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Titanium dioxide and
activity were synthesized by sol
photocatalysts
materials and 
materials were characterized by X
spectroscopy (FT
activity was tested and compared with that of TiO
methylene blue (MB) and brilliant green (BG) in an aqueous solutions using sunlight radiation. The 
adsorption kinetics followed both the 
TiO2/GNSAC removal over 95.39% of BG and 81.57% of MB dyes and its adsorption was fitted 
to all models.
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INTRODUCTION 
 
Now-a-days, organic dyes are the major groups of pollutants 
found in waste waters produced from different industries. It is 
estimated that around 700,000 tons of dyes are produced 
annually around the world. From this amount about 20% is 
unloaded as industrial wastes without previous treatment 
(Carneiro et al., 2007). Synthetic dyes are commonly used in 
several manufacturing industries such as textile dyeing, paper 
printing, cosmetics and pharmaceuticals, and it is estimated 
that 10 – 15% of the dyestuff lost in the effluent during the 
dyeing processes (Sayan and Edecan 2008)
environmental pollutants through semiconductor photocatalysis 
has attracted extensive interest over the last few decades. 
Among various semiconductors, TiO2 has been known as the 
leading photocatalyst due to its good photoactivity, high 
chemical stability, low cost, and non-toxicity (Hoffmann
1995). There are many methods to prepare TiO
sol-gel (Zhang and Banfield 2005), hydrothermal
et al., 2002), Chemical vapor deposition (Pradhan
and physical vapor deposition (Xiang et al.,
Furthermore, TiO2 is a wide band-gap semiconductor (3.20 eV 
for anatase TiO2 and 3.02 eV for rutile TiO2) which makes the 
photocatalytic activity quite limited in the visible light, solar 
and fluorescent light (Ibrahim and Lasa 2002)
intense effort has been devoted to loading TiO
supports such as TiO2/SiO2, TiO2/Zeolite, and TiO
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ABSTRACT 

Titanium dioxide and Titanium dioxide loaded groundnut shell activated carbon photocatalytic 
activity were synthesized by sol-gel technique. The preparation of TiO
photocatalysts were achieved by titanium tetra isopropoxide and 2-propanol as common starting 
materials and annealed the product at 500 °C for 2 h to get anatase phase, respectively. The prepared 
materials were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared 
spectroscopy (FT-IR), and UV-Vis-diffuse reflectance spectroscopy (DRS), The pho
activity was tested and compared with that of TiO2 and TiO2/GNSAC on the degradation of 
methylene blue (MB) and brilliant green (BG) in an aqueous solutions using sunlight radiation. The 
adsorption kinetics followed both the pseudo-first-order and second-order giving a better fit. The 

/GNSAC removal over 95.39% of BG and 81.57% of MB dyes and its adsorption was fitted 
to all models.   
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supports activated carbon which is the porous material and 
increases its adsorption capacity of organic compounds 
(Shankar et al., 2006; Maruga et al., 
Yazawa et al., 2009; Yu et al., 2005).
TiO2 supported on activated carbon has synergistic effect based 
on the adsorption capacity of activated carbon and the 
photoactivity of TiO2 (Wang et al., 
(AC) has been suggested as an effective support for TiO
removal of the pollutants (Deng et al.,
2003). The present study is encompasses
TiO2/GNSAC by a sol-gel process and 
via different techniques such as XRD, UV
IR. Brilliant green and methylene blue are selected to evaluate 
the photocatalytic activity of TiO2 and TiO
in the sunlight radiation. The kinetic and equilibrium data were 
analyzed and different models are applied to fit the 
experimental data.  
 

MATERIALS AND METHODS 
 
Preparation of TiO2 and loaded GNSAC 
 
The groundnut shell activated carbon (GNSAC) and 
dioxide (TiO2) was synthesized by sol
temperature. Initially TiO2 was prepared directly by titanium 
tetra isopropoxide (C12H28O4Ti assay 
(C3H8O assay > 99%). 10 mL of titanium
was dissolved in 90 mL of 2-propanol to 
stirring for 5 min at room temperature, 30 mL of water was 
added drop wise with vigorous magnetic stirring to obtain 
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TiO2. The solution was maintained by stirring for 2 h until a 
homogenous gel was formed. The TiO2/GNSAC catalyst               
was prepared by a similar method by adding 2.8 g of GNSAC             
(50 wt% with regard to the TiO2 amount) to the titanium tetra 
isopropoxide 2-propanol solution. After stirring the solution 
was filtered by using whatman filter paper (11 mm) and 
washed several times using ethanol and deionized water. The 
precipitate formed was dried at 100 °C for 5 h to evaporate 
water and organic residue. Then the dried powders were 
ground using an agate mortar to avoid agglomeration. Finally 
the powders were kept in muffle furnace and calcinated at     
500 °C for 2 h to obtain TiO2 and TiO2/GNSAC samples.  
 
Characterization  
 
The crystal structures and particle size of GNSAC, TiO2 and 
TiO2/GNSAC were analyzed by X-ray diffraction (XRD) 
measurement which was carried out by using XPERT-PRO 
diffractometer system using Cu-Kα radiation (λ = 1.5406Å), as 
in the 2θ range from 10 to 80°, operating at 30 mA and 40 kV. 
The functional groups were determined by Fourier transform 
infrared spectroscopy (FT-IR). Spectra of the samples were 
recorded using NICOLET AVATAR 330. The samples were 
scanned 16 times per minute and spectra were recorded in the 
region 4000–400 cm–1 with wave number accuracy of 0.01   
cm–1. The diffuse reflectance spectra (DRS) were recorded at 
wavelength in the range of 300-800 nm by UV-Vis-NIR 
spectrophotometer (Varian/Carry 5000) equipped with an 
integrating sphere and the baseline correction was performed 
using a calibrated reference sample of powdered barium sulfate 
(BaSO4).  
 
Photocatalytic experiments 
 
Photocatalytic activities of TiO2 and loaded GNSAC composite 
photocatalysis were evaluated by the decolorization of MB and 
BG dyes aqueous solution under sunlight radiation. The 
optimum amount of catalysts TiO2 and TiO2/GNSAC (0.25 and 
0.2 g/L respectively) were separately added to 100 mL of MB 
and BG solutions of initial dyes concentration 10 mg/L. Under 
magnetic stirring, the mixed solution was irradiated under 
sunlight. Then solutions were taken out at different times, and 
centrifuged separation. The concentration of MB and BG in 
supernatant was analyzed by the absorption intensity at 
respective maximum absorbance wavelength of MB and BG by 
using a UV-Vis spectrophotometer (Shimadzu UV1800). 
Direct sunlight was used in the present study and solar intensity 
(1250×100 Lu ± 100) was almost constant during all the 
experiments which were conducted between 11.00 a.m. and 
2.00 p.m. 
 
The degradation efficiency (%) of MB and BG dyes was 
calculated from the following equation. 
 

Degradation ef�iciency (%) =
C� −  C�

C�
 × 100        … ….    (1) 

 
The amount of MB and BG dyes solution adsorbed by TiO2 
and TiO2/GNSAC, qt (mg/g) at each time interval was 
calculated according to the expression: 

q� �
mg

g
� =

(C� − C�)V

m
                                … … … … … … ..  (2) 

 
Where Co is the initial concentration of MB and BG dyes 
solution (mg/L) Ct is the concentration of dyes after irradiation 
in selected time interval (mg/L), V is the volume of the BG and 
MB dyes solution (mL), and m is the amount of the TiO2 and 
TiO2/GNSAC used (g). 
 

RESULTS AND DISCUSSION 
 
Phase and crystallite size analysis 
 
The XRD patterns of the prepared TiO2 and TiO2/GNSAC 
composites annealed at 500 °C for 2 h and GNSAC are shown 
in Fig. 1a-c. Figure 1a the diffraction profile of GNSAC 
exhibits two broad peaks at 2θ = 26 and 43° which are similar 
to the peaks of crystalline carbonaceous structure and the 
absence of sharp peak reveals a predominantly amorphous 
structure. Fig. 1b & c show sharp peaks exhibiting the 
crystalline nature of TiO2 and TiO2/GNSAC.  Average particle 
size of TiO2 and TiO2/GNSAC are calculated using the 
schererr formula given by, 
                                                         

D =
�λ

β ���θ
                                                   … … … … … … … … … (3) 

 
Where D is the average crystallite diameter (nm), K is the 
Scherrer constant (0.9), λ is the wavelength (1.5406 Å), β is the 
Full width at half maximum, and θ is the Bragg angle (Slimena 
et al., 2011). The crystallite sizes corresponding to different 2θ 
values are compared in Table 1. The average crystallite size of 
TiO2 and TiO2/GNSAC are calculated to be 18.79 and 8.7 nm, 
respectively. The XRD peaks exactly match with the anatase 
phase of TiO2 showing that GNSAC modification does not 
change the phase. The broadening of peaks implies the 
decrease in crystalline size of TiO2 and the corresponding 
increase in porosity of GNSAC favors the adsorption of MB 
and BG. Besides, well-developed porous structure of GNSAC 
exposed to TiO2, results in increase in number of active sites. 
Thus, this may contribute to the higher photocatalytic activity 
of TiO2/GNSAC. 
 
Fourier transform infrared spectroscopy 
 
Fig. 2a-c shows the FT-IR spectra of GNSAC and TiO2, 

TiO2/GNSAC nanoparticle after calcination at 500 °C for 2 h. 
In Fig. 2a for the groundnut shell activated carbon, of the sharp 
peak located at 2931 cm−1 corresponds to aliphatic C-H 
stretching vibrations in methyl and methylene groups, while 
the band at 1599 cm−1 to C=C stretching of aromatic group 
(Mahmoodi et al., 2011).  The peak at 1188.15 cm−1 is assigned 
to the stretching vibration P-O-C (aromatic) linkage and 
P=OOH (Hadoun et al., 2013). The broad band at 1300-900 
cm−1 in GNSAC has a maximum at 1078.21 cm−1. The 
adsorption in this region is the characteristics for phosphorous. 
These bands arise as a result of phosphoric acid impregnation 
during GNSAC synthesis. Spectra of both TiO2 and 
TiO2/GNSAC are found to have significant hydroxyl groups on 
their surface. 
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Figure 1. XRD patterns of (a) GNSAC (b) TiO2 and (c) 
TiO2/GNSAC 

 

 
 

Figure 2. FT-IR spectra of (a) GNSAC (b) TiO2 and (c) 
TiO2/GNSAC 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
A broad band is observed in between 3600 and 3000 cm−1 is 
related to the O-H stretching mode of hydroxyl group, 
indicating the presence of moisture in the samples. The 
characteristic peak at 1633 cm−1 is associated with the O-H 
bending vibrations of the absorbed water molecules. The two 
observed peaks at 3412 and 1633 cm−1 correspond to the 
surface adsorbed water and hydroxyl groups (Kathiravan and 
Renganathan 2009) and the presence of OH bands in the 
spectrum is owing to chemically and physically adsorbed H2O 
on the surface of nanoparticle (Olurode et al., 2012). A new 
peak at 1064 cm−1 can be assigned to C-O stretching vibration. 
For the pure TiO2, the broad peak at range from 800-400 cm−1 
is the contributions from the anatase titania. A broad absorption 
band between 800 and 450 cm−1 region is ascribed to the 
vibration absorption of the Ti-O-Ti linkages in TiO2/GNSAC 
(Lu et al., 2008). Thus, TiO2 particles are proved to be well-
distributed on the surface of GNSAC. The FT-IR results, 
strongly confirm the presence of hydroxyl groups in the 
structure of the TiO2/GNSAC.  

 
UV-Vis diffuse reflectance spectroscopy 

 
The diffuse reflectance spectra of TiO2 and loaded GNSAC 
photocatalytic are illustrated in Fig. 3 in the 300-800 nm 
wavelength range. The TiO2 showed an intense absorption in 
UV region and the absorption edge of titania can be easily 
discerned. Compared with bulk TiO2 (Ravichandran et al., 
2009), a shift of the reflectance spectrum of nano-TiO2 towards 
the lower wavelength region was observed. The band gap 
energies (Eg) of TiO2 and loaded GNSAC are obtained from 
the wavelength value corresponding to the interaction point of 
the vertical and horizontal part of the spectrum, using the 
equation (Zhao et al., 2010): 
 
                                     

E� =  
��

λ
 eV; E�  =  

����

λ
 eV                                          (4) 

 

 
Where Eg is the band gap energy (eV), h is the Planck’s 
constant (6.626×10-34 Js), c is the light velocity (3×108 m/s) 
and λ is the wavelength (nm). The calculated band gap energies 
are 3.39 eV and 3.44 eV for TiO2 and TiO2 loaded GNSAC, 
respectively. This figure also exhibits the decrease in 
reflectance and increase in absorbance in the visible region for 
TiO2/GNSAC.  
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Table 1. Comparisons of X-ray diffraction peaks (2θ/°) and average crystallite sizes 
 

 Peaks               Average crystallite size (nm) 

 1 2 3 4 5 6 7 8  
TiO2 25.34 37.75 47.96 53.82 54.9 62.6 68.7 75.08 18.79 

TiO2/GNSAC 25.27 37.82 48 53.85 54.97 62.61 68.76 75.14 8.7 
Anatase 

(JCPDS:71-1166) 
25.3 (101) 37.7(004) 48 (200) 53.8(105) 55.0(212)  62.69  (204)   68.75  (116) 75.05 (215)              - 

 

8429                        International Journal of Current Research, Vol. 6, Issue, 09, pp 8427-8432, September, 2014 
 



 
 

Figure 3. UV-Vis-diffuse reflectance spectra of TiO2 and 
TiO2/GNSAC 

 
Effect of contact time on Photocatalytic degradation of dyes 
solution 

 
Photocatalytic experiment was carried out to assess the 
photocatalytic efficiency of TiO2 and TiO2/GNSAC on MB and 
BG at initial dyes concentration of 10 mg/L. Fig. 4a & b show 
the degradation efficiency of TiO2 and TiO2/GNSAC on MB 
and BG, respectively. It can be seen that the increase in the 
contact time on photodegradation efficiency of naked TiO2 on 
MB and BG reached 86.28% and 67.4% respectively, within 
120 min irradiation time. However in case of TiO2/GNSAC, 
the highest efficiency reached to 95.39% and 81.57% in the 
same irradiation time. This fact confirms the higher surface 
area of the TiO2/GNSAC. The result indicates that there is an 
interaction between TiO2/GNSAC and titania and the size of 
the TiO2/GNSAC gets smaller and the surface area has 
increased. 

 

 
 

 
 

Figure 4. Effect of contact time and photocatalytic degradation of 
(a) MB and (b) BG removal by composite catalysts TiO2 and 

TiO2/GNSAC 

 
Mechanism of degradation 

 
The mechanism of photocatalytic oxidation processes has been 
reported in the literature (Chong et al., 2010; Ahmed et al., 
2011). The GNSAC may improve the thermal stability of TiO2, 
the increase in of crystalline size and the surface area and thus 
preserve a higher content of surface hydroxyl groups (Wang            
et al., 2009). The TiO2/GNSAC is the most effective due to the 
synergistic effects of the adsorptive properties of GNSAC and 
photocatalytic activity of the TiO2 in the composite. Owing to 
its high performance ability, the composite TiO2/GNSAC is a 
very promising photocatalyst for the degradation of organic 
pollutants. 
 
Adsorption kinetic 

 
Pseudo-second-order model 

 
The pseudo-second-order equation (Mckay and YS 1999), 
based on equilibrium adsorption, is expressed as,  
 
t

q�
=  

1

k� q�
�

+
1

q�
 t                                                                        (5) 

 
where h=k2qe

2, h (mg/g min) is initial adsorption rate and k2 
(g/mg min) is the rate constant of pseudo-second-order 
adsorption. The value of qe (mg/g) and k2 (g/mg min) can be 
obtained from the slope and the intercept of the t/qt versus t 
plots are shown in Fig. 5. The plots being straight lines with 
correlation coefficient show the applicability of this model for 
interpretation of experimental. Value of k2 and qe are calculated 
from the intercept and slope of the plots of t/qt versus t, are 
shown in Table 2. R2 value for pseudo-second-order kinetic 
model is high (0.995) for TiO2/GNSAC and the calculated qe 

value is close to the experimental data.  
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Figure 5.  Pseudo-second-order for the adsorption of MB and BG 
onto TiO2/GNSAC (catalyst dose = 0.2 g/L) 

 
Table 2. Kinetics parameters for adsorption of pseudo-second-

order models for two dyes at 30°C 
 

    Co           qe, exp         Pseudo-second-order   model   
 (mg/L)      (mg/g)                                 

                          k2              qe, cal        h                         R
2           

                    (g/mg min)  (mg/g) (mg/g min) 

10-MB   4.511     0.0199       5.076     0.513       0.994 
10 -BG   4.821     0.0218       5.347     0.626      0.995             

 
Conclusion 
 
The increase in the photocatalytic activity of TiO2 by addition 
of groundnut shell activated carbon was observed. The 
photocatalytics was characterized by various analytical 
methods such as XRD, FT-IR, and UV-DRS. The XRD 
analysis of (101) plane of the anatase phase was clearly 
observed and its intensity was decreased when compared with 
that of TiO2. These results indicated that the anatase TiO2 

particles were well supported on the surface of GNSAC. The 
FT-IR spectra confirmed the presence of hydroxyl group on 
TiO2/GNSAC. Using UV-Vis-DRS analysis, the calculated 
band gap energies were 3.39 eV and 3.44 eV for TiO2 and TiO2 
loaded GNSAC. The experiments revealed that the 
phtocatalytic oxidation of MB and BG aqueous solution was 
more effective in TiO2 and TiO2/GNSAC. About 86.28% and 
67.4% degradation of BG and MB was observed with TiO2 and 
95.39% and 81.57% degradation of BG and MB was observed 
with TiO2/GNSAC using sunlight radiation respectively within 
120 min irradiation time. The higher photocatalytic oxidation 
efficiency of TiO2/GNSAC at neutral pH was due to higher 
surface area of GNSAC. An optimum catalyst dose of 0.2 g/L 
was used throughout the experiments. The photocatalytic 
reactions appeared to follow pseudo-second-order kinetic 
model. 
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