

RESEARCH ARTICLE

EVALUATION OF TEST CASES IN MODEL BASED TESTING USING SESSION
INITIATION PROTOCOL CASE STUDY

1Satyapal Reddy Regenti and 2Rama Sree, R.J.

1JBICT, MCA Department, Tirupati–517 501, Andhra Pradesh
2Computer Science, Rashtriya Sanskrit Vidyapeetha, Tirupati–517 502, Andhra Pradesh

ARTICLE INFO ABSTRACT

The Model Based Testing is one of the modern automated testing methodologies used to generate
test suites automatically from the abstract behavioral or environmental models of the System
Under Test (SUT). The Model based testing can be applied in different ways and it has several
dimensions during implementation that can changes with nature of the SUT. With the automatic
generation of test cases, requirements change is very easy to handle with the model based testing
as it requires fewer changes in the models and reduces rework. It is also easy to generate a large
number of test cases with full coverage criteria. A variety of CASE tools based on models are
currently in use in different industries. The Qtronic tool is one generating test cases from abstract
model of SUT automatically. In this research paper the detailed evaluation of the Qtronic test case
generation technique, generation time, coverage criterion and quality of test cases were analyzed
by modeling the Session Initiation Protocol (SIP). Also generation of test cases from models
manually and by using the Qtronic Tool. In order to evaluate the Qtronic tool, detailed
experiments and comparisons of manually generated test cases and test case generated by the
Qtronic were conducted. The results of the case studies show the efficiency of the Qtronic over
traditional manual test case generation in many aspects.

INTRODUCTION

Mark and Bruno defined the MBT as “Model-based testing is
the automation of the design of black-box tests” (Utting,
2007). “black-box tests” explains the main scope of this
methodology. The MBT is usually used in functional testing
and it does not require understanding the internal code of the
program. The MBT is a testing method which can design the
test cases automatically from the specifications. Under the
help of the MBT tools, test cases generation and execution
time can be reduced significantly. The requirements change in
the model and that helps in saving a lot of time as compare to
the manual design of the test cases. One result of a case study
shows that nearly 90% cost saved after the use of MBT
(Clarke, 1998). “Testing is an activity performed for
evaluating product quality, and for improving it, by identifying
defects and problems (Abran, 2004). The MBT provides
different dimensions in testing process of the SUT and it is up
to the test engineer’s selection, to decide which is more
suitable and effective for the application that is under test. “A
Taxonomy of Model Based Testing” describe Seven different
dimensions of the MBT (Utting, 2000). The cost of testing
always remains major concerns for the projects, and with the
MBT how this cost effectiveness can be achieved also was big
question. In order to determine what advantage can be
achieved with the MBT in comparison with manual testing a

*Corresponding author: regentisatyareddy@yahoo.com

research was conducted (Clarke, 1998) comparing the manual
testing process with the MBT. In order to compare with the
MBT, he used TESTMASTER tool to generated test cases
automatically from the model. The results of his comparison
show that the MBT have increased the productivity to 90%.
Where the automatically generated test suites detected same
number of failures as compared to the hand crafted model
based test suites, with the same number of tests. An increase in
the number of automatic test case resulted in 11% percent
increase in additional defect detection. With increase in use of
the MBT technique in various felids, some researches on the
use of MBT in graphical user interface (GUI) testing were also
conducted. In a research conducted by Qing Xie, a frame work
for testing GUI of the SUT was proposed (Xie, 2006). He
concluded that the MBT is feasible and have potential in
applying it in the GUI testing. Other researches were
conducted in the health care and smart card industries. Marlon
and his group applied MBT in the healthcare system and found
that the MBT can help in fulfilling the coverage of the test
cases for complex healthcare systems however there are also
some challenges for applying the MBT in this particular area
such as the preparation of the large amount of the test data and
the training of the test analysts (Vieira, 2008). Another case
study of automated test generation from a formal model of a
smart card application makes it possible to automatically
produce both the test cases and the traceability matrix
(Bouquet, 2005).

ISSN: 0975–833X

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 33, Issue, 5, pp.069-074, May, 2011

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Article History:

Received 17th February, 2011
Received in revised form
15th March, 2011
Accepted 17th April, 2011
Published online 14th May 2011

 © Copy Right, IJCR, 2011 Academic Journals. All rights reserved.

Key Words:

Model Based Testing, Session Initiation
Protocol, System under Test, Qtronic
Modeling Language, Graphical User
interface.

The research groups have studied “White-Box or Code-Based
testing. Systems have become more sophisticated and code
lines have grown incomparably than a decade ago (Abdurazik
and Offutt, 2000).In software engineering, up to 50% of the
total development cost is related to testing (Agrawal and
Whittaker,1993). This measurement also contains the cost of
debugging, software testing is still assumed to be one the most
conspicuous procedures in Software Quality Assurance. It
provides a series of tasks to compare, and verify the system’s
real and expected behavior (Apfelbaum and Doyle, 1997).
Several methods have been offered to deploy MBT: Offline
Generation of Executable Tests (Beizer, 1995), Offline
Generation of Manually deployable Tests (Binder, 2000), and
Online Testing (Booch et al., 1998).Theorem Proving (Dalal
et al., 1998) has been basically applied for automated proving
of logical expressions. In MBT approaches, the SUT can be
modeled by a series of logical predicates to declare the
systems functions and behavior. Symbolic Execution is mostly
applied in MBT structures (Fujiwara et al., 1991). It can be
used to find execution traces in an abstract model. The
classical ways of defining the valid system behavior is with
natural language prose in the style of Requirement
Specification or Functional Specification (Jorgensen, 1995).

MATERIALS AND METHODS

The next step in QML is creation of the methods which are
used in the guard or action Part in the transition of model. The
method declaration and definition is very similar to the Java:
public void Invite()
{
SIPReq r;
r.op = "INVITE";
r.param = dst;
netOut.send(r, 1.0);
}
The method should be defined in the class which is defined as:
class SIPClient extends StateMachine {}
Here the “extends StateMachine” used to represent that this
class is combined with
the model which has the same name as the class name.

Main Method

The final part is the main method for running the QML code
which is defined as this
way.
void main()
{
var a = new SIPClient();
a.start(); }

Representation of Test Case

The test cases generated from the Qtronic are abstract test
cases. They only include necessary information for executing
the real testing. The tester can transfer these abstract test cases
to executable test scripts. If the tester has enough experience,
they might not require transferring test cases and can execute
the real testing directly from these abstract test cases. In the
Qtronic the test cases can be represented with the Fig. 1 and
Fig. 2 which display the interaction between tester and SUT or
a description of the sequence of the test steps. In these case
studies the manual test cases were also generated. Because, the

purpose of this paper was to compare both automatic and
manual test case generation method without executing them.
The format of manual test cases is similar to the test cases
from Qtronic and these manual test cases are also abstract.

Case Study: SIP

This case study was about the SIP. The transactions (Invite
client transactions, Non-invite client transactions, Invite server
transactions, Non-invite server transactions) part of the SIP
protocol was modeled for the test case generation purpose.
The created models have strictly followed the requirements
(RFCeditor, 2009). In this case study we have followed the
dimensions of MBT that behavioral model, separate test
model, deterministic, with state machine notations, test case
selection criteria was structural model coverage and
requirements coverage.

Fig 1. Qtronic Test Case Tester Interaction

Fig. 2. Qtronic Test Case Steps

The technologies used for test case generation were manual
and automatic by using Qtronic. Our main method was started
from creating the models according to the SIP specifications.
Then using the same model, once we generated test cases
manually from the model and another time we used the
Qtronic tool to generate test cases from the same model. Then
we compared both manual and automatic test cases sets. Since
the test selection criteria were requirement and transition
coverage.

070 Satyapal Reddy Regenti and Rama Sree, Evaluation of test cases in model based testing using session initiation protocol case study

It means that the test cases should include all requirements and
transitions in the model. Besides the requirement and
transition coverage, we had also experiment other coverage
criteria such as “2-transition”, “Boundary values” etc. The
results of this experiment were also included in the result
section of this case study.

RESULTS

The following section describes the results of SIP case study
after comparing manually produced test cases and
automatically generated test cases produced by Qtronic
involving time consumption, number of test cases, test case
steps of both methods and also analyzed some other aspects
like higher coverage criteria. The following steps includes the
findings about this case study.

a) Manual test case generation took 4.5 hours and validation of
these test cases took 1.5 hours, while 0.5 hours was used to fix
calculation problem found in some manual test cases. Whereas
in the case of Qtronic tool, the first three models (invite client
model, non-invite client model and invite server model) took
0.5 hour each only in test case generation The reason was that
we increased the “look ahead” depth level to the third level in
order to reach the timeout requirements therefore increasing
the computation time. We used the default “look ahead depth”
level (the lowest) on the last model (non-invite server) and it
only took 2 seconds. The Qtronic tool took 1.5 hours in total
for generating the test case which was 1/4 of the Time spent
on manual test case generation (Fig 3).

Fig. 3. Time comparison between Manual and Automatic test
cases

b) In manual test case design, totally 33 test cases were created
for fulfilling the requirements and transitions converge. With
the same criteria, the Qtronic tool generated the exactly same
number of test cases for each model (Fig 4).

Fig.4. Number of test cases for SIP

c) Manual testing is good when the customers only require
requirements level coverage and the model is not too complex.
In this case study, the test cases generated manually are very
similar to the test cases generated by the Qtronic but both of
them only consider the basic requirements and transitions
converge. If the customer needs to include more criteria such
as the boundary value, atomic value (true, false situation) and
so on it will definitely spend much more time and introduce
more logic problems for manual test case generator. On the
other hand, the Qtronic can do this job in one click, just
required to change the coverage criteria, and the Qtronic will
generate them automatically. The extra time spent can be
acceptable and rarely includes logical problem if the model
itself is correct.

d) In the invite client model, we included the boundary value
and atomic value testing the 4 extra test cases were added by
Qtronic tool. In the non invite server model, we included all
criteria such as the boundary value, atomic value, control flow,
two transition and implicit consumption. The result was that
Qtronic added 31 test cases with only 2 seconds extra time.

e) When the tester created the manual test cases in this case
study, he focused more on the exchange of messages which is
the most important testing purpose. To keep the work simple
and time controllable, the tester ignored some other details. On
the other hand, when we checked the test cases from the
Qtronic, includes more information than the manual one. The
most obvious point is about the SIP message itself.

f) In manual test cases, most of steps are repeated in every test
case because it’s hard for manual test engineer to keep track of
the transitions that are covered and uncovered. This problem
resulted in testing the timeout function repeatedly as this
function spends more than 32 seconds in execution every time
that might cause time consuming for tester at the end. On the
other hand Qtronic covers the timeout function only once and
avoids the repetition.

g) During the manual test cases generation, the tester usually
first decided a main stream in the model and treated other
states as the leaves e.g. “state 6” (Fig.5). It resulted in
increasing the complexity and steps of the test case which used
to test those leaves. In case of, the Qtronic tool usually select
the shortest path (Fig.5). The manual tester usually first
selected state “1-2-3-4-5” as main stream and treated state 6 as
leaves. When the tester, wrote the test case to test the
transition between state 4 and 6, resulting test case is like “1-
2-3-4-6”. Where path selected by Qtronic tool includes “1-4-
6” states instead.

Fig.5. Example for the path selection

071 International Journal of Current Research, Vol. 3, Issue, 5, pp.069-074, May, 2011

h) The numbers of the total test steps are reflected in the
comparison points d and e. We showed that the number of test
cases for both cases was exactly the same. But the result of the
total test case steps of the manual one was 250 and 213 for the
Qtronic tool.

DISCUSSION

In order to get familiar with the Qtronic tool, a web
application called e-theater was modeled for test case
generation. It was experienced that with basic knowledge of
the java and state machine diagrams getting familiar with the
Qtronic proved easier. It was also observed that the Qtronic
tool is not much suitable for web based and GUI testing
because the Qtronic was specially designed for communication
domain. As “msg” keyword and time out functions shows
intention of Qtronic tool towards communication sector.

Quality of test suites

The test suites are a set of test cases. As the test suites are used
to test the SUT, the direct way to measure the quality of test
suites is to run them and measure the number of the detected
fault and the execution time. A good quality test suite should
reveal more faults in a short time. However, the Qtronic and
manual test suites from the case studies are not intended to be
executed therefore the quality cannot be measured based on
the number of faults. Instead both the Qtronic and manual test
suites were generated based on the same coverage criteria. In
the SIP case study requirements coverage, all state coverage
and all transition coverage were selected. Because both the
Qtronic and manual test suites are generated with same
coverage criteria, they should generate very similar number of
fault therefore with the short time consumption, less number
of test cases or test steps reflects the less time of execution and
the better quality in some extend. Besides more coverage
criteria are also selected in Qtronic to see how many extra test
cases are generated. More coverage criteria usually reveal
more fault detection, if the Qtronic can apply those extra
coverage criteria in acceptable time and can generate more test
cases, we can say that Qtronic has ability to generate better
quality test suites. Reflection of Manual and Automatic Test
Case Generation: For some calculations like timer calculation
in the SIP case study, manual test engineer has to calculate the
timer of each message manually and needed to describe the
timer with every message which is time consuming and error
prone. It was very hard for the manual tester to keep track of
transitions and path covered by manual test cases. The manual
tester had to mark each covered requirements in the model that
slow down his speed. Considering only requirements coverage
in the manual test cases generation, it was lot easier than full
coverage. Because of the time limitation manual tester was
only considering requirements and transitions level coverage.
But it is very difficult to achieve higher cover like the
boundary value, full path coverage etc. manually. Since
manual test engineer created hand crafted test cases, it was
possible that some typing mistakes or some wrong step
calculation may occurred that might have lead to a wrong test
case in the end. As there was no sophisticated methods to keep
track which transition is already covered or not, there were
possibly repetitions of steps in some test cases that could have
increased the time of testing when these test cases will be
used.

 We can generate test case from the Qtronic tool with one
click but still it requires some time in writing QML code for
the model of inbound and outbound functions. The model
checking function was very helpful for checking the errors in
the model and QML code before creating test cases. After
modeling, the tester can select “load model” function in
Qtronic to do model checking. The Qtronic tool will check
both state machine diagram and QML code. The logical faults
in diagram or errors in code will be displayed in a console
window. If the fault is in the diagram, the console will show
which transition included in this fault. If there are errors in
QML code, the number of the line will be displayed with some
hints or suggestions. With the Qtronic tool it is very easy to
manage the requirement change problem; sometimes it was
only required to change the model to fulfill new requirements
even without changing QML code that saved our lot of time in
this case studies.

Conclusion

This paper includes brief description of the conclusion that we
have derived by analyzing the results of our case studies,
reflection of test engineers, experiments and from the theory.
The MBT method provides a way that involved testing in the
early stages of the software development process, because
requirements specifications can be directly modeled. With
automatic test case generation facility, the MBT keeps greater
advantages even the generated test cases are very abstract and
cannot be executed directly. For instance, with automatic test
cases some mathematical mistakes, wrong calculations and
test coverage problems can be easily avoidable as most of the
CASE tools like the Qtronic have such basic built-in facilities.
The change of requirements is one of the big and painstaking
problems in software development life cycle which can be
easily handled in the MBT. With change in requirements only
required slight changes in the models and with one more click
new test suits are generated in short time. The MBT is not only
facilitated with automatic generation of test cases it also have
some other basic facilities like criteria selection, model
checking and test case traceability matrix.

 The QML similarity with Java language makes Qtronic
very convenient for test engineers that require only basic
knowledge about java. The Qtronic tool is targeted especially
for the communication domain applications, the “timeout”
function and “msg” keywords are designed especially for such
areas. That might was reason that the Qtronic is not much
suitable for GUI and Web testing. Like the other MBT tools,
The Qtronic provides a lot of convenient functions like model
checking function, different coverage selection criterion,
requirements traceability matrix which proves very helpful and
effective in test generation. HTML format proved very
effective in test case comparison of our case studies.

 The SIP case study results shows that test case generation is
quick and less time consuming than manual generation
because of timeout conditions and message passing involved
in models which are easy to handle with the Qtronic but hard
with manual process. It also shows the Qtronic efficiency of
avoiding repetition of test steps, and providing power of
higher coverage criteria. For future work we would like to
execute generated test cases in order to analyze quality and
effectiveness of test cases. In future, with better resources and

072 Satyapal Reddy Regenti and Rama Sree, Evaluation of test cases in model based testing using session initiation protocol case study

time we would like to expand the scope of our research work
in order to cover other dimensions of the MBT.

REFERENCES

Mark Utting, B. L. 2007. practical model-based Testing a tools

approach. San Francisco: Morgan Kaufmann.
Clarke, J. M. 1998. Automated Test Generation from a

Behavioral Model. Software Quality Week. Lucent
Technologies.

Alain Abran, É. d. 2004. SWEBOK. Los Alamitos, California:
Angela Burgess.

Utting, Pretschner and Legeard, adapted from van
Lamsweerde (Lamsweerde, 2000).

Xie, Q. 2006. Developing Cost-Effective Model-Based
Techniques for GUI Testing. ICSE’06 (ss. 20–28).
Shanghai: ACM.

Marlon Vieira, X. S. 2008. Applying Model-Based Testing to
Healthcare Products:Preliminary Experiences. ICSE’08 (ss.
10-18). Leipzig: ACM.

F. Bouquet, E. J. 2005. Requirements Traceability in
Automated Test Generation -Application to Smart Card
Software Validation. ICSE’04 (ss. 15-16). St Louis,
issouri: ACM.

Aynur Abdurazik and Jeff Offutt. 2000. Using UML
collaboration diagrams for static checking and test
generation. Proceedings of the 3rd International
Conference on the Unified Modeling Language (UML 00),
York, UK.

K. Agrawal and James A. Whittaker.1993. Experiences in
applying statistical testing to a real-time, embedded
software system. Proceedings of the Pacific Northwest
Software Quality Conference.

Larry Apfelbaum and J. Doyle. Model-based testing. 1997.
Proceedings of the 10th International Software Quality
Week (QW 97. This paper appears in the Encyclopedia on
Software Engineering (edited by J.J. Marciniak), Wiley,
2001 Ibrahim K. El-Far and James A. Whittaker: Model-
Based Software Testing 1999.

 Boris Beizer. 1995. Black-Box Testing: Techniques for
Functional Testing of Software and Systems. Wiley.

 Robert V. Binder.2000. Testing object-oriented systems.
Addison-Wesley, Reading, MA, USA.

Grady Booch, James Rumbaugh, and Ivar Jacobson. 1998. The
unified modeling language. Documentation Set, Version
1.3, Rational Software, Cupertino, CA, USA.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott.1998. Model-based testing of a highly programmable
system. Proceedings of the 1998 International Symposium
on Software Reliability Engineering (ISSRE 98), pp. 174-
178.

Susumu Fujiwara, Gregor V. Bochmann, Ferhat Khendek,
Mokhtar Amalou, and Abderrazak Ghedamsi. 1991.Test
selection based on finite state models. IEEE Transactions
on Software Engineering, 17(6): 591-603.

Paul C. Jorgensen. 1995. Software Testing: A Craftman’s
Approach. CRC.

RFCeditor. 2009. RFC3261. Hämtat från RFC Editor:
http://www.rfceditor.org/rfc/rfc3261.txt den.

073 International Journal of Current Research, Vol. 3, Issue, 5, pp.069-074, May, 2011
