS AND EVALUATION OF THE AGRONOMIC PERFORMANCE OF FONIO ECOTYPES IN THE SUDANESE ZONE OF CHAD

Touroumgaye GOALBAYE¹, Tamrial NGARIBAN¹, Agouibli ISSINE¹, Philémon DAOUYA¹, Alhadj MARKHOUS NAZAL, Brahim KABOUL¹, Clément JOUS², Daniel BRAVO¹ and Grace YASSI SOLO¹

¹University of Sarh, PO Box 105 Chad; ²SWISSAID- Chad

ARTICLE INFO

Article History:

Received 20th October, 2025

Received in revised form

17th November, 2025

Accepted 28th December, 2025

Published online 30th January, 2026

Keywords:

Digitaria exilis Stapf, Local Ecotypes, Varietal Selection, adaptation, Productivity, Chad.

***Corresponding author:**

Touroumgaye GOALBAYE

ABSTRACT

Fonio is of major importance because it plays a significant role in feeding the population. It is traditionally cultivated in certain regions of Chad and remains marginal. However, fonio plays an important role in the fight against poverty by ensuring food security. The objective of this study is to identify varietal characteristics and evaluate the performance of fonio ecotypes. The plant material consisted of four ecotypes, Ts_Fon_20, Ts_Fon_13, Ts_Fon_24 and Ts_Fon_23, corresponding to treatments T1, T2, T3 and T4. The trial was conducted using a Fisher block design with four treatments repeated four times. Treatment T2 (25.66 cm ± 1.867) achieved the highest height, followed by T1 (25.13 cm ± 1.367). T2 (8.18 ± 2.68) recorded the highest number of shoots per plant, followed by T3 (6.38 ± 0.21). Treatment T2 (10.17 ± 4.34) recorded the highest number of ears, followed by T3 (9.06 ± 0.51) and T4 (5.012 ± 1.29). T2 (7.4 ± 0.86) recorded the highest number of racemes per ear, followed by T3 (6.51 ± 0.27) and T1 (3.5 ± 0.13). T2 (177.77 kg/ha ± 44.44) obtained the highest straw yield, followed by T1 (133.33 kg/ha ± 0.11) and T3 (133.33 kg/ha ± 33.33). The heritability values (h^2) obtained are very high for the number of tillers 60 JAR ($h^2 = 0.982$), the number of ears ($h^2 = 0.97$) and the number of racemes ($h^2 = 0.982$). The heritability values are coupled with selection gain percentages of 78.15 (number of tillers), 87 (number of ears), and 80.66 (number of racemes). T2 and T3 corresponded to Ts Fon13 and Ts Fon 24, which performed better. Furthermore, the results obtained could serve as a basis for data for the fonio genetic improvement programme in Chad.

Copyright©2026, Touroumgaye GOALBAYE et al. 2026. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Touroumgaye GOALBAYE, Tamrial NGARIBAN, Agouibli ISSINE, Philémon DAOUYA, Alhadj MARKHOUS NAZAL, Brahim KABOUL, Clément JOUS, Daniel BRAVO and Grace YASSI SOLO. 2026. "Varietal characteristics and evaluation of the agronomic performance of fonio ecotypes in the Sudanese zone of Chad". *International Journal of Current Research*, 18, (01), 35996-36001.

INTRODUCTION

In Chad, cereals play an important role in the basic diet of the population. Cereal production is mainly aimed at meeting the food needs of families (Stringer *et al.* 2009). This explains the diversification of crops. However, certain traditional varieties of cereal crops are now disappearing. The introduction of cash crops and improved high-yield varieties has contributed to restricting the cultivation area of these traditional varieties, which can now only be found in the most remote rural areas. Fonio, *Digitaria exilis* Stapf, is a traditional cereal endemic to Africa that has been the subject of relatively little research but persists within production systems (Cruz *et al.* 2012; Vall *et al.* 2011). These authors hypothesised that its persistence was linked to its central role in seasonal household food security in coping with the lean season. It is considered a 'minor' crop compared to the 'major' cereals such as millet (*Pennisetum typhoides* L.), sorghum (*Sorghum bicolor* L.), maize (*Zea mays* L.), rice (*Oriza sativa* L.) and common wheat (*Triticum aestivum* L.), which are grown throughout Chad depending on climatic conditions (M'Sangaral, 2025). Fonio was overlooked by the 'green' revolutions, even though it played an important role in food security in emerging

countries and is well suited to the climate and soil of areas with low rainfall (M'Sangaral, 2025). Despite its many potential virtues, fonio remains a marginal crop that is neglected in national programmes for research and promotion of food crops in Chad. Cultivation techniques remain traditional, rudimentary and little studied, resulting in the arduous cultivation operations that are characteristic of fonio, with very low yields generally ranging from 200 to 700 kg/ha (Badiane *et al.* 2006). In Africa, climate change scenarios differ substantially in terms of the likely increase or decrease in rainfall, but all agree on an increase in the variability of extreme weather events, namely an increase in the occurrence of droughts and torrential rains (Cooper *et al.* 2008, Niang *et al.* 2014, Torquebiau, 2015). African farmers have always been exposed to high variability in their production environment (Twomlow *et al.* 2008), partly due to the characteristics of the climate in sub-humid tropical areas (Cooper *et al.* 2008), underdeveloped supply chains and a lack of insurance systems (Adesina and Ouattara, 2000). As a result, farmers use a wide range of adaptation strategies, including selecting drought-tolerant varieties or crops, diversifying income sources through crop-livestock integration or non-agricultural activities (Abdulai and Croleress, 2001; Thornton *et al.* 2007).

Selection gain: Selection gain can be estimated from the value of heritability and phenotypic variance using the formula proposed by Allard (1960).

$$G = h^2 \times K \times (\sigma_p^2)^{1/2}$$

Where G = expected gain from selection; K = standardised selection differential or whose value depends on the selection percentage ($K = 1.75$ for a selection intensity of selection differential in standard deviation units of 10%), σ_p^2 = phenotypic variance in the initial population, h^2 = broad-sense heritability.

As a percentage:

$$G (\%) = G/M \times 100$$

$G (\%)$: Expected selection gain as a percentage;

G : Selection gain;

M : Total mean of genotypes.

Statistical analyses: The data collected will be analysed using SPSS (Statistical Package for Social Sciences version 20.0) software. The means of the different parameters will be separated using the Student-Newman-Keuls (SNK) multiple comparison test.

RESULTS AND DISCUSSION

Results

Phenological observations: For all varieties tested, emergence was observed 3 to 6 days after sowing (DAS). A 98% recovery rate was observed for all cultivars 5 days after transplanting (DAT). Tillering began 15 DAT, followed by elongation in all varieties. Ear emergence was observed 28 DTR on the Ts Fon13 and Ts Fon24 varieties, then 30 DTR on the Ts Fon 20 and Ts Fon 23 varieties. Flowering was observed at 50% at 33 DTR and 100% at 41 DTR for the Ts Fon 13 and TS Fon 24 varieties. However, it was observed at 35 JAR at 50% and 100%, and at 49 JAR for the Ts Fon 20 and Ts Fon 23 varieties. The TS Fon13 and Ts Fon 24 varieties reached maturity at 65 JAR, while the Ts Fon 20 and Ts Fon23 varieties reached maturity at 70 JAR. The varietal characteristics observed in the different varieties are summarised in Table 1.

Results of measured parameters

Stem heights at 15 JAR: The results for stem heights at 15 JAR are shown in Figure 2. Treatment T2 (14.44 cm \pm 1.26) recorded the highest height, followed by T1 (14.14 cm \pm 1.077). Low stem heights were observed in T4 (12.2 cm \pm 1.4) and T3 (12.4 cm \pm 2.3). Statistical analysis of the treatment mean results showed that there was no significant difference in stem height ($F = 0.89$; $P = 0.344$). The differences observed are due to uncontrolled factors and not to treatments.

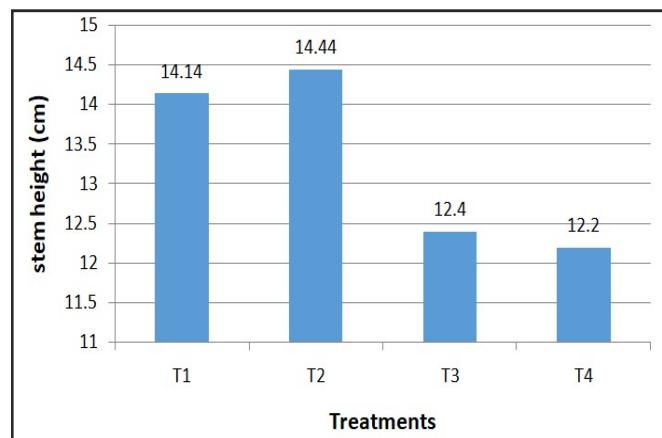


Figure 2. Stem heights at 15 JAR

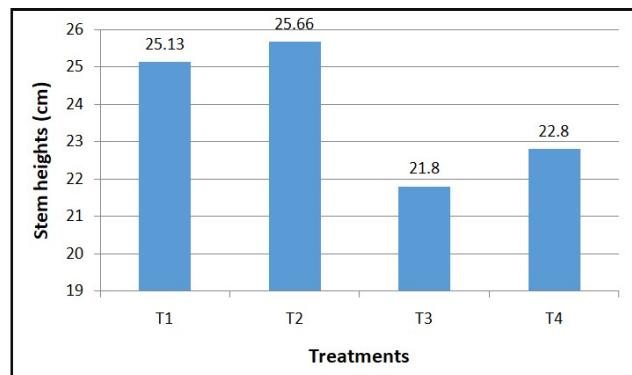


Figure 3. Height of stems at 60 JAR

Stem height at 60 JAR: The results for stem height at 60 JAR are shown in Figure 3. Treatment T2 (25.66 cm \pm 1.867) had the highest height, followed by T1 (25.13 cm \pm 1.367). Low stem heights were noted in treatments T3 (21.8 cm \pm 0.2) and T4 (22.8 cm \pm 1.5). Statistical analysis of the treatment mean results revealed that there was no significant difference in stem height ($F = 3.27$; $P = 0.01$). The differences observed are due to uncontrolled factors and not to the treatments.

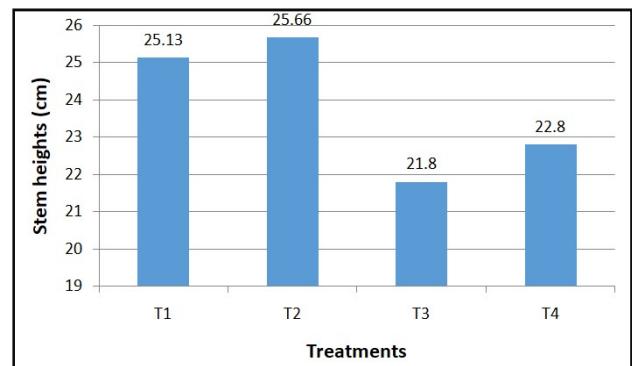
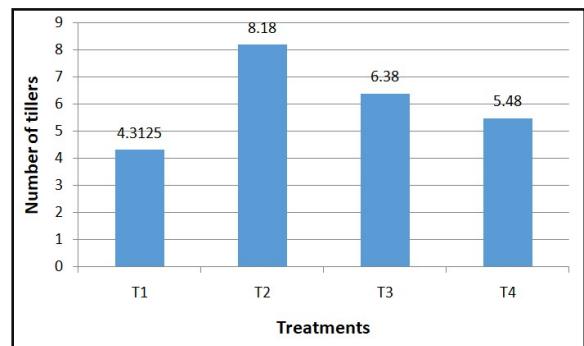
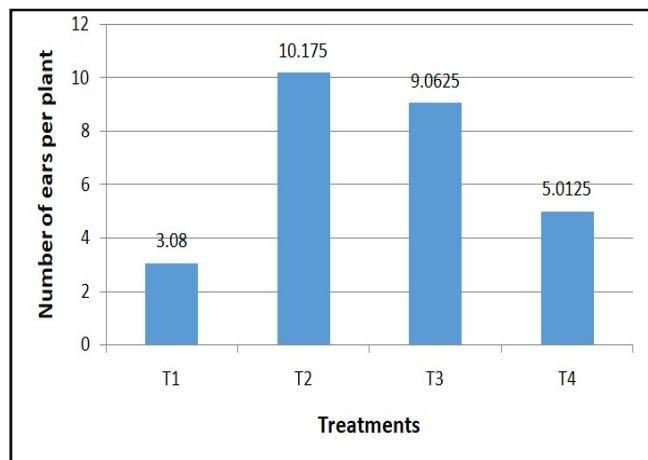


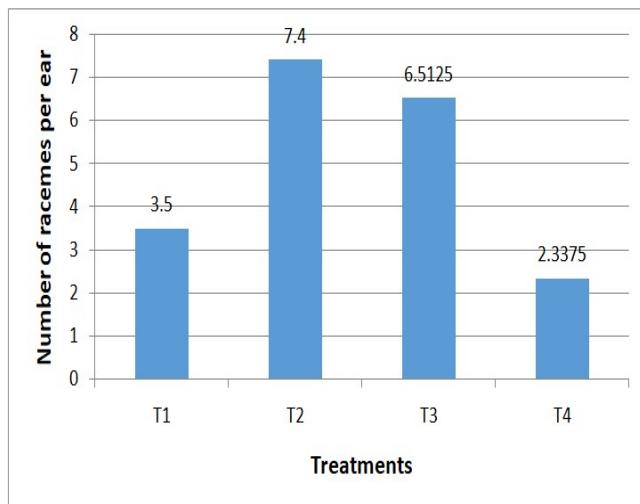
Figure 3. Height of stems at 60 JAR

Average number of shoots per plant at 60 JAR: The number of shoots per plant at 60 JAR is shown in Figure 5. Treatment T2 (8.18 \pm 2.681) recorded the highest number of shoots, followed by treatment T3 (6.38 \pm 0.219). Treatments T4 and T1 obtained T4 (5.48 \pm 0.393) and T1 (4.31 \pm 0.487), respectively. Statistical analysis of the treatment mean results revealed a significant difference at the 5% threshold in terms of the number of shoots at 60 JAR ($F = 5.587$; $P = 0.174$).




Figure 5. Average number of shoots per plant at 60 JAR

Average number of ears per plant: The average number of ears per plant is shown in Figure 6. Treatment T2 (10.175 \pm 4.3453) recorded the highest number of ears, followed by treatments T3 (9.0625 \pm 0.515) and T4 (5.0125 \pm 1.2954). The lowest number of ears per plant was observed in treatment T1 (3.08 \pm 0.1166). Statistical analysis of


Table 1. Morphological characteristics observed in the different varieties

Varieties	Earing (JAR)	50% flowering (JAR)	100% flowering (JAR)	Maturity (JAR)	Grain colour	Grain shape	Grain surface area	Pericarp
Ts_fon 20	30	35	49	70	Dark brown	Ovoid	Smooth	Non-persistent
Ts_fon 13	28	33	41	65	Light brown	Ovoid	Smooth	Non-persistent
Ts_fon 24	28	33	41	65	Light brown	Ovoid	Smooth	Non-persistent
Ts_fon 23	30	35	49	70	Brown	Ovoid	Smooth	Non-persistent

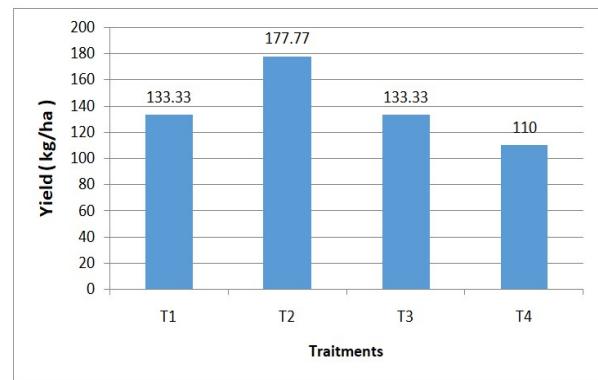

the treatment means revealed a highly significant difference in the number of ears per plant ($F = 9.8518$; $P < 0.001$).

Figure 6. Number of ears per plant

Number of racemes per ear: The number of racemes per ear is shown in Figure 7. Treatment T2 (7.4 ± 0.8602) recorded the highest number of racemes per ear, followed by treatments T3 (6.5125 ± 0.2780) and T1 (3.5 ± 0.13391). Treatment T4 (2.3375 ± 0.5218) had the lowest number of racemes per ear. Statistical analysis of the treatment means showed that there was a highly significant difference in the number of racemes per ear ($F = 45.1134$; $P = 0.254$).

Figure 7. Average number of racemes per ear

Average straw yield (kg/ha): The average straw yield is shown in Figure 8. Treatment T2 ($177.77 \text{ kg/ha} \pm 44.443$) had the highest yield, followed by T1 ($133.33 \text{ kg/ha} \pm 0.11$) and T3 ($133.33 \text{ kg/ha} \pm 33.335$), which had the same yields. The lowest yield was observed in treatment T4 ($110 \text{ kg/ha} \pm 22.225$). Statistical analysis of the average treatment results revealed no significant difference in straw yield ($F = 2.37$; $P < 0.0001$). The observed differences are due to uncontrolled factors and not to the treatments themselves.

Figure 8. Average straw yield (kg/ha)

Estimation of genetic variability, heritability and selection gain
Genetic variability of the quantitative trait number of tillers, ears and racemes. Statistical data on the genetic variability of the quantitative trait number of tillers are shown in Table 2.

Table 2. Variability in the number of tillers of 15 JAR fonio varieties

Genotypes	Means and standard deviations
Ts Fon13 (T2)	$2,222 \pm 0,210^a$
Ts Fon24 (T3)	$1,557 \pm 0,141^b$
Ts Fon20 (T1)	$1,397 \pm 0,175^b$
Ts Fon23 (T4)	$1,34 \pm 0,431^b$
Average of varieties	$6,517 \pm 0,239$
σ_i^2	32,0214
σ_i^2	0,1477
P	< 0,00
PPDS	0,6556

Analysis of variance of the number of tillers in four fonio varieties studied (15JAR) revealed that genotype effects are highly significant ($p < 0.001$) (Table 2). The number of tillers varies overall from 1.34 (Ts Fon23 (T4)) to 2.222 (Ts Fon13 (T2)), with an average of 1.62. Of all the genotypes tested, the variety TsFon13 (T2) is considered the best variety in terms of the number of tillers per variety, followed by Ts Fon24 (T3) at the experimental site. The inter-varietal variance (32.0214) is greater than the intra-varietal variance (0.1477), and this difference could be explained by environmental factors and/or the growing season. Averages followed by the same letter in the same column are not significantly different at the 1% probability threshold. PPDS: Least Significant Difference, σ_i^2 : inter-varietal variance, σ_i^2 : intra-varietal variance, P: probability. The statistical data on the genetic variability of the quantitative trait number of tillers per variety are shown in Table 3. Analysis of variance of the number of tillers of four fonio varieties studied 60 JAR showed that the genotype effects are significant ($p=0.174$) (Table 3).

Table 3. Variability in the number of tillers of fonio varieties 60 JAR

Genotypes	Means and standard deviations
Ts Fon13 (T2)	$8,18 \pm 2,681^a$
Ts Fon24 (T3)	$6,38 \pm 0,219^b$
Ts Fon20 (T1)	$4,31 \pm 0,487^b$
Ts Fon23 (T4)	$5,48 \pm 0,393^b$
Average of varieties	$24,3525 \pm 0,945$
σ_i^2	447,444
σ_i^2	7,6663
P	0,174
PPDS	2,2077

The number of tillers varies from 4.31 (TsFon20 (T1)) to 8.18 (TsFon13 (T2)), with an average of 6.088. Of all the genotypes tested, the TsFon13 (T2) variety is considered the best variety in terms of number of tillers per variety, followed by TsFon24 (T3) at the experimental site. The inter-varietal variance (447.444) is greater than the intra-varietal variance (7.6663), and this difference could be explained by environmental factors and/or the growing season. Means followed by the same letter in the same column are not significantly different at the 5% probability level. PPDS: Smallest Significant Difference, σ^2_I : inter-varietal variance, σ^2_i : intra-varietal variance, P: probability. The statistical data on the genetic variability of the quantitative trait of number of ears per plant at physiological maturity in fonio varieties are reported in Table 4.

Table 4. Variability in the number of ears per plant of mature fonio varieties

Genotypes	Means and standard deviations
Ts Fon13 (T2)	10,175 \pm 4,3453 ^a
Ts Fon24 (T3)	9,0625 \pm 0,515 ^a
Ts Fon20 (T1)	3,08 \pm 0,1166 ^b
Ts Fon23 (T4)	5,0125 \pm 0,295 ^b
Average of varieties	27,28 \pm 1,318
σ^2_I	568,6466
σ^2_i	12,5296
P	< 0,001
PPDS	4,8961

Analysis of variance of the number of ears per plant in four studied fonio varieties revealed highly significant genotype effects ($P < 0.001$) (Table 4). The number of ears per plant ranged from 3.08 (TsFon20 (T1)) to 10.175 (TsFon13 (T2)), with a mean of 6.8325. Of all the genotypes tested, the TsFon13 (T2) variety was considered the best in terms of the number of ears per plant, followed by TsFon24 (T3) at the experimental site. The inter-varietal variance (568.6466) was greater than the intra-varietal variance (12.5296), and this difference could be explained by environmental factors and/or the growing season.

Means followed by the same letter in the same column are not significantly different at the 1% probability level. PPDS: Smallest Significant Difference, σ^2_I : inter-varietal variance, σ^2_i : intra-varietal variance, P: probability. The statistical data on the genetic variability of the quantitative trait number of racemes per ear at harvest for fonio varieties are reported in Table 5. Analysis of variance of the number of racemes per ear for four studied fonio varieties revealed highly significant genotype effects ($P = 0.254$) (Table 5).

Table 5: Variability in the number of racemes per ear of fonio varieties

Genotypes	Means and standard deviations
Ts Fon13 (T2)	7,4 \pm 0,8602 ^a
Ts Fon24 (T3)	6,5125 \pm 0,2780 ^a
Ts Fon20 (T1)	3,5 \pm 1,3391 ^b
Ts Fon23 (T4)	2,3375 \pm 0,5218 ^b
Average of varieties	19,75 \pm 0,7497
σ^2_I	298,3348
σ^2_i	5,37
P	0,254
PPDS	1,6466

The number of racemes per ear ranged from 3.5 (TsFon20 (T1)) to 7.4 (TsFon13 (T2)), with a mean of 4.937. Of all the genotypes tested, the TsFon13 (T2) variety was considered the best in terms of the number of racemes per ear, followed by TsFon24 (T3) at the experimental site.

The inter-varietal variance (7319.4621) was greater than the intra-varietal variance (4686.0166), and this difference could be explained by environmental factors and/or the growing season. Averages followed by the same letter in the same column are not significantly different at the 1% probability threshold. LSD: Least Significant Difference, σ^2_I inter-varietal variance, σ^2_i intra-varietal variance, P: probability.

Heritability and selection gain for the parameters number of tillers, ears and racemes: The statistical data for heritability (h^2) and selection gain are shown in Table 6.

Table 6. Heritability and selection gain values

Paramters	Heritability (%)	Selection gain (%)
Number of tillers 15JAR	0,99	40,87
Number of tillers 60JAR	0,982	78,15
Number of ears/plant	0,97	87
Number of racemes/ear	0,982	80,66

The evaluation yielded a heritability value (h^2) of 0.99 with a selection gain percentage of 40.87% for the number of tillers 15JAR and (h^2) of 0.982 with a selection gain percentage of 78.15% for the number of tillers 60 JAR. Similarly, heritability and selection gain are 0.97 and 87 for the number of ears per plant and 0.98 and 80.66 for the number of racemes per ear. The high heritability coupled with the high selection gain indicates that additive genes contribute most to the genetic mechanism. This suggests a strong involvement of genetic variance compared to environmental variance.

DISCUSSION

In terms of stem height at harvest, the maximum height (25.66 cm) observed in our fonio varieties is lower than that (42.5 cm) recorded by Do *et al.* (2020). As for the number of tillers per plant, which is a varietal characteristic, our results do not match those obtained by Do *et al.* (2020). These authors recorded a high number of tillers per plant (10.90) compared to the results observed on our four fonio varieties (8.18). The results obtained for the number of ears (10.175) per plant on our varieties are not similar to those of Ndoye *et al.* (2016), which were four (4) ears per plant. The number of ears varies depending on the variety, which is a varietal characteristic but is influenced by soil fertility and fertiliser inputs. The results for the number of racemes per panicle recorded (2.33 to 7.4) on our four varieties corroborate those obtained (2 to 5) by Amsana (2019) and Do *et al.* (2020). These results can be explained by the varietal characteristics and the soil and climate conditions at our experimental site. With regard to fonio grain and straw yields, our results do not agree with those obtained by Dième (2014) and Konaté *et al.* (2021). These authors recorded higher grain and straw yields than the grain and straw yields of the four fonio varieties used. However, our results are consistent with those obtained by Badiane *et al.* (2006). These authors recorded very low yields for fonio. It should be noted that varietal characteristics probably played a major role in the yields of fonio varieties. Similarly, the low yields obtained could be explained by the lack of fertiliser and the delay in planting the crop. The broad-sense heritability values (h^2) obtained are very high for the number of tillers 60 JAR ($h^2 = 0.982$), the number of ears per plant ($h^2 = 0.97$) and the number of racemes ($h^2 = 0.982$). All these heritability values are coupled with selection gain percentages of 78.15 (number of tillers), 87 (number of ears), and 80.66 (number of racemes). These values, combined with very high selection gains, demonstrate the superiority of genetic variance over environmental variance and pave the way for effective selection for these traits. Indeed, high heritability coupled with high selection gains indicates that additive genes contribute most to the genetic mechanism. These heritability values are comparable to those found by Noubissié *et al.* (2012) ($h^2 = 0.99$) in peanuts. However, they do not correspond to those obtained by Gollaou (2015) ($h^2 = 0.59$) in some accessions of *Voandzeia subterranea* (L) in the Sudano-Sahelian zone of Cameroon.

CONCLUSION

Fonio, a crop with many advantages, deserves special attention so that it can regain its place among the cereals that effectively contribute to the fight against food insecurity in the production area. The objective of this work is to identify, through the parameters observed and measured, the morpho-physiological characteristics and performance of the four fonio ecotypes. All varieties demonstrated their

adaptability in terms of good vegetative development and completed their vegetation cycle normally. This was despite the lack of fertiliser, poor soil quality and rainfall disruptions. In terms of stem height, treatment T2 (25.66 cm) achieved the highest height, followed by T1 (25.13 cm). Low stem heights were noted in treatments T3 (21.8 cm) and T4 (22.8 cm). As for the number of ears, treatment T2 (10.175) recorded the highest number of ears, followed by treatments T3 (9.0625) and T4 (5.0125). The number of tillers ranged from (T1) 4.31 to (T2) 8.18. In terms of straw yields, treatment T2 (177.77 kg/ha) achieved the highest yield, followed by T1 (133.33 kg/ha) and T3 (133.33 kg/ha), which had the same yields. The lowest yield was observed in treatment T4 (110 kg/ha). The heritability values (h^2) obtained are very high for the number of tillers 60 JAR ($h^2 = 0.982$), the number of ears per plant ($h^2 = 0.97$) and the number of racemes ($h^2 = 0.982$). Thus, treatments T2 and T3 corresponded to Ts Fon13 and Ts Fon 24, which performed better. However, further studies conducted under the same experimental conditions are necessary to confirm the results obtained. In addition, the results obtained could serve as a basis for data for the fonio genetic improvement programme in Chad.

REFERENCES

Abdoulai, A., CroleRess, A. (2001). Determinants of diversification amongst rural households in South Food Policy, 437-452

Adesina, A.A.A., Ouattara, A.D. (2000). Risk and agricultural systems in norther Côte d'Ivoire. Agric. Syst 66, 17-32.

Adoukonou- Sagbadja H., Wagner C, Dansi A, (2007 b.) Genetic diversity and population differentiation of traditional fonio millet (*Digitaria spp.*) landraces from different agro-ecological zones of west Africa. Theoretical and applied Genetics, 7: 917-931.

Adoukonou- Sagbadja H., Wagner C, Ordon F, Freidt W. (2007). Reproduction system and molecular phylogenetic relationships of fonio millet (*Digitaria spp.Poaceae*) with some polyploid wild relatives. Tropical Plant Biology, 10: 240-251.

Allard R.W., 1960. Principles of plans breeding. John wiley and sons, Inc., New-York, 512.

Amsana (2019): Fiche technique de production du Fonio (*Digitaria exilis Staph*) au Benin ; Belgique partenaire du développement ; Louvain Coopération ; Eclosio ; Faculté d'Agronomie/Université de Parakou ; 10 P.

Andrieu, N., Pedelahore P., Howland F., Descheemaeker K., Vall E., Bonilla-Findji O., Corner C., Lobaguerera A.M., Chia E. (2015). In: Torquebiau Emmanuel (ed.). Changement climatique et agriculture du monde. Versailles : Ed. Quae, P. 136- 146 (Agriculture et défis du monde).

Badiane, M. (2006). Agronomie de la culture de fonio. Document de synthèse de formation, Direction Régionale de l'ANCAR Kolo (Sénégal). 10 p.

Cooper P.J.M., Dimes J., Rao K.P.C., Shapiro B., Shiferaw B., Twomlow S.J. (2008). Coping better with Current Climatic Variability in the rain fed farming systems of sub-saharan Africa: An essential first step in adapting to future Climate Change? Agr, Ecosyst. Environ. 126,24-35.

Cruz J-F.; Béavogui F.; Dramé D. (2012) : Valoriser une céréale traditionnelle africaine, le fonio ; 16-188 p.

Dième N.F. (2014). Maïs et fonio : structuration de ces deux filières et quelles opportunités pour l'amélioration des revenus des acteurs 92 P.

Do A. M., N'da H. A., Kanvou L. et Sokouri D. P. (2020). Caractérisation Agro-Morphologique des accessions de fonio (*Digitaria exilis*) collés au nord de la Côte d'Ivoire. Agronomie Africaine 32(2) : 169-182.

Gollaou D., 2015. Evaluation de l'interaction génotype x environnement de quelques paramètres agronomiques chez le voandzou [*Voandzeia subterranea* (L.) Verdc.] en zone soudano-sahélienne (Cameroun). Mémoire, Université de Ngaoundéré. 73p.

Konaté, M. B., Manga, A .A, Karambé Y.Y. (2021). Diagnostic de la culture d'une céréale mythique indigène du Mali : le fonio (*Digitaria exilis Staph*), publication date 31/01/2021, <http://m.elewa.org/Journals/about-japs/>

Mahmud K. & Kramer H., (1951). Segregation for yield, height and maturity following asoya bean cross. *Agronomy Journal*, 43: 605-609.

Ndoye F., Abdala G., Diedhiou, Gueye M., Fall D., Barnaud A., Noba K., Diouf D., Kane A. (2016).Réponse du fonio blanc (*Digitaria exilis Staph*) à l'inoculation avec des champignons mycorhiziens à arbuscules en conditions semi-contrôlées. *J. Appl.Biosci.*, 103(1) 9784-9799.

M'sangaral, B. (2025). Test d'adaptation des variétés de fonio (*Digitaria exilis Staph*) dans la zone soudanienne au Tchad. Mémoire de Master Professionnel en Développement Communautaire et Local, soutenu le 10 juin 2025 à la Faculté des Sciences et de l'Environnement de l'Université de Sarh.

Niang, I.O.C. Ruppel, M. A. Abdarabo, A. Essel, C., Lennard, J. Padgham, and P. urquhart, (2014). impact, Adaptation, and vulnerability. Part B: Region all aspects. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, PP.1199-1265.

Noubissié T.J.B., Youmbi E., Njintang Y.N., Aladji Abatchoua M.I., Nguimbou R.M. &

Bell J.M.(2012). Inheritance of phenolic contents and antioxidant capacity of dehulled seeds in cowpea (*Vigna unguiculata* L. Walp). International Journal of Agronomy and Agricultural Research, 6(2): 62-72.

Stringer LC., Dyer JC., Reed MS., Dougill AJ., Twyman C., Mkambati D., (2009). Aaptations to climate change, drought and desertification: local insights to enhance policy in southern africa. Environnementa Science & policy 12:748-65.

Thormton, P.K., Bonne, R.B., Galvin, K.A., Burnsilver, S.B., Waithaka,M. M., Kuyiah, J.,Karanja, S., Gonzalez-Estrada, E., Herrero M., (2007). Coping strategies in livestock-dependent households in east and SouthernAfrica: a synthesis of four case studies. Hum. Ecol.35, 461-476.

Torquebiau, E. (2015). Changement Climatique et agriculture du monde. Versailles. Ed. Quae, 327 p.Thomas, D.S.G., Twyman, C., Osbahr, H. hewithso, B.(2007).Adaptation to Climate Change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Clim. Estrada, E., Herrero M.(2007). Coping strategies in livestock- dependent households in east and Southern Africa: a synthesis of four case studies. Hum. Ecol. 35,461-476.Change 83, 301-322

Twomlow, S., Mugabe, F.T., Mwale, M., Delve, R., Nandja, D., Carberry, P., Howden, M.,(2008). Building adaptative capacity to cope with increasing vulnerability due to climatic change in Africa- A new approach. Phys.Chem.Earth 33,780-787

Vall E., N. Andrieu, F. Beavogui D. (2011).Sogodogo. Les cultures de soudure comme stratégie de lutte contre l'insécurité alimentaire saisonnière en Afrique de l'Ouest, le cas de fonio (*Digitaria exilis Staph*). Cah.Agric. 20 (4) 294 – 300.
